

High-density Crowds

A masters student's journey to graphics and multi agent systems

Who am I and why am I here?

Jack Shabo, student of CDATE, year 2012

Doing a degree project in Crowd Simulations with Christopher Peters as a mentor

Has taken previous year's round of Computer Graphics and Interaction

Many other graphics courses

I'd like to share with you my experiences and give you inspiration for your projects!

Layout

- 1. What I've been doing previously
- 2. What I've been doing recently
- 3. Where I'm going next
- 4. Where you can go next

New at KTH!

DD1354 - Models and Simulation

- My very first course with computer graphics
- Unity & Blender

DH2323 - Computer Graphics and Interaction

Project result:

Helicopter simulation with (somewhat) real physics and joy-stick interaction

DH2413- Advanced Computer Graphics and Interaction

Use more technologies: Virtual Reality (HTC VIVE, Oculus..), Augmented Reality (Mobile phones, infra-red sensors..)

Expand your knowledge of modern technologies and make something really outstanding. Take the "interaction" part more into consideration.

Exhibit at COMIC CON ←

DH2413 - Comic con

DH2413 - Comic Con

Now: The master thesis

"High-Density Crowd Simulation with subgroups"

→ Multi-agent system with controllable people

Suggested by Christopher Peters

But.. why crowds?

- Architectural plans
- Optimizing pedestrian walkways
- Evacuation plans
- Social behavior
- . . .

... a HUGE area with LOTS of components

- Path Finding
- Rendering optimizations
- Real-life emulation
- Collision Detection
- Collision Response
- And then my focus area: Collision Avoidance
 - Using a **fluid based approach** to simulate 1000+ crowd agents in **real time**
 - Most crowd simulations can't simulate this in real time
- → Hardware restriction

Example: Planet Coaster

Example: High Density Crowd Assassins Creed Unity

The "Unilateral Incompressibility Constraint" approach

Problem: How do you keep crowd agents apart from each other? (Collision avoidance)

Observations:

- Crowds are infinitely expandable, but not infinitely compressible.
- People want to keep a certain distance from each other
- Dense crowds has a reduced individual freedom of movement
- People often walks in groups (My investigation)

Crowd properties

A crowd consist of many distinct individuals that each have a **position**, **velocity** and **goal**.

Position: World space location

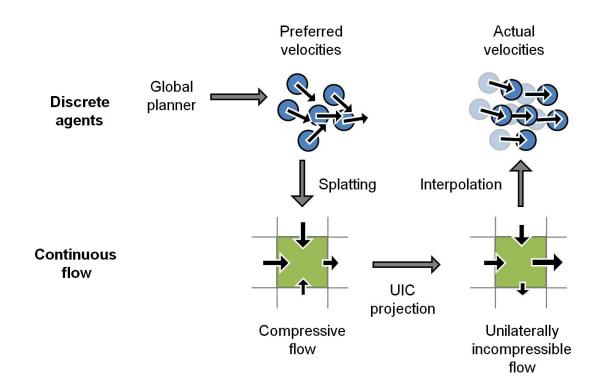
Velocity: Speed determining how fast and where the individual is going.

Goal: A point in space that the individual will steer towards.

- General locations: (Restaurant, School, Home)
- Specific (partial) locations: (The bus station 200m ahead, Out of the shopping mall)

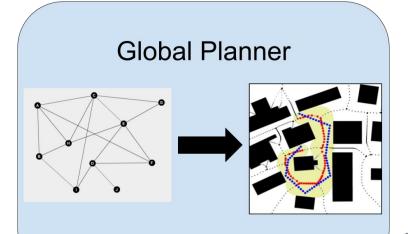
The "Unilateral Incompressibility Constraint" approach

Problem: How do you keep crowd agents apart from each other? (Collision avoidance)


Solution: Do not consider the crowd as distinct agents. Instead, transform them into a **continuous representation** with:

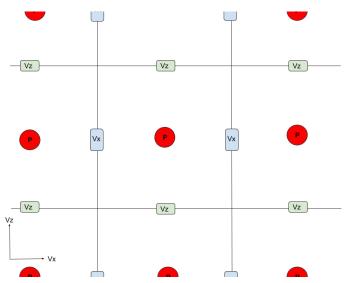
- Density values at certain positions
- Velocity laid out on a large "velocity field"

Unilateral approach: Introduce a "pressure" that corrects the crowd's velocity when the density is too high. Feedback the corrected velocity to the **distinct** agents.


