Part |
Interactive Theorem Proving (ITP) Course

Introduction
Thomas Tuerk (tuerk@kth.se)

o

L,
EFXTHE

by

L2y,
ZKTH%

T verewscar &
RN

e

VETENSKAP
28 OCH KONST %o

Academic Year 2016/17, Period 4 "%%LX%?Q“”

version 625b457 of Mon May 8 09:30:24 2017

Motivation ffﬁ*@% Famous Bugs ffﬁ%
et L
o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)
o Complex systems almost certainly contain bugs. o Ariane V explosion (1996)
o Critical systems (e.g. avionics) need to meet very high standards. (integer overflow, $1 billion prototype destroyed)
o It is infeasible in practice to achieve such high standards just by © Mars Climate Orbiter (1999)
testing. (destroyed in Mars orbit, mixup of units pound-force and newtons)
o Debugging via testing suffers from diminishing returns. o Knight Capital Group Error in Ultra Short Time Trading (2012)

(faulty deployment, repurposing of critical flag, $440 lost in 45 min

. on stock exchange
“Program testing can be used to show the presence ge)

of bugs, but never to show their absence!”
— Edsger W. Dijkstra

o ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

3/180 4/180

Proof

o proof can show absence of errors in design
o but proofs talk about a design, not a real system

o = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

5/180

@,
frry

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/180

Mathematical vs. Formal Proof

Formal Proof

o formal, rigorously use a
logical formalism

Mathematical Proof

o informal, convince other
mathematicians

o checked by community of o checkable by stupid
domain experts machines

o subtle errors are hard to find o very reliable

o often provide some new o often contain no new ideas

insight about our world and no amazing insights

o often short, but require o often long, very tedious, but
creativity and a brilliant idea largely trivial

v v

We are interested in formal proofs in this lecture.

6 /180

o

T ST

Automated vs Manual (Formal) Proof

Fully Manual Proof
o very tedious one has to grind through many trivial but detailed proofs
o easy to make mistakes
o hard to keep track of all assumptions and preconditions

o hard to maintain, if something changes (see Ariane V)

Automated Proof
O amazing success in certain areas

o but still often infeasible for interesting problems

o hard to get insights in case a proof attempt fails
o even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/180

Interactive Proofs {@}

o combine strengths of manual and automated proofs
o many different options to combine automated and manual proofs
» mainly check existing proofs (e.g. HOL Zero)
» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)
» most systems are somewhere in the middle

o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
» keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/180

Different Interactive Provers g«aﬁf’%

o there are many different interactive provers, e. g.
Isabelle/HOL

Coq

PVS

HOL family of provers

ACL2

v

vV vy VvVTVvYyywy

o important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vV VY VY VY VY

11/180

Typical Interactive Proof Activities g@*}

o provide precise definitions of concepts

o state properties of these concepts
o prove these properties

» human provides insight and structure

» computer does book-keeping and automates simple proofs
o build and use libraries of formal definitions and proofs

» formalisations of mathematical theories like

* lists, sets, bags, ...
* real numbers
* probability theory

» specifications of real-world artefacts like

»

Which theorem prover is the best one? :-) f‘%

* processors

* programming languages

* network protocols
reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

o there is no best theorem prover

o better question: Which is the best one for a certain purpose?

o important points to consider

vV Y Y VY VY VY VY VvYYy

existing libraries

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 /180

Aims of this Course %‘%’j}
Part |l Aims
o introduction to interactive theorem proving (ITP)
Organisational Matters being able to evaluate whether a problem can benefit from ITP
hands-on experience with HOL
learn how to build a formal model

learn how to express and prove important properties of such a model

by

Sy,
$KTHE

learn about basic conformance testing

© 0 0 0 o o

use a theorem prover on a small project

VETENSKAP é?

29 OCH KONST 2% R . d P . t
) o equire rerequisites
TSR

o some experience with functional programming

o knowing Standard ML syntax

o basic knowledge about logic (e.g. First Order Logic)

Dates s Exercises Py

o Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

o always in room 4523 or 4532

after each lecture an exercise sheet is handed out

o

©

work on these exercises alone, except if stated otherwise explicitly
exercise sheet contains due date

©

o each week))
» usually 10 days time to work on it

Mondays 10:15 - 11:45 Iectur.e _ » hand in during practical sessions
Wednesdays 10:00 - 12:00 practical session » lecture Monday — hand in at latest in next week's Friday session
Fridays 13:00 - 15:00 practical session o main purpose: understanding ITP and learn how to use HOL

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May » no detailed grading, just pass/fail

» retries possible till pass
» if stuck, ask me or one another
» practical sessions intend to provide this opportunity

o last lecture: 12th of June
o last practical session: 21st of June

o 9 lectures, 17 practical sessions

15 /180 16 /180

Practical Sessions {;%i? Handing-in Exercises {Z@E

o exercises are intended to be handed-in during practical sessions
o very informal . .
y o attend at least one practical session each week

@ main pur . work on exerci . . .
aln purpose: work on exercises o leave reasonable time to discuss exercises

> | have a look and provide feedback » don’t try to hand your solution in Friday 14:55

» you can ask questions
» | might sometimes explain things not covered in the lectures o retries possible, but reasonable attempt before deadline required
» | might provide some concrete tips and tricks o handing-in outside practical sessions
» you can also discuss with each other » only if you have a good reason
o attendance not required, but highly recommended » decided on a case-by-case basis
» exception: session on 21st April o electronic hand-ins
o only requirement: turn up long enough to hand in exercises > only to get detailed feedback

» does not replace personal hand-in
> exceptions on a case-by-case basis if there is a good reason
» | recommend using a KTH GitHub repo

o you need to bring your own computer

17 /180 18 /180
Passing the ITP Course g,%%i&% Communication gﬁ,%%}%

o we have the advantage of being a small group

o therefore we are flexible

o there is only a pass/fail mark o so please ask questions, even during lectures
o to pass you need to o there are many shy people, therefore
» attend at least 7 of the 9 lectures » anonymous checklist after each lecture
» pass 8 of the 9 exercises » anonymous background questionnaire in first practical session

o further information is posted on Interactive Theorem Proving
Course group on Group Web

o contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

19/180 20/180

Part Il

HOL 4 History and Architecture

by

kY
FKTH®

VETENSKAP %
39 OCH KONST o%

) 9

TR

LCF - Logic of Computable Functions Il

©

Milner worked on improving LCF in Edinburgh

o research assistants

©

© © o

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

vYyy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

LCF - Logic of Computable Functions

©

Standford LCF 1971-72 by Milner et al.
formalism devised by Dana Scott in 1969

©

o intended to reason about recursively defined

functions
o intended for computer science applications
o strengths
» powerful simplification mechanism
» support for backward proof
o limitations Robin Milner
> proofs need a lot of memory (1934 - 2010)
» fixed, hard-coded set of proof commands
22 /180
gﬁ%@% LCF Approach ﬁ%‘%

o implement an abstract datatype thm to represent theorems

o semantics of ML ensure that values of type thm can only be created
using its interface

o interface is very small

» predefined theorems are axioms
» function with result type theorem are inferences

o = However you create a theorem, it is valid.

