
DH2323 DGI17

INTRODUCTION TO

COMPUTER GRAPHICS AND
INTERACTION

Christopher Peters
CST, KTH Royal Institute of Technology,

Sweden
chpeters@kth.se
http://kth.academia.edu/ChristopherEdwardPeters

SCENE MANAGEMENT

Introduction to Scene Management

what is scene management?
• the reduction of all scene data to a subset of only the data that could

possibly be visible from the position of the viewer (i.e. anything out
of sight is not even considered for rendering)

why is scene management necessary?
• most graphics (rendering) calculations are complex and can be very

time-consuming

• even visibility calculations (clipping against viewing volume & back-
face culling) can take a long time

Christopher Peters Scene Management chpeters@kth.se

A model contains lots of polygons:

Let’s say we want to figure out if a line is intersecting with
the tank
There are many reasons we may want to do this
E.g. the movement of a projectile fired at the tank

Problem

Christopher Peters Scene Management chpeters@kth.se

One option: compare the line with every polygon
on the tank…
In this case:

for (every polygon in the tank)

{

Intersect the line with the polygon

If the line intersects then collision = true

}

Problem

Speed of the algorithm is dependent on the
number of polygons in the object

If a projectile is nowhere near the tank (e.g. is on
the other side of the map), the algorithm will still
have to check every single polygon in the tank to
see if there is an intersection

Need a quick way to decide whether something is
near the tank
And to be able to reject it very quickly if it is not

Problem

Christopher Peters Scene Management chpeters@kth.se

Bounding volumes offer (one part of) the solution
As an aside, spatial partitioning and other techniques can
also be used to speed up

• We will consider them slightly later

For the tank object, we may have chosen a
number of different bounding volumes:

A Solution

Christopher Peters Scene Management chpeters@kth.se

BVs chosen to enclose all the
vertices in a mesh

Ensure every triangle or polygon is
also contained

The bounding volume should be
made as small as possible
Different bounding volumes may be
more appropriate depending on the
layout of the object being fitted

Bounding Volumes

Christopher Peters Scene Management chpeters@kth.se

Popular bounding volumes
Notice that each volume is very
simple
Can do very quick calculations in
each case to figure out if e.g. a
line is intersecting a sphere or a
box
Tests using these bounding
volumes are also popular for
determining if something is
within the view volume when
doing visibility testing

Spheres and Boxes

Christopher Peters Scene Management chpeters@kth.se

Spheres are a common volume type chosen for bounding
objects
Simple representation = extremely fast calculations
Object rotates in the game world = with proper
positioning, it is usually not necessary to update the
sphere to match the objects new orientation

Bounding Spheres

Christopher Peters Scene Management chpeters@kth.se

Another popular type of bounding volumeUnlike
spheres, depending on the type of object, they may
provide a better fit:

However, it may be slower to do tests against bounding
boxes than spheres

Bounding Boxes

Christopher Peters Scene Management chpeters@kth.se

As the tank changes orientation, update the
bounding box to ensure it still encapsulates object

Updating Bounding Boxes

Christopher Peters Scene Management chpeters@kth.se

Here, the box is oriented with respect to the tank

Extra calculations are needed when doing tests
against the volume

OBB’s

Christopher Peters Scene Management chpeters@kth.se

Here, the box is remains orientated with respect
to the main axes

AABB’s

Useful for meshes of some other shapes
Other bounding volumes also possible
E.g. cylinder

In practice, bounding boxes and spheres are
the most commonly used

Bounding Ellipsoid

Christopher Peters Scene Management chpeters@kth.se

We can also calculate bounding spheres that
encapsulate other bounding spheres and bounding
volumes for subparts of objects
In this example, a separate bounding sphere is created for
the turret, gun, body and antennae of the tank:

Bounding Volume Hierarchies

Christopher Peters Scene Management chpeters@kth.se

Say we want to quickly test a point to see if it is in a
danger zone for our tank
Take three scenarios:

Let’s see what happens in each case…

BVH Example Usage

1. 2. 3.

Christopher Peters Scene Management chpeters@kth.se

We do a quick test to see if the point is inside of the
outer sphere
In this case, the point is outside
We can therefore reject it very quickly and do not need to do
any more calculations

Case 1.

Christopher Peters Scene Management chpeters@kth.se

We do the same test as before with
the outer sphere
This time we find the point is inside the
outer sphere
We therefore compare it with the lower
level bounding spheres
And end up testing the point with the
main gun mesh

Case 2.

We do the same test as before with
the outer sphere
Again, we find the point is inside the
outer sphere
We compare it with the lower level
bounding spheres…
Test the point with the all the meshes
apart from the main gun mesh

Case 3.

These tests, which do quick high-level tests to see
if objects are potentially intersecting, form what is
called the Broad Phase collision detection
Quickly find the sets of objects that may be colliding with
each other

What happens if the objects are found to be
potentially colliding?
Then we need to do further tests to see if it is the case and,
if so, find out where the objects are colliding
This is referred to as the Narrow Phase of collision
detection

Broad Phase Vs. Narrow Phase

Christopher Peters Scene Management chpeters@kth.se

Gilbert-Johnson-Keerthi algorithm
Solves proximity queries between two complex
convex polyhedra
Given the two polyhedra:
Computes the distance d between them
Can also return the closest pair of points on each polygons

GJK Algorithm

Christopher Peters Scene Management chpeters@kth.se

Scene Management Techniques

trees are the data structure of choice for many applicationsst

scene management methods
• BSP (Binary Space Partitioning) trees

• Quadtrees & Octrees

• Portals (rendering the PVS – Potential Visibility Set)

scene management methods can be combined

(example: portals with BSP trees)

