
Assignment description
The Jack to VM compiler construction spans two assignments. This is the second assignment
corresponding to the compiler, and in this assignment we extend the Jack syntax analyzer
completed in the previous assignment into a full scale Jack compiler.

Objective Extend the syntax analyzer of the previous assignment into a full-scale Jack
compiler. This requires the generation of executable VM code in the software modules that generate
XML code.

Contract Implement code generation in the functions in charge of compiling the grammar
rules defining the non-terminals: subroutineCall and ifStatement.

Resources The main tool in this assignment is the partially implemented Jack compiler written
in Python. You will also need the supplied TextComparer utility, which allows to compare the
output files generated by your analyzer to the files supplied by us.

Background
The Jack compiler supplied with this assignment was obtained extending the Jack analyzer from the
previous assignment. The compiler is partially documented in sections 11.2, 11.3 and 11.4 of the
text book. It is strongly suggested to have a full understanding of these sections before peeking into
the code supplied with the assignment.

Details
Section 11.3 of the text book describes an implementation of a Jack compiler. You will start from
this implementation and complete the compiler by implementing the code generation in the
following methods in the CompliationEngine module:

1. _CompileIf(): it implements the grammar rule ifStatement:... .Observe that the
parsing and code generation of
'if' '(' expression ')' '{' statements '}'
 is already implemented. You just need to implement the compilation of the optional else
part.

2. _CompileCall(): it implements the grammar rule subroutineCall: ...

You should complete the implementations of these routines following the order indicated above. In
order to test your implementation of each one of the routines, use the .jack file in the corresponding
folder:

1. ElseTest

2. SubroutineCallTest

Each one of these folders contains at least two numbered subfolders containing test programs that
test the correctness of your implementation. We suggest to follow the order specified by the
numbering on the subfolders.

Each subfolder contains a CorrectOutput folder with the .vm output file that is expected from your
compiler. You can use the TextComparer utility to check if your implementation behaves as
expected.

Hints:
1. Get acquainted with the implementation of the vmWriter.

 How do you write a push and how do you specify the memory segment?

 How do you write a call? What do you need to specify?

2. Get acquainted with the symbol table.

 How do you retrieve ‘kind’ and ‘index’ of a variable?

 What does the CompilationEngine._KindToSegment(..) function do?

3. What does the CompilationEngine._CompileExpressionList() return?

4. How do you retrieve the name of the class you are compiling? Hint: self.className

Submission:
You should submit the CompilationEngine.py file, which should include the complete
implementation of the above named functions.

In one zip-archive, include the CompilationEngine.py file and the declaration file. OBS: If you
make changes to any other of the supplied files, or if your implementation of the
CompilationEngine.py needs any additional files created by you, please include them in the
submission.

Make sure that the subject field states EP1200-Seminar9-GroupN-Firstname-Lastname, if you are in
seminar group N.