©

together with similar abstract datatypes for types and terms, this
forms the kernel

23 /180 24 /180

LCF Approach I {ﬁ“}

Modus Ponens Example
Inference Rule
lFa=b Al a

FTUAEFb

SML function

val MP : thm -> thm -> thm
MP(T+a= b)(AF a)= (TUAF b)

o very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

History of HOL gﬁ%

o 1979 Edinburgh LCF by Milner, Gordon, et al.

o 1981 Mike Gordon becomes lecturer in Cambridge
o 1985 Cambridge LCF

» Larry Paulson and Gerard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

o 1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
» intention: hardware verification

o 1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

o 1998 HOL98
implementation in Moscow ML and new library and theory mechanism

o since then HOL Kananaskis releases, called informally HOL 4

27 /180

LCF Style Systems {Z‘%‘}

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
o HOL family
HOL theorem prover
HOL Light

HOL Zero
Proof Power

v

vvyVvVvyy

Isabelle

©

©

Nuprl
o Coq

Family of HOL P

Edinburgh LCF
o ProofPower

commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

o HOL Light
lean CAML / OCaml port by John Harrison HOLSS

o HOL Zero / \
Isabelle/HOL

Cambridge LCF

trustworthy proof checker by Mark Adams hotoo

ProofPower

o Isabelle

» 1990 by Larry Paulson
» meta-theorem prover that supports
multiple logics

HOL Light

» however, mainly HOL used, ZF a little hol9s HOL Zero
» nowadays probably the most widely used

HOL system
» originally designed for software verification HOL4

N
@
-
@
S

HOL Logic i@E

Part IV o the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

HOL's Logic

o this sounds complicated, but is intuitive for SML programmers
o (S)ML and HOL logic designed to fit each other
o if you understand SML, you understand HOL logic

==
éj‘igg %%% HOL = functional programming + logic
Lyl]3:jj[‘]}]: Y

VETENSKAP Q}
&9 OCH KONST ¢

LI Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

Types ff%:’% Terms fﬁ@)&

o SML datatype for types

» Type Variables (’a, «, ’b, £, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and o1, ...,0, argument types.
Type operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 037)
01 — 05 is the type of total functions from o7 to o».

©

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vvyVvVvyy

©

terms have to be well-typed

©

same typing rules and same type-inference as in SML take place

o terms very similar to SML expressions

©

notice: predicates are functions with return type bool, i.e. no

o in HOL, i.e. C . .
types are never empty in HOL, i. e distinction between functions and predicates, terms and formulae

for each type at least one value exists

o all HOL functions are total

31/180 32/180

Terms |l
HOL term SML expression type HOL / SML
0 0 num / int
X:’a X:’a variable of type ’a
x:bool x:bool variable of type bool
x+5 x+5 applying function + to x and 5
\x. x + 5 fn x => x + 5 anonymous (a.k. a. inline) function
of type num -> num
(5, T) (5, true) num # bool / int * bool
[5;3;2]1++[6] [5,3,2]@[6] num list / int list
33 /180
Theorems f,?%&%
Ly
o theorems are of the form [- p where

©

©

©

» [is a set of hypothesis
» p is the conclusion of the theorem
» all elements of I' and p are formulae, i.e. terms of type bool

" p records that using [the statement p has been proved
notice difference to logic: there it means can be proved
the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35/180

Free and Bound Variables / Alpha Equivalence

HOL Light Kernel

©

©

©

©

iy

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y < x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and Ay. y are alpha-equivalent

Example: x and y are not alpha-equivalent

the HOL kernel is hard to explain
» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added
instead consider the HOL Light kernel, which is a cleaned-up version
there are two predefined constants
> ’a -> ’a -> bool

> Q :

(’a -> bool) -> ’a

there are two predefined types
» bool
» ind

the meaning of these types and constants is given by inference rules
and axioms

36 /180

HOL Light Inferences | {%“}

l—t:tREFL lFs=t
x not free in I
ABS
Fs=t N-=Xx.s=Xx. t
AFt=u
— TRANS
FTUAFs=u _ BETA
F(Ax. t)x=t
Fs=t
Aru=v ASSUME
types fit COMB {p}+p
FUAF s(u)=t(v)
37 /180
HOL Light Axioms and Definition Principles fom
o 3 axioms needed
ETA_AX |— (M. tx)=t
SELECT_AX | — P x = P((Q)P))

INFINITY_AX predefined type ind is infinite
o definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

o definition principle for types
» new types can be defined as non-empty subtypes of existing types
o both principles

» lead to conservative extensions
> preserve consistency

39/180

HOL Light Inferences Il

N-p<& A
peq p EQ.MP
TUAF g
N=p AFgqg
DEDUCT_ANTISYM_RULE
(Mr—{ghu@a—-{p)Fpeq
r . - .
[X17 7Xn] p[X17 7Xn] INST
Mt1, ..., ta] F p[t1, ..., t]
Maa, ..., o0 F plag, . ..,
o1, s anl Eploa ol o b
N TN [o] [0 T

HOL Light derived concepts

Everything else is derived from this small kernel.

(Ap. p) = (Ap. p)
Apg. (M. fpg)=(\f.fTT)

T =def
N =def

= =der A\Pq. (PAGEP)
V =g AP.(P=Xx.T)
3 =ger AP. (Vq. (Vx. P(x) = q) = q)

40/180

Multiple Kernels HOL Logic Summary

o HOL theorem prover uses classical higher order logic
o Kernel defines abstract datatypes for types, terms and theorems o HOL logic is very similar to SML
o one does not need to look at the internal implementation > syntax
> type system

o therefore, easy to exchange > type inference
o there are at least 3 different kernels for HOL o HOL theorem prover very trustworthy because of LCF approach

» standard kernel (de Bruijn indices) » there is a small kernel

» experimental kernel (name / type pairs) » proofs are not stored explicitly

» OpenTheory kernel (for proof recording)

©

you don't need to know the details of the kernel

©

usually one works at a much higher level of abstraction

41 /180 42 /180
HOL Technical Usage Issues Py
Part V
o practical issues are discussed in practical sessions

Basic HOL Usage » how to install HOL

» which key-combinations to use in emacs-mode
» detailed signature of libraries and theories
» all parameters and options of certain tools

- .
m o exercise sheets sometimes

===
o2 g .
» ask to read some documentation

& D
éz;} KTH %@ » provide examples

VETENSKAP %

39 OCH KONST 2% » list references where to get additional information
T o if you have problems, ask me outside lecture (tuerk@kth.se)
o covered only very briefly in lectures

44 /180

Installing HOL General Architecture

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded
» some default modules opened
> an input wrapper to help parsing terms called unquote

©
©

webpage: https://hol-theorem-prover.org

©
©

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

| recommend using PolyML

©

unquote provides special quotes for terms and types

o please use emacs with » implemented as input filter
» hol-mode » ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
> sml—m(_)de _ _ » ‘‘:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
» hol-unicode, if you want to type Unicode o main interfaces
o please install recent revision from git repo or Kananaskis 11 release » emacs (used in the course)
o documentation found on HOL webpage and with sources > vim
» bare shell
45 /180 46 /180
Filenames gﬁfb}% Directory Structure f,ﬁ%«%
o oy Ry
o *Script.sml — HOL proof script file o bin — HOL binaries

v

script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs o src — HOL sources
» this might take very long o examples — HOL examples
» resulting theorems are stored in *Theory.{sml|sig} files » interesting projects by various people

o *Theory.{sml|sig} — HOL theory » examples owned by their developer
» coding style and level of maintenance differ a lot
» auto-generated by corresponding script file