Christopher Peters Scene Management chpeters@kth.se

Binary Space Partitioning Trees

• BSP trees use a binary tree structure to store the geometry of a scene
[Fuchs et al. 1980]

• BSP trees are a very efficient scene management method that allows
for very fast rendering of complex scenes

• the creation of the BSP tree can take a long time as many complicated
operations can be involved in the insertion of data into the tree

– creating a BSP tree structure from the geometric data of a scene is called
“compilation” of the BSP tree

– compiling the BSP tree is an off-line task (compilation should not be
attempted in real-time)

Christopher Peters Scene Management chpeters@kth.se

BSP trees in games

• BSP trees have been proven to
be highly successful for real-
time rendering in computer
games

– the rise of the FPS games
genre would not have been
possible without BSP trees

– examples: Doom (2D-space
partitioning only), Quake etc.

Rendering of a Quake3 BSP tree using the OGRE 3D rendering
engine.

Christopher Peters Scene Management chpeters@kth.se

BSP tree compilation

Polygon-Aligned BSP tree compilation [Akenine-Möller and Haines 2002]

• starting from an arbitrarily selected polygon (usually from the geometric
centre of a scene), all polygons of the scene are inserted into the tree

• the position of a polygon in relation to polygons that are already inside the
tree decides into which branch of the binary tree (left or right) a polygon is
entered

• if a polygon of the scene that has not yet been inserted into the BSP tree
intersects with the plane defined by another polygon which is already inside
of the tree, that polygon may have to be split into two polygons

this method can be simplified (splitting of polygons can be disallowed)

note: simplification of this method may lead to less accurate rendering

Christopher Peters Scene Management chpeters@kth.se

BSP tree rendering

• the BSP tree is traversed in-order and the position of the polygon in
each tree-node is tested against the virtual camera position &
alignment

• if the polygon in a BSP tree node is found to be outside of the view of
the camera, the whole branch of the BSP tree (the node and all its
children) can be discarded (i.e. it does not have to be traversed)

• this method can considerably reduce the amount of data that will have
to be sent to the renderer

Christopher Peters Scene Management chpeters@kth.se

construction of a simple BSP tree

simple example (2D BSP tree,

no polygon splitting)

Ordering of BSP tree:

objects in front

 right node

objects to the back

 left node

construction of a BSP tree (cont)

select an arbitrary polygon

(here: wall 0)

enter into the root of the tree

construction of a BSP tree (cont)

select next polygon

(here: wall 1)

1 is in front of 0

 traverse right

 enter into leaf

construction of a BSP tree (cont)

select next polygon

(here: wall 2)

2 is in front of 0

 traverse right

2 is in front of 1

 traverse right

 enter into leaf

construction of a BSP tree (cont)

select next polygon

(here: wall 3)

3 is in front of 0

 traverse right

3 is in front of 1

 traverse right

3 is to the back of 2

 traverse left

 enter into leaf

using a BSP tree for rendering

Solution:

1 is not in view

 right branch of 0 (1 and all its child
nodes) can be discarded

9 is not in view

 right branch of 8 (9 and all its child
nodes) can be discarded

Quadtrees

tree structure in which every tree node holds four child nodes

• quadtrees divide a scene up into rectangular areas that contain objects (or
polygons)

• objects are usually stored in the greatest depth of the tree (exception: use of

quadtree for CLOD rendering [Ulrich 2000])

• if a quad (or part of a quad) is visible (in front of the virtual camera) then
the child nodes of the quad need to be tested for visibility

• if a quad is not visible then none of its child nodes needs to be traversed
and consequently none of the objects (or polygons) contained within the
quad need to be rendered

Christopher Peters Scene Management chpeters@kth.se

quadtree example (cont)

• each of the quads of the scene is
split up again into four even
smaller quads

• each quad now holds a sixteenth
of the scene

an octree works similar to quadtrees (with an expansion into the 3rd
dimension, i.e. using cubes instead of squares)

Christopher Peters Scene Management chpeters@kth.se

Portals

Portals provide a simple scene-

management method

[Akenine-Möller and Haines 2002]
• environment is divided into cells that are

connected through portals

Portal Rendering
1. test which neighbouring cells are visible from

camera position

2. recursively test visible cells for visibility of their
neighbours

3. render (draw) all visible cells

Christopher Peters Scene Management chpeters@kth.se

Portal Rendering Examples

Visibility:
• cell C (camera position)

• cell B (from C)
• cell F (from C)

• cell D (from F)
• cell B (from D)

Visibility:
• cell B (camera position)

• cell A (from B)
• cell D (from B)

• cell E (from D)

Christopher Peters Scene Management chpeters@kth.se

References

• Akenine-Möller, T. and Haines, E. (2002). Real-Time Rendering, 2nd Edition. AK
Peters

• Fuchs, H., Kedem, Z. M. and Naylor, B. F. (1980). On visible surface generation
by a priori tree structures. In SIGGRAPH ’80: Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, pp. 124–133

• Ulrich, T. (2000). Continuous LOD Terrain Meshing Using Adaptive Quadtrees.
Gamasutra - http://www.gamasutra.com/view/feature/
3434/continuous_lod_terrain_meshing_.php?print=1

Christopher Peters Scene Management chpeters@kth.se

Next lecture

 You should be starting to work on Lab 3
 Project specifications! Canvas…

 Next lab help session:
13:00-15:00, room 1537, Thursday 3rd May

• Animation and image based rendering
• 8th May, 08:00–11:00

Christopher Peters DH2323 Scene Management chpeters@kth.se

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