The "Unilateral Incompressibility Constraint" approach

Source (2017-04-22): http://gamma.cs.unc.edu/DenseCrowds/

Components of the simulation



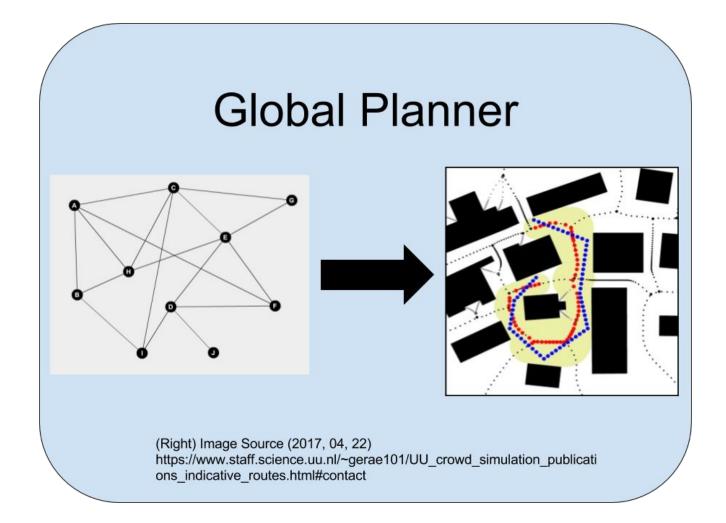
https://www.staff.science.uu.nl/~gerae101/UU_crowd_simulation_publicati

(Right) Image Source (2017, 04, 22)

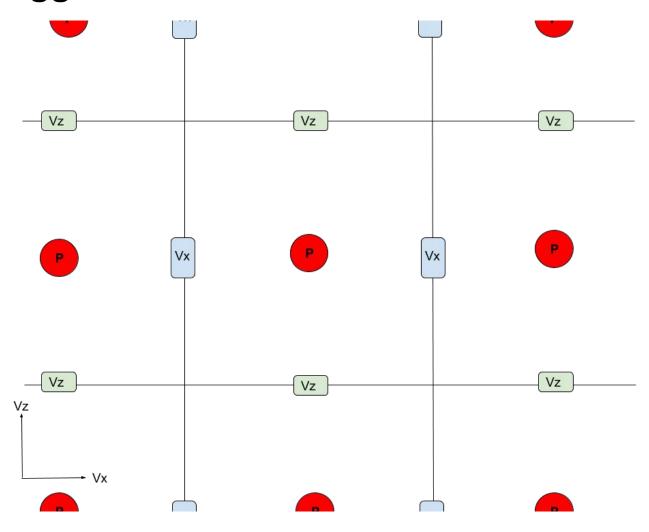
ons indicative routes.html#contact

Linear Compressibility Problem Solver

MPRGP


 $\begin{array}{c} \text{MPRGP with preconditioning in face,} \\ \text{MIC(0)} \end{array}$

PSG PSOR



Global Planner

Staggered Grid

LCP Problem (Numerical Method solver)

Linear Compressibility Problem Solver

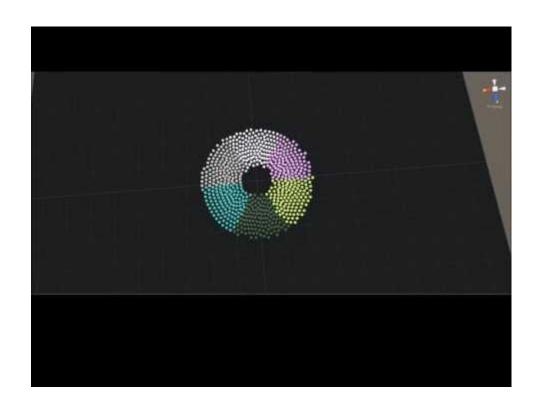
MPRGP

MPRGP with preconditioning in face, MIC(0)

PSG PSOR

Rendering agents

Low Poly Model



High Poly Model

Demo video from my system

Technologies used

C# for scripting and making most of the work

blender Blender for 3D models / Animations (Mostly purchased)

So what am I going to do next?

Continue to write a report..

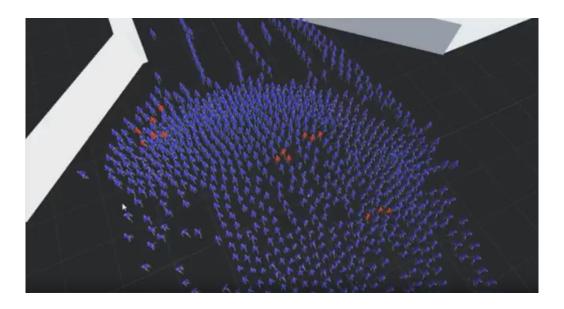
Integrate evaluation methods...

Come up with scenarios...

..perform a User Study ← You

User Study

- Detect subgroups in crowds of various densities.
- Sometime in the beginning of May (VIC Studio)
- Not very long 15 minutes tops.


How can YOU use my project in DH2323?

Project opportunities in DH2323

- Improved pathfinding (Hand drawn paths?)
- Rendering with shaders on the GPU
- Render 3D models with smooth shading
- Extend simulation with moving obstacles
- See through the crowd's eyes using Virtual Reality
- Define better subgroups
- ...
- Your own suggestion!

Thank you!

Jack Shabo

jshabo@kth.se

Blog: https://crowdsimulationblog.wordpress.com/