» load quickly, because they don't search/check proofs
» do not edit theory files

o help — sources for reference manual
» after compilation home of reference HTML page

. o 0 Manual — HOL manuals

o *Syntax.{sml|sig} — syntax libraries » Tutorial

» contain syntax related functions » Description

» i.e. functions to construct and destruct terms and types » Reference (PDF version)

. . . . Interaction
o *Lib.{sml|sig} — general libraries > e

{ lsig} —¢ ST » Quick (cheat pages)
o *Simps.{sml|sig} — simplifications » Style-guide
>

o selftest.sml — selftest for current directory

47 /180 48 /180

Unicode

©

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
» no need to learn special ASCII syntax

©

©

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
» less portable between systems

©

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

©

o | recommend turning Unicode output off initially
» this simplifies learning the ASCII syntax
» no need for special fonts
» it is easier to copy and paste terms from HOL's output

49 /180

Part VI

Forward Proofs

hy

S,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*xTheory.sig and selftest.sml files

ask someone, e.g. me :-) (tuerk@kth.se)

Kernel too detailed

©

©

©

©

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

» many operations and datatypes are defined
» high-level derived inference rules are used

let's now look at this more common abstraction level

52 /180

Common Terms and Types

type vars

type annotated term
true

false

negation

conjunction

disjunction

implication

equivalence

disequation
all-quantification
existential quantification
Hilbert's choice operator

Unicode
a, B, ...
term:type
T
F
—b
bl A b2
bl V b2
bl — b2
bl < b2
vl # v2
Vx. P x
dx. P x
0x. P x

ASCII Socst
’a, ’b, ...
term:type

T

F

~b
bl /\ b2
b1l \/ b2
bl ==> b2
bl <=> b2
vl <> v2
Ix. P x
?x. P x
@x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /180

Syntax conventions {Z@E

o common function syntax
» prefix notation, e.g. SUC x
» infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)
o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
o quantifiers of the same type don't need to be repeated
Example: Vx y. P x yis short for vx. Vy. P x y
o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND c v1 v2
o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

Creating Terms Il

Parser Syntax Funs

€¢:bool‘ mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

Céapt mk _neg (negation of
mk_var ("b", bool)) Boolean var b

‘¢ /N ... mkconj (..., ...) conjunction

‘e / ...¢¢ mkdisj (..., ...) disjunction

oo ==> 00 mkidimp (L., L)) implication

o= Ll mkeq (..., ...) equation

e <=> ““ mkeq (..., ...) equivalence

‘¢ <> mk neg (mk.eq (..., ...)) negated equation

56 /180

Inference Rules for Equality {m‘}.
lFs=t
GSYM
REFL THt=s
Ft=t
Mes=
MEs—t s=t1
. AFt=u
X not free in T ABS STTNE TRANS
MF Ax. s = Ax.t UATs=u
Ml-p& A+
Mes—t P—=4d P Bq Mp
AFu=v FrUAFq
types fit
rUA ZP =t ME-COMB — BETA
s(u) = () F O, tx =t
57 /180
Inference Rules for Implication fom
lFp=—gq
AFp
—— 7 MP, MATCH_.MP I
FTUAFgq p DISCH
r—{qgtFa=0p
rFrp=gq EQ_IMP_RULE
N-p=gq - B m UNDISCH
rN-g=—np ru{qtrp
[Fp=gd TFp=F vorINTRO
AFg=— - -
297 P P ANTISYM.RULE | P
FTUAFp=gq
TP~ vor.ELIM
FEp=gq rFp=F i
AFg=r

IMP_TRANS

TUAFp=r

Inference Rules for free Variables

F[xl,..

S Xn] Fop[x, ..

 Xn

I'[tl,..

Maa, ..., an F plag,. ..

St Foplt, ...

INST
s tn]

,Oén]
INST_TYPE

Cy1s -0 F P,y -- -

Inference Rules for Conjunction

N=p Al q
FTUAFP A g

CONJ

N=p A g
N-=p

CONJUNCT1

=p A g
N-gq

CONJUNCT?2

) ’Yn]

/ Disjunction

Fp

— DISJ1

l=p VvV g
Fq

— DISJ2
l'=p VvV q

N=-pVvag
A U{p}Fr
Ny U{q}Fr

FTUA{UA

DISJ_CASES

60 /180

Inference Rules for Quantifiers

x not free in [
M=vx. p

M
P EN

M- Vx. p

—— SPEC
M+ plu/x]

Forward Proofs — Example |
Let's prove Vp. p = p.

val IMP_REFL_THM = let
val tml = ‘‘p:bool‘‘;
val thml ASSUME tmil;
val thm2 DISCH tml thmi;
in
GEN tml thm2

end

fun IMP_REFL t =
SPEC t IMP_REFL_THM;

= plu/x]
N-=3x. p

EXISTS

N-=dx. p
A U{plu/x]} Fr

unot freein A, p and r

CHOOSE
FTUAFTr

61 /180

()

Ly
val tml = “‘p‘‘: term
val thml = [p] |- p: thm
val thm2 = |- p ==> p: thm

val IMP_REFL_THM =
|- !'p. p ==> p: thm

val IMP_REFL =
fn: term -> thm

63 /180

Forward Proofs

o axioms and inference rules are used to derive theorems

o this method is called forward proof

» one starts with basic building blocks

» one moves step by step forward

» finally the theorem one is interested in is derived

o one can also implement own proof tools

Forward Proofs — Example Il

Let's prove VP v. (3x. (x =v) AP x) <= P v.

val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = ‘“?x. (x = v) /\ P x‘¢

val tm_rhs = mk_comb (tm_P, tm_v);
val thml = let
val thmla = ASSUME tm_rhs;
val thmlb =
CONJ (REFL tm_v) thmla;
val thmlc =
EXISTS (tm_lhs, tm_v) thmib
in
DISCH tm_rhs thmilc
end

val thmla
val thmlb
[Pv]l |- (v=v)/\Pv: thm
val thmlc =
[Pv] I-7?7x. (x=v) /\Px

[Pv] |- P v: thm

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm

64

180

| 2

Forward Proofs — Example Il cont. {ZTH

Part VII

val thm2 = let

val thm2a = > val thm2a = [(u = v) /\ P u] |-
ASSUME ‘‘(u:’a =1v) /\ P u‘* (u=v) /\ P u: thm
val thm2b = AP_TERM tm_P > val thm2b = [(u = v) /\ P ul |- Backward PI’OO'FS
(CONJUNCT1 thm2a); Pu<=>Pyv
val thm2c = EQ_MP thm2b > val thm2c = [(u =v) /\ P u] |-
(CONJUNCT2 thm2a) ; Pv
val thm2d = > val thm2d = [?x. (x =v) /\ P x] |-
CHOOSE (‘‘u:’a‘‘, Pv
. ASSUME tm_lhs) thm2c a{g? === S&QQ
in
DISCH tm_lhs thm2d > val thm2 = [] |- 515 KTH éf?g
end 7x. (x=v) /N\Px==>Pv VETENSKAP
289 OCH KONST 2%
] 9
@ 1°)
val thm3 = IMP_ANTISYM_RULE thm2 thmi > val thm3 = [] |- S
?x. (x=v) /\N\Px<=>Pv
val thmd = GENL [tm_P, tm_v] thm3 > val thmd = [] |- !P v.
?7x. (x=v) /N\Px<=>Pv
65 /180
Motivation | ﬁ%"g Motivation Il - thinking backwards
o let's prove 'A B. A /\ B <=>B /\ A
(+ Show |- A /\ B ==> B /\ A %) o we want to prove
val thmia = ASSUME ‘A /\ B‘¢; » '1AB. A/\B<=>B/\A
val thmib = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmia); e . , .
val thml = DISCH ‘A /\ B‘‘ thmib o all-quantifiers can easily be added later, so let's get rid of them

