
ITP Exercise 2
due Friday 5th May

1 Self-Study

1.1 Emacs

If you don’t know Emacs well, familiarise yourself with its basic usage. Learn the key-combinations
for common operations like opening a file, saving current buffer, closing buffer, switching between
buffers, searching in a file, copy and paste text etc. You might consider printing the Emacs Ref-
erence Card1 and putting it next to your computer.

1.2 HOL Documentation

Familiarise yourself with how to get help about HOL.

• Build the various documentations in directory Manual. For this, call make in directory
HOL-HOME/Manual. For building the manuals, hol and Holmake need to run. Therefore
make sure, HOL-HOME/bin is in your PATH.

• Have a brief look at the various manuals in order to understand where which kind of
information can be found.

• The lectures will cover the logic foundations of the HOL theorem prover only very briefly
and lightly. If you are interested in more details, have a look at the Logic manual. This is
purely optional.

• Familiarise yourself with the different ways to access the reference manual. As an example
read up on MATCH MP in the HTML reference manual, the PDF reference manual and the
in-system help (type help "MATCH MP").

• Familiarise yourself with the different printing switches of HOL, in particular the ones in
hol-mode’s menu. Learn how to turn Unicode-output on/off, how to show assumptions of
theorems and how to show type annotations.

• Use DB.match and DB.find to find theorems stating A /\ A = A. Use both the emacs-mode
and the SML REPL. Look at the interface of DB.

1.3 Holmake

Learn about Holmake by reading description manual sections 7.3 - 7.3.4.

1.4 Constructing Terms and Forward Proofs

To deepen the knowledge about how to construct terms, how to program in HOL and how to per-
form forward proofs, please look at the following HOL modules: FinalThm.sml, FinalTerm.sml,
FinalType.sml, Drule.sig, Psyntax.sig, boolSyntax.sig, Lib.sig.

1https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

1

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf


2 Terms

2.1 Free and Bound Vars

List the free variables of the following terms:

• (\x. 2 + (7 * x) + y) z

• x + y + 2

• !x. x + 1 > x

• ?x. x = y + 2

2.2 Alpha Equivalence

Are the following pairs of terms alpha-equivalent? A simple mark on the sheet is a sufficient
answer. Also take two colors and mark all occurences of free vars in one color and all occourences
of bound vars in the other. Assume that x, y, z, a and b are variables.

• \x. x \y. y

• (\x. x) a (\y. y) a

• (\x. x) a (\y. y) b

• (\x. x) (\x. y)

• (\x y. x /\ y) (\y x. x /\ y)

• (\x y. x /\ y) a a (\y x. x /\ y) a a

• a /\ b a /\ b

• !x. x + 1 > x !y. y + 1 > y

• ?x. x = y + 2 ?x. x = z + 2

• !y. ?x. x = y + 2 !z. ?x. x = z + 2

2.3 Constructing Terms

Write a SML function mk imp conj term : int -> term that constructs for inputs n greater 1
the term !A1 ... An. A1 ==> ... ==> An ==> (A1 /\ ... /\ An). If n is not greater one, a
HOL ERR exception (use failwith). You might want to read up on boolSyntax for this exercise.
You can use list-make-functions like mk list conj, but also use non-list ones.

3 Basic Forward Proofs

3.1 Commutativity of Conjunction

Prove the lemma !A B. (A /\ B) <=> (B /\ A) using only inferences presented in the lecture.

3.2 Simplifying Conjunction

Prove the lemmas !A. (A /\ ~A) <=> F and !A B. (A /\ ~A) /\ B <=> F.

2



4 Writing Own Automation

4.1 Implications between Conjunctions

Write a function show big conj imp : term -> term -> thm that assumes that both terms
are conjunctions and tries to prove that the first one implies the second one. It should be clever
enough to handle T and F. show_big_conj_imp ‘‘a /\ (b /\ a) /\ c‘‘ ‘‘c /\ T /\ a‘‘

for example should succeed with |- (a /\ (b /\ a) /\ c) ==> (c /\ T /\ a). It should
also be able to show |- (a /\ F) /\ c ==> d. If the implication cannot be shown, the function
show big conj imp should raise HOL ERR.

For this exercise it might be useful to read up on Term.compare and the red-black sets and
maps in directory portableML.

4.2 Equivalences between Conjunctions

Use the function show big conj imp to now define a function show big conj eq : term ->

term -> thm that tries to shows the equivalence between the input terms. If both input terms
are alpha-equivalent, it should raise an UNCHANGED exception. If the equivalence cannot be proved,
a HOL ERR exception should be raised.

4.3 Duplicates in Conjunctions

Use the function show big conj eq to implement a conversion remove dups in conj CONV that
replaces duplicate appearances of a term in a large conjunction with T. Given the term

a /\ (b /\ a) /\ c /\ b /\ a

it should for example return the theorem

|- (a /\ (b /\ a) /\ c /\ b /\ a) = (a /\ (b /\ T) /\ c /\ T /\ T).

. If no duplicates are found, UNCHANGED should be raised. If the input is not of type bool, a
HOL ERR should be raised.

4.4 Contradictions in Conjunctions

Use the function show big conj eq to implement a conversion find contr in conj CONV that
searches for terms and their negations in a large conjunction. If such contradictions are found,
the term should be converted to F. Given the term

a /\ (b /\ ~a) /\ c

it should for example return the theorem

|- (a /\ (b /\ ~a) /\ c) = F.

. If no contradictions are found, UNCHANGED should be raised. If the input is not of type bool, a
HOL ERR should be raised.

5 Squabbling Philosophers

Recently keen historians were finally able to deduce where the less well-known ancient philoso-
phers Platon, Diogenes and Euklid came from (see background-questionnaire). However, in
order to avoid being embarrassed by announcing some wrong result, they asked you to check
their reasoning using HOL. Can you help and show that Platon indeed came from Sparta?

3



5.1 Download and Compile

Get the file philScript.sml from the exercise repository2. Compile it with Holmake to get a
theory file. Read philTheory.sig.

5.2 Proof

Open the theory philTheory and prove Sp platon. This is a simple first order logic problem.
Therefore automated methods like resolution can solve it easily. HOL has such methods build
in in the form of e. g. the resolution based prover METIS. For example,

METIS_PROVE [PHIL_KNOWLEDGE] ‘‘Sp platon‘‘

would already prove it. However, for learning, let us prove it via a low-level forward proof.

• Using the lemma MONO IMP and the inference rules MATCH MP, SPEC and IMP TRANS show
the lemma |- ~(W p) ==> Sp p.

• Similarly show |- ~(B p) ==> At p.

• Assume At platon and using this show the lemma [At platon] |- F with MP and MATCH MP.
You will need many steps and many different lemmata.

• Using DISCH, NOT INTRO and MATCH MP show Sp platon.

Don’t forget to turn printing of assumptions on in HOL or you will have a hard time figuring
out what is going on.

2https://gits-15.sys.kth.se/tuerk/ITP-exercises

4

https://gits-15.sys.kth.se/tuerk/ITP-exercises

	Self-Study
	Emacs
	HOL Documentation
	Holmake
	Constructing Terms and Forward Proofs

	Terms
	Free and Bound Vars
	Alpha Equivalence
	Constructing Terms

	Basic Forward Proofs
	Commutativity of Conjunction
	Simplifying Conjunction

	Writing Own Automation
	Implications between Conjunctions
	Equivalences between Conjunctions
	Duplicates in Conjunctions
	Contradictions in Conjunctions

	Squabbling Philosophers
	Download and Compile
	Proof