(* Show |- B /\ A ==> A /\ B %) »A/NB<=>B/\A

val thm2a ASSUME ‘‘B /\ A‘‘;
val thm2b CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 DISCH ‘B /\ A‘‘ thm2b » A /\ B==>B/\A

»B/\A==A4A/\B

o now we have an equivalence, let's show 2 implications

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thmi thm2 T iy
o we have an implication, so we can use the precondition as an
(* Add quantifiers *) assumption
val thm4 = GENL [‘‘A:bool‘‘, ‘‘B:bool‘‘] thm3 .
» using A /\ BshowB /\ A
»A/\B==>B/\A
o this is how you write down a proof

o for finding a proof it is however often useful to think backwards

67 /180 68 /180

Motivation Ill - thinking backwards Motivation |V

@ common practise
o we have a conjunction as assumption, let's split it » think backwards to find proof

» using A and B show B /\ A » write found proof down in forward style
» A/\B==>B/\A

o we have to show a conjunction, so let's show both parts
» using A and B show B

» using A and B show A
» A /\B==>B/\A

o often switch between backward and forward style within a proof
Example: induction proof
» backward step: induct on ...
» forward steps: prove base case and induction case

_ o o o whether to use forward or backward proofs depend on
the first two proof obligations are trivial » support by the interactive theorem prover you use
» A/\NB==>B/\A * HOL 4 and close family: emphasis on backward proof

° * [sabelle/HOL: emphasis on forward proof
o * Coq : emphasis on backward proof

©

o we are done » your way of thinking

» the theorem you try to prove

69 /180 70 /180
HOL Implementation of Backward Proofs g,%%i&% Goals gﬁ,%%}%
o oy
o in HOL o goals represent proof obligations, i. e. theorems we need /want to prove
» proof tactics / backward proofs used for most user-level proofs o the SML type goal is an abbreviation for term list * term
» forward proofs used usually for writing automation o the goal ([asm_1, ..., asmn], c) records that we need/want to
o backward proofs are implemented by tactics in HOL prove the theorem {asm-1, ..., asmn} |- ¢
» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals Example Goals
» forward proof used to construct theorems
. Goal Theorem
o to understand backward proofs in HOL we need to look at (LA, BT, <A /\ BY) A, B} |- A/\B
» goal — SML datatype for proof obligations ([“B“’ HA”]’ cep /\ B‘Y) {A’ B} |- A /\B
» goalStack — library for keeping track of goals ([‘B /{ Ace] :‘A A B B,/\ AY - A /\ B
» tactic — SML type for functions performing backward proofs 2 { }
a, ““®/\A) ==> A/\NB“) |- ®B/\A ==> (A /\B)

71/180 72 /180

Tactics

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that
* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

©

©

©

o special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid

Tactic Example — EQ_TAC gf%.%

t = 1lhs = rhs

l-p=gq aslF lhs ==> rhs
AFg=p asl k rhs ==> 1lhs
—— IMP_ANTISYM_RULE
FTUAFp=g aslkt

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs)
in
([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thl th2
| _ => raise Match)

= dest_eq t

end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 /180

Tactic Example — CONJ_TAC

t =conjl /\ conj2
aslt conjl aslt conj2
aslkt

Ml=p At q
FTUAFpPp A g

CONJ

val CONJ_TAC: tactic = fn (asl, t) =>
let
val (conjl, conj2) = dest_conj t
in
([(asl, conj1), (asl, conj2)],
fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 /180

proofManagerLib / goalStack

o the proofManagerLib keeps track of open goals

o it uses goalStack internally
o important commands

» g — set up new goal

» e — expand a tactic

» p — print the current status

» top_thm — get the proved thm at the end

76 /180

Tactic Proof Example |

Previous Goalstack

User Action

g “'AB. A/\B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\B<=>B/\A

: proof

Tactic Proof Example IlI

Previous Goalstack
A /\B<=>B/\A

: proof

77/180

o

User Action
e EQ_TAC;

New Goalstack
B/\ A==>A/\B

A/\B==>B/\A

: proof

79 /180

Tactic Proof Example Il

Previous Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\ B<=>B/\A

: proof

Tactic Proof Example IV

Previous Goalstack
B/\A==>A/\B

A /\ B==>B /\ A : proof

78/180

Ko

ey

(

gt

User Action
e STRIP_TAC;

New Goalstack

B /\ A
0. A
1. B

80 /180

Tactic Proof Example V %‘%} Tactic Proof Example VI {i‘%}
Previous Goalstack Previous Goalstack
B /\ A A
0. A 0. A
1. B) 1. B
. B
User Action
e CONJ_TAC; v, A
v, 1. B J
New Goalstack User Action
A e (ACCEPT_TAC (ASSUME ‘‘B:bool‘‘));
0 A e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));)
1 B
5 New Goalstack
B/\A==>4/\B
. A
1. B y : proof
81/180 82/180
Tactic Proof Example VII]%;;a% Tactic Proof Example VIII %;;%%
i i
Previous Goalstack Previous Goalstack
B/AA==>A/B Initial goal proved.
|- 'AB. A/\ B<=>B/\A:
: proof) proot
User Action User Action
e STRIP_TAC; _ .
e (ASM_REWRITE_TAC[I);) TR, T 2 (O J
New Goalstack Result
Initial goal proved. val thn =
|- 1A B. A /\ B <=> B /\ A: L;m!AB'A/\BG)B/\A’
proof y

83/180 84 /180

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢ ‘A:bool‘)
1l

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

=9

Result

val thm =
|- 'AB. A/\ B<=>B/\ A:
thm

Summary Backward Proofs

o in HOL most user-level proofs are tactic-based
» automation often written in forward style
» low-level, basic proofs written in forward style
» nearly everything else is written in backward (tactic) style

©

there are many different tactics

©

in the lecture only the most basic ones will be discussed

©

you need to learn about tactics on your own
» good starting point: Quick manual
» learning finer points takes a lot of time
> exercises require you to read up on tactics

©

depends on
» personal way of thinking
» personal style and preferences
» maintainability, clarity, elegance, robustness
>

85 /180

{xuy

often there are many ways to prove a statement, which tactics to use

87 /180

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
));

Result

val thm =
|- 'AB. A/\ B<=>B/\ A:
thm

Part VIII

Basic Tactics

&y

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

86 /180

Syntax of Tactics in HOL {ﬁ“}

Qo

Bt

originally tactics were written all in capital letters with underscores

Exa

mple: ALL_TAC

since 2010 more and more tactics have overloaded lower-case syntax

Exa

mple: all_tac

sometimes, the lower-case version is shortened

Exa

mple: REPEAT, rpt

sometimes, there is special syntax

Exa
whi
| 4
| 4
| 4

>

mple: THEN, \\, >>
ch one to use is mostly a matter of personal taste

all-capital names are hard to read and type

however, not for all tactics there are lower-case versions
mixed lower- and upper-case tactics are even harder to read
often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89 /180

Tacticals .

©

©

©

©

g KTHY

tacticals are SML functions that combine tactics to form new tactics

common workflow

>

vVvyVvyy

develop large tactic interactively

using goalStack and editor support to execute tactics one by one
combine tactics manually with tacticals to create larger tactics
finally end up with one large tactic that solves your goal

use prove or store_thm instead of goalStack

make sure to clearly mark proof structure by e. g.

>

>

>

use indentation
use parentheses
use appropriate connectives

> ..

goa

IStack commands like e or g should not appear in your final proof

91/180

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH.TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal

Some Basic Tacticals

tacl >> tac2

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

90 /180

applies tactics in sequence

applies list of tactics to subgoals
applies tac2 to the first subgoal of tacl
repeats tac until it fails

apply tac n times

reverses the order of subgoals

applies tacl only if tac2 fails

do nothing if tac fails

do nothing

fail

92 /180

Basic Rewrite Tactics

©

we will discuss it in detail later

©

©

(equational) rewriting is at the core of HOL's automation

details complex, but basic usage is straightforward

» given a theorem rewr_thm of form |- P x = Q x and aterm t
» rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint

o warning: rewriting may loop

Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms
ASM_REWRITE_TAC thms

ONCE_REWRITE_TAC thms
ONCE_ASM_REWRITE_TAC thms

Assumption Tactics

at
B
rewrite goal using equations found
in given list of theorems
in addition use assumptions
rewrite once in goal using equations
rewrite once using assumptions
93 /180
fg%ﬁ
§ s §
St

POP_ASSUM thm-tac

PAT_ASSUM term thm-tac
also PAT_X_ASSUM term thm-tac

WEAKEN_TAC term-pred

use and remove first assumption
common usage POP_ASSUM MP_TAC

use (and remove) first
assumption matching pattern

removes first assumption
satisfying predicate

95 /180

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term

induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

Decision Procedure Tactics

o decision procedures try to solve the current goal completely

©

©

©

TAUT_TAC
DECIDE_TAC
METIS_TAC thms
numLib.ARITH_TAC
intLib.ARITH_TAC

they either succeed of fail
no partial progress

decision procedures vital for automation

propositional logic tautology checker
linear arithmetic for num

first order prover

Presburger arithmetic

uses Omega test

94 /180

96 /180

Subgoal Tactics Term Fragments / Term Quotations

o it is vital to structure your proofs well
> improved maintainability o notice that by and sufficies_by take term fragments
improved readability

>
» improved reusability
» saves time in medium-run o they represent (partially) unparsed terms

o term fragments are also called term quotations

o therefore, use many small lemmata o parsing takes time place during execution of tactic in context of goal

o also, use many explicit subgoals o this helps to avoid type annotations

o however, this means syntax errors show late as well

‘term-frag’ by tac show term with tac and o the library Q defines many tactics using term fragments
add it to assumptions
‘term-frag’ sufficies_by tac show it sufficies to prove term

97 /180 98 /180

Importance of Exercises g,%fb}% Tactical Proof - Example | - Slide 1 Py

o we want to prove !1. LENGTH (APPEND 1 1) = 2 = LENGTH 1
o first step: set up goal on goalStack

o here many tactics are presented in a very short amount of time o at same time start writing proof script
o there are many, many more important tactics out there :
. : : Proof Script
o few people can learn a programming language just by reading manuals
imilar f | | HOL i b di d i . val LENGTH_APPEND_SAME = prove (
o similar few people can learn just by reading and listening <11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
o you should write your own proofs and play around with these tactics
o solving the exercises is highly recommended Actions
(and actually required if you want credits for this course) orung ‘“!1. LENGTH (APPEND 1 1) = 2 % LENGTH 1°°¢
o this is done by hol-mode
© move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

99 /180 100 /180

Tactical Proof - Example | - Slide 2 {ﬁ‘*}

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1 ’

o the outermost connective is an all-quantor
o let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€11, LENGTH (1 ++ 1) = 2 * LENGTH 1°°,
GEN_TAC

Actions
o run e GEN_TAC
o this is done by hol-mode

o mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

101 /180

Tactical Proof - Example | - Slide 4 g,?%;%

Current Goal
LENGTH (1 ++ 1) = 2 % LENGTH 1

o let's rewrite with found theorem 1istTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o connect the new tactic with tactical >> (THEN)

o use hol-mode to expand the new tactic

103 /180

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 % LENGTH 1 ’

o LENGTH of APPEND can be simplified

o let's search an appropriate lemma with DB.match

Actions
o run DB.print_match []1 ¢‘LENGTH (_ ++)¢
o this is done via hol-mode
o press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)
o this finds the theorem 1istTheory.LENGTH_APPEND
|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /180

Tactical Proof - Example | - Slide 5 g,ff%j%

Current Goal
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1 l

o let's search a theorem for simplifying 2 * LENGTH 1

o prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o DB.match finds theorem arithmeticTheory.TIMES2

o press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 /180

Tactical Proof - Example | - Slide 6 {ﬁ‘*}

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 ’

o extend the previous rewrite tactic
o finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
“¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°‘°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
o add TIMES?2 to the list of theorems used by rewrite tactic

o use hol-mode to expand the extended rewrite tactic

o goal is solved, so let's add closing parenthesis and semicolon

105 /180

Tactical Proof - Example Il - Slide 1

©

let's prove something slightly more complicated

©

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

©

set up goal on goalStack (M-h g)

©

at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==
~“(ALL_DISTINCT (11 ++ 12 ++ 13))°‘°¢,

107 /180

Tactical Proof - Example | - Slide 7 {f;}

o we have a finished tactic proving our goal
o notice that GEN_TAC is not needed
o let's polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1¢°,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /180

Tactical Proof - Example Il - Slide 2

Current Goal

1x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
~ALL_DISTINCT (11 ++ 12 ++ 13)

o let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==
~(ALL_DISTINCT (11 ++ 12 ++ 13))°¢,

REPEAT STRIP_TAC

108 /180

Tactical Proof - Example Il - Slide 2

Ix1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
“ALL_DISTINCT (11 ++ 12 ++ 13)

Current Goal b J

o let’s strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1¢°¢,
REPEAT STRIP_TAC

Actions
o add REPEAT STRIP_TAC to proof script

o expand this tactic using hol-mode

4

109 /180

Tactical Proof - Example Il - Slide 4 fom
Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
o now let’s simplify ALL_DISTINCT

o search suitable theorems with DB.match

o use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘¢...¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]

111 /180

Tactical Proof - Example Il - Slide 3 {%ﬁ%

Current Goal

F
0 MEM x1 11 4., x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6. ALL_DISTINCT (11 ++ 12 ++ 13)
3 x1 <= x2

o oops, we did too much, we would like to keep ALL_ DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘¢...¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions
o undo REPEAT STRIP,TAC(M—h b)

o expand more fine-tuned strip tactic

110 /180

Tactical Proof - Example Il - Slide 5 g,%;%

Current Goal

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

o from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
o let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC

112 /180

Tactical Proof - Example Il - Slide 6 {E@E

Current Goals — 2 subgoals, one for each disjunct

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> “MEM e 13)

0. MEM x1 11 4, x2 <= x3

1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

o both goals are easily solved by first-order reasoning
o let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (
METIS_TAC[]
));

113 /180

Part IX

Induction Proofs

hy

S,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
“e1x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (11 ++ 12 ++ 13))°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_-TAC[]
));

o notice that proof structure is explicit

o parentheses and indentation used to mark new subgoals

Mathematical Induction

o mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

o HOL is expressive enough to encode this principle as a theorem.

|- 1P. PO /\ (ln. Pn==>P (SUC n)) ==> In. Pn

o Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

o there are many similarish induction theorems in HOL

o Example: complete induction principle
|- 'P.

(In. (!m. m<n==>Pm) ==>P n) ==

In. Pn

114 /180

116 /180

Structural Induction Theorems

©

structural induction theorems are an important special form of
induction theorems

©

they describe performing induction on the structure of a datatype

©

Example: |- 1P. P [1 /\ (!t. Pt ==> th. P (h::t)) ==> !1. P 1

o structural induction is used very frequently in HOL

©

for each algabraic datatype, there is an induction theorem

117 /180

Induction (and Case-Split) Tactics Py

o the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

o this is usually what one needs

o other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

o similarish Cases_on picks and applies default case-split theorems

119 /180

Other Induction Theorems {i@i;

o there are many induction theorems in HOL

datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
» recursive relation definitions give rise to induction theorems

» many are manually defined

v

o Examples
- 1P, P [1/\ (11. P1==>1x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM £ ==> P (f |+ (x,y))) ==> !f. P £

I- . P {} /\
(!s. FINITE s /\
!s. FINITE s ==>

. e NOTIN s ==> P (e INSERT s)) ==>

[-'RP. (xy. Rxy==>Pxy) /\ (Ixyz. Pxy /\Pyz-==>Pxz)==>

luv. RPruv=>Puv

Induction Proof - Example | - Slide 1 f‘%‘é’w

o let's prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct

120 /180

Induction Proof - Example | - Slide 2

o the induction tactic produced two cases

o base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

o induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

'12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

©

both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (*°
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°¢,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D;

Induction Proof - Example Il - Slide 2

o the induction tactic produced two cases

o base case:
REVERSE (REVERSE []1) = []

o induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) = 1

o again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF] ,
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
IDH

121 /180

b,
{xuny

Sttt

123 /180

Induction Proof - Example Il - Slide 2

o let's prove via induction
!1. REVERSE (REVERSE 1) =1

o we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€€11. REVERSE (REVERSE 1) = 1°°¢,
Induct

Part X

Basic Definitions

&y

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

122 /180

Definitional Extensions {;%i? Axiomatic Extensions {i@i?

. . e .. o axioms are a different approach
o there are conservative definition principles for types and constants

o they allow postulating arbitrary properties, i.e. extending the logic

o conservative means that all theorems that can be proved in extended . .
with arbitrary theorems

theory can also be proved in original one

) o this approach might introduce new inconsistencies
o however, such extensions make the theory more comfortable

L o in HOL axioms are very rarely needed
o definitions introduce no new inconsistencies

. o o using definitions is often considered more elegant
o the HOL community has a very strong tradition of a purely & &

definitional approach o it is hard to keep track of axioms

o use axioms only if you really know what you are doing

125 /180 126 /180
Oracles s Oracles I o
L G e ¥
Sttt Sttt
o oracles are families of axioms o Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast_proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

o however, they are used differently than axioms
o they are used to enable usage of external tools and knowledge

o you might want to use an external automated prover

vy vy VvVYVvYyy

o this external tool acts as an oracle

©

» it provides answers cheating via e. g. the cheat tactic means skipping proofs

» it does not explain or justify these answers

©

it can be helpful during proof development

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

v

o you don’t know, whether this external tool might be buggy
o all theorems proved via it are tagged with a special oracle-tag

o tags are propagated

©

o this allows keeping track of everything depending on the correctness
of this tool

cheats should be removed reasonable quickly

©

HOL warns about cheats and skipped proofs

127 /180 128 /180

Pitfalls of Definitional Approach {ﬁ}

o definitions can't introduce new inconsistencies

o they force you to state all assumed properties at one location
o however, you still need to be careful

o Is your definition really expressing what you had in mind 7

o Does your formalisation correspond to the real world artefact ?
o How can you convince others that this is the case 7

o we will discuss methods to deal with this later in this course

» formal sanity

» conformance testing

» code review

» comments, good names, clear coding style
>

o this is highly complex and needs a lot of effort in general

129 /180

Definitions gﬁ%

o special case: new constant defined by equality

Specification with Equality
> double_EXISTS
val it =
|- ?double. (!n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- !'n. double n = n + n

o there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ¢‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n

131 /180

Specifications {i‘%i?
o HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown
Specification of EVEN and ODD
> EVEN_ODD_EXISTS
val it = |- ?even odd. even O /\ ~“odd O /\ (!n. even (SUC n) <=> odd n) /\
(!n. odd (SUC n) <=> even n)
> val EO_SPEC = new specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EOSPEC = |- EVEN O /\ ~ODD 0 /\ (!n. EVEN (SUC n) <=> ODD n) /\
(!n. ODD (SUC n) <=> EVEN n)
o new_specification is a convenience wrapper
» it uses existential quantification instead of Hilbert's choice
» deals with pair syntax
» stores resulting definitions in theory
o new_specification captures the underlying principle nicely
130 /180
Restrictions for Definitions £

o all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. new definition (..., ‘““Fn =mn + mn‘‘) fails

» m is free on rhs

o all type variables occurring on rhs need to occur on lhs

» e.g. new definition ("IS_FIN_TY",

¢‘IS_FIN.TY = FINITE (UNIV : ’a set)‘‘) fails

» IS_FIN_TY would lead to inconsistency
» |- FINITE (UNIV : bool set)

» |- ~FINITE (UNIV : num set)

>

T <=> FINITE (UNIV:bool set) <=>
IS FIN_TY <=>

FINITE (UNIV:num set) <=> F

» therefore, such definitions can't be allowed

132 /180

Underspecified Functions Primitive Type Definitions

o function specification do not need to define the function precisely

o multiple different functions satisfying one spec are possible o HOL allows introducing non-empty subtypes of existing types

o functions resulting from such specs are called underspecified o apredicate P : ty -> bool describes a subset of an existing type ty
o underspecified functions are still total, one just lacks knowledge o ty may contain type variables

o one common application: modelling partial functions

o only non-empty types are allowed

» functions like e. g. HD and TL are total .
o therefore a non-emptyness proof ex—thm of form 7e. P e is needed

» they are defined for empty lists
» however, is is not specified, which value they have for empty lists 0 new_type_definition (op-name, ex-thm) then introduces a new
» only known: HD [1 = HD [l and TL [] = TL [] type op-name specified by P

val MY_HD_EXISTS = prove (‘‘?hd. !'x xs. (hd (x::xs) =x)‘‘, ...);

val MY_HD_SPEC =
new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

133 /180 134 /180
Primitive Type Definitions - Example 1 g,%%i&% Primitive Type Definitions - Example 2 gﬁ,%%}%

oy Ry

o lets try to define a type dlist of lists containing no duplicates o define new_ type_bijections can be used to define bijections

o predicate ALL_ DISTINCT : ’a list -> bool is used to define it between old and new type

o easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1 > define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",

o val dlist_TYDEF = new type_definitions("dlist", REP="rep_dlist", tyax=dlist_TY_DEF}

dlist_exists) defines a new type ’a dlist and returns a theorem val it =

|- (a. abs_dlist (rep_dlist a) = a) /\
(!'r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))
|- ?(rep :’a dlist -> ’a list).

TYPE_DEFINITION ALL_DISTINCT rep o other useful theorems can be automatically proved by
» prove_abs_fn_one_one

» prove_abs_fn_onto

» prove_rep_fn_one_one

» prove_rep_fn_onto

o rep is a function taking a >a dlist to the list representing it
> rep is injective
» a list satisfies ALL_DISTINCT iff there is a corresponding dlist

135 /180 136 /180

Primitive Definition Principles Summary {;%;? Functional Programming {i%}

o primitive definition principles are easily explained o the Datatype package allows to define datatypes conveniently
o they lead to conservative extensions o the TFL package allows to define (mutually recursive) functions
o however, they are cumbersome to use o the EVAL conversion allows evaluating those definitions
o LCF approach allows implementing more convenient definition tools o this gives many HOL developments the feeling of a functional program
» Datatype package o there is really a close connection between functional programming an
» TFL (Terminating Functional Programs) package definitions in HOL
» IndDef (Inductive I?efinition) pgckage » functional programming design principles apply
» quotientLib Quotient Types Library » EVAL is a great way to test quickly, whether your definitions are
> . working as intended
137 /180 138 /180
Functional Programming Example gﬁfb}% Datatype Package f,ﬁ%«%
Ry Ny
o the Datatype package allows to define SML style datatypes easily
o there is support for

v

algebraic datatypes
record types

> Datatype ‘mylist = E | L ’a mylist® >
» mutually recursive types
>

val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))°¢

Definition has been stored under "mylen_def" . .
© many constants are automatically introduced

val it =
|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs): » constructors
thm » case-split constant
> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*‘¢ > s.|ze function .
val it = » field-update and accessor functions for records
|- mylen (L 2 (L 3 (L 1E))) = 3: >
thm

©

many theorems are derived and stored in current theory
» injectivity and distinctness of constructors
» nchotomy and structural induction theorems
» rewrites for case-split, size and record update functions
>

139 /180 140 /180

Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a
| Node btree ’b btree®

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btreef

=9

141 /180
Datatype Package - Example | - Derived Theorems 2 gf%;%%
B
btree_size def
|- ('f f1 a. btree_size f f1 (Leaf a) =1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2))))
bbtree_case_def
|- ('a £ f1. btree_CASE (Leaf a) f f1 = f a) /\
('a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)
btree_case_cong
|- 'M M’ f f1.
M=M) /\ (la. (M’ = Leaf a) ==> (f a = £’ a)) /\
('a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1’))
143 /180

Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 1'a2 al a0 a. Leaf a <> Node a0 al a2

iy

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
('a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (a1l = a1’) /\ (a2 = a2’))

btree_nchotomy
|- 'bb. (?7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. (la. P (Leaf a)) /\
('b 0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
1b. P b

Datatype Package - Example Il

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

142 /180

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

144 /180

Datatype Package - Example Il - Derived Theorems {i@i%

my_enum_nchotomy
|- 'P. PE1 /\ PE2 /\ PE3 ==>1!a.Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3

2)

my_enum2num_num2my_enum

|- !'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

Datatype Package - Example Il - Derived Theorems gﬁ%’%

145 /180

KIH
rgb_component_equality
|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (r1.g = r2.g) /\ (r1.b = r2.b)
rgb_nchotomy
|- !'rr. ?n n0 nl. rr = rgb n n0 ni
rgb_r_fupd
|- 'f n n0O nl. rgb n n0 nl with r updated_by f = rgb (f n) nO ni
i
rgb_updates_eq_literal
|- 'r n1 nO n.
r with <|r :=nl; g := n0; b := n|> = <|r :=nl; g := n0; b := n|>
i
147 /180

Datatype Package - Example Il %‘%’j}
Record type in SML
type rgb = { r : int, g : int, b : int } J
Record type in HOL
Datatype ‘rgb = <| r : num; g : num; b : num |>¢ J
Datatype Package - Example IV Py

o nested record types are not allowed
o however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

datatype file = Text of string
| Dir of {owner :
files

string ,
: (string * file) list}

Not Supported Nested Record Type Example in HOL

Datatype ‘file = Text string
| Dir <| owner :
files :

string ;
(string # file) list |>¢

Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string
| Dir directory

H
directory = <| owner :
files :

string ;
(string # file) list [|>¢

v

148 /180

K

Datatype Package - No support for Co-Algebraic Typesg‘g‘ ,

%;:

e

o there is no support for co-algebraic types
o the Datatype package could be extended to do so

o other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))

149 /180

TFL package g‘%

©

TFL package implements support for terminating functional definitions

o Define defines functions from high-level descriptions

©

there is support for pattern matching
look and feel is like function definitions in SML

©

©

based on well-founded recursion principle

©

Define is the most common way for definitions in HOL

151 /180

Datatype Package - Discussion

©

Datatype package allows to define many useful datatypes
however, there are many limitations

©

» some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

» there are bugs (currently e.g. some trouble with certain mutually
recursive definitions)

©

biggest restrictions in practice (in my opinion and my line of work)

» no support for co-algebraic datatypes
» no nested record datatypes

©

depending on datatype, different sets of useful lemmata are derived
most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
» there is support for pattern matching

©

Well-Founded Relations

o arelationR : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

o Example: $< : num -> num -> bool is well-founded

o if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

o this is the essence of termination proofs

152 /180

Well-Founded Recursion {;%i?
™
o a well-founded relation R can be used to define recursive functions
o this recursion principle is called WFREC in HOL
o idea of WFREC
» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB
o WFREC always defines a function
o if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation
o TFL uses this internally
o however, this is well-hidden from the user
153 /180
Define discussion f,?%&%
Ly

Define feels like a function definition in HOL
it can be used to define "terminating” recursive functions
Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

o outcome of Define sometimes hard to predict

o the input descriptions are only hints

» the produced function and the definitional theorem might be different
» in simple examples, quantifiers added

» pattern compilation takes place

» earlier “conjuncts” have precedence

155 /180

Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define
val DOUBLE_def =
|- 'n. DOUBLE n = n + n:
thm

‘DOUBLE n = n + nf

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢
val MY_LENGTH_def =
|- (MY_LENGTH []

thm

0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys)) ¢
val MY_APPEND_def =
|- (lys. MY_APPEND [] ys = ys) /\
(!'x xs ys. MY_APPEND (x::xs) ys =
thm

x::MY_APPEND xs ys):

Define - More Examples

> val MY_HD_def = Define ‘MY_HD (x ::

val MY_HD_def = |- !x xs. MY_HD (x::xs)
> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\

(IS_SORTED _ =

val IS_SORTED_def =

|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

T)¢

> val EVEN_def = Define ‘(EVEN O = T) /\ (ODD 0 = F) /\
(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n) ¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIP _ _ = [1)°¢
val ZIP_def =
|- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

('vi. ZIP [0 v1 = [1) /\ ('v4 v3. ZIP (v3::v4) [] = [1) : thm

156 /180

Primitive Definitions {@}

o Define introduces (if needed) the function using WFREC

intended definition derived as a theorem

©

©

the theorems are stored in current theory

©

usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.
case a of
0=>1IT
| [x1] => I T
| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

Define failing g‘%

o Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

» there is a bug :-)

o termination is an important concept for Define
0 it is easy to misunderstand termination in the context of HOL

o however, we need to understand it to understand Define

159 /180

Induction Theorems {i‘%i?
o Define automatically defines induction theorems
o these theorems are stored in current theory with suffix ind
o use DB.fetch "-" "something ind" to retrieve them
o these induction theorems are useful to reason about corresponding
recursive functions
Example
val IS_SORTED_ind = |- IP.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [1/\
(tv. P [v])) ==>
'v. P v
158 /180
Termination in HOL gﬁf%}%
Ly

in SML it is natural to talk about termination of functions

©

©

in the HOL logic there is no concept of execution
o thus, there is no concept of termination in HOL
o however, it is useful to think in terms of termination

o the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
o the required well-founded relation corresponds to a termination proof

o therefore, it is very natural to think of Define searching a
termination proof

o important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

160 /180

KTH

Termination in HOL 1l {‘g’}

o one can define "non-terminating” functions in HOL
o however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order

There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+l) in 0)

Unsound Definitions

A function £ : num -> num with !n. £ n = £ (n+1) + f (n+2) can be defined in HOL
despite termination issues. However a function £ with the following property cannot be defined
in HOL:

'n. £fn=((fn) +1)

Such a function would allow to prove 0 = 1.

161 /180

Manual Termination Proofs Il g‘%’%

o if Define fails to find a termination proof, Hol_defn can be used

o Hol_defn defers termination proofs

o it derives termination conditions and sets up the function definitions
o all results are packaged as a value of type defn

o after calling Hol_defn the defined function(s) can be used

o however, the intended definition theorem has not been derived yet
o to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

o Defn.tprove and Defn.tgoal for this
o proofs usually start by providing relation via tactic WF_REL_TAC

163 /180

Manual Termination Proofs | {Z@i;

o TFL uses various heuristics to find a well-founded relation

o however, these heuristics may not be strong enough

o in such cases the user can provide a well-founded relation manually
o the most common well-founded relations are measures

© measures map values to natural numbers and use the less relation
|- !'(f:’a => num) x y. measure f x y <=> (f x < f y)
o moreover, existing well-founded relations can be combined

» lexicographic order LEX
» list lexicographic order LLEX
>

162 /180

Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))°¢

val gsort_defn = HOL function definition (recursive)

Equation(s) :

[...] |- gsort ord [1 = []

[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)

Induction : ...

Termination conditions :
0. !'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. !rst x ord. R (ord,FILTER (($~ o ord) x) rst) (ord,x::rst)
2. WF R

164 /180

Manual Termination Proof Example 2 %TH

> Defn.tgoal gsort_defn
Initial goal:

7R

| 2

WF R /\ (!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
'rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

> e (WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)°¢)

1 subgoal :

(!'rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

165 /180

Part Xl

Good Definitions

hy

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,

WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)‘) >> ...

val gsort_

|- (gsort
(gsort
gsort
gsort

val gsort_

def =
ord [1 = [1) /\

ord (x::rst) =

ord (FILTER ($~ o ord x) rst) ++ [x] ++
ord (FILTER (ord x) rst))
ind =

|- 'P. (lord. P ord [1) /\
(tord x rst.

'v

P ord (FILTER (ord x) rst) /\

P ord (FILTER ($~ o ord x) rst) ==>
P ord (x::rst)) ==>

vi. Pv vl

Importance of Good Definitions

o using good definitions is very important

o good definitions are vital for clarity

o proofs depend a lot on the form of definitions
o unluckily, it is hard to state what a good definition is

o even harder to come up with good definitions

o let's look at it a bit closer anyhow

166 /180

o,
{xuy

ey

168 /180

Importance of Good Definitions — Clarity

o HOL guarentees that theorems do indeed hold

o However, does the theorem mean what you think it does?

o one can separate your development in

v

o defining concepts is often the main development task

main theorems you care for

auxiliary developments used to derive your main theorems
essential to understand your main theorems

you need to understand all the definitions directly used
you need to understand the indirectly used ones as well

you need to convince others that you express the intended statement

therefore, it is vital to use very simple, clear definitions

o auxiliary part

» can be as technical and complicated as you like

» correctness is guarenteed by HOL

How to come up with good definitions

o unluckily, it is hard to state what a good definition is

o itis

v

>

>

even harder to come up with them
there are often many competing interests

a lot of experience and detailed tool knowledge is needed

much depends on personal style and taste

o general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

*

*
*
*

one very close to your favourite textbook
one nice for certain types of proofs
another one good for evaluation

o lessons from functional programming apply

169 /180

171 /180

Importance of Good Definitions — Proofs

o good definitions can shorten proofs significantly
o they improve maintainablity
o they can improve automation drastically

o unluckily for proofs definitions often need to be technical

o

this contradicts clarity aims

170 /180
Good Definitions in Functional Programming f,%%}%
Objectives
o clarity (readability, maintainability)
o performance (runtime speed, memory usage, ...)
General Advice
o use the powerful type-system
o use many small function definitions
o encode invariants in types and function signatures
172 /180

Good Definitions — no number endcodings {fi?

St

o many programmers familiar with C encode everything as a number
o enumeration types are very cheap in SML and HOL
o use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER‘;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) °;

val list_compare_def = Define ¢

(list_compare cmp [] [] = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(*x x<y *) LESS
(* x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) °;

Good Definitions — Encoding Invariants

©

try to encode as many invariants as possible in the types

©

this allows the type-checker to ensure them for you

©

you don't have to check them manually any more

©

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {
state : connection_state,
server : inet_address,
last_ping_time : time option,
last_ping_id : int option,
session_id : string option,
when_initiated : time option,
when_disconnected : time option

175 /180

Good Definitions — Isomorphic Types

o the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

o even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

Datatype ‘vaddr = VAddr num®;
Datatype ‘paddr = PAddr num®;

val

val

3

val virt_to_phys_addr_def = Define
virt_to_phys_addr (VAddr a) = PAddr(translation of a)°¢;

174 /180
@b,

(&

oy

Good Definitions — Encoding Invariants ||

Network Connections (Example by Yaron Minsky from Jane Street) I

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

176 /180

Good Definitions in HOL {ﬁ?

Objectives
o clarity (readability)
o good for proofs

o performance (good for automation, easily evaluatable, ...)

General Advice
o same advice as for functional programming applies
o use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

o tiny definitions

allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability

Good Definitions in HOL Il fom

Formal Sanity

o directly after your definition, prove some sanity check lemmata

©

these should express important properties

©

this checks your intuition against your actual definition

©

these sanity check lemmata are useful for following proofs

(®

they improve maintainability

Example - ALL_ DISTINCT

|- ALL_DISTINCT []
|- 'x. ALL_DISTINCT [x]
|- 1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1
|- 'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1
|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12

179 /180

Good Definitions in HOL I gﬁ%‘}

Multiple Equivalent Definitions
o satisfy competing requirements by having multiple equivalent
definitions
o derive them as theorems

o initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT [] <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> “MEM h t /\ ALL_DISTINCT t)

|- 1. ALL_DISTINCT 1 <=>
!x. MEM x 1 ==> (FILTER ($= x) 1 = [x])

|- 11s. ALL_DISTINCT 1s <=> (CARD (set 1ls) = LENGTH 1s):

Good Definitions in HOL IV

Technical Issues

o write definition such that they work well with HOL's tools
o this requires you to know HOL well

o a lot of experience is required

o general advice

avoid explicit case-expressions
avoid pairs, e. g. use curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ztp _ _ = [D°

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)
I,)= 0°

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\
(zIp _ = [

180 /180

