
Interactive Theorem Proving (ITP) Course
Parts X, XI

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 625b457 of Mon May 8 09:30:24 2017

Part X

Basic Definitions

Definitional Extensions

there are conservative definition principles for types and constants

conservative means that all theorems that can be proved in extended
theory can also be proved in original one

however, such extensions make the theory more comfortable

definitions introduce no new inconsistencies

the HOL community has a very strong tradition of a purely
definitional approach

125 / 180

Axiomatic Extensions

axioms are a different approach

they allow postulating arbitrary properties, i. e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies

in HOL axioms are very rarely needed

using definitions is often considered more elegant

it is hard to keep track of axioms

use axioms only if you really know what you are doing

126 / 180

Oracles

oracles are families of axioms

however, they are used differently than axioms

they are used to enable usage of external tools and knowledge

you might want to use an external automated prover

this external tool acts as an oracle
I it provides answers
I it does not explain or justify these answers

you don’t know, whether this external tool might be buggy

all theorems proved via it are tagged with a special oracle-tag

tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 / 180

Oracles II

Common oracle-tags
I DISK THM — theorem was written to disk and read again
I HolSatLib — proved by MiniSat
I HolSmtLib — proved by external SMT solver
I fast proof — proof was skipped to compile a theory rapidly
I cheat — we cheated :-)

cheating via e. g. the cheat tactic means skipping proofs

it can be helpful during proof development
I test whether some lemmata allow you finishing the proof
I skip lengthy but boring cases and focus on critical parts first
I experiment with exact form of invariants
I . . .

cheats should be removed reasonable quickly

HOL warns about cheats and skipped proofs

128 / 180

Pitfalls of Definitional Approach

definitions can’t introduce new inconsistencies

they force you to state all assumed properties at one location

however, you still need to be careful

Is your definition really expressing what you had in mind ?

Does your formalisation correspond to the real world artefact ?

How can you convince others that this is the case ?

we will discuss methods to deal with this later in this course
I formal sanity
I conformance testing
I code review
I comments, good names, clear coding style
I . . .

this is highly complex and needs a lot of effort in general

129 / 180

Specifications

HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and ODD
> EVEN ODD EXISTS

val it = |- ?even odd. even 0 /\ ~odd 0 /\ (!n. even (SUC n) <=> odd n) /\

(!n. odd (SUC n) <=> even n)

> val EO SPEC = new specification ("EO SPEC", ["EVEN", "ODD"], EVEN ODD EXISTS);

val EO SPEC = |- EVEN 0 /\ ~ODD 0 /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n)

new specification is a convenience wrapper
I it uses existential quantification instead of Hilbert’s choice
I deals with pair syntax
I stores resulting definitions in theory

new specification captures the underlying principle nicely

130 / 180

Definitions

special case: new constant defined by equality

Specification with Equality
> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);

val double_def =

|- !n. double n = n + n

there is a specialised methods for such non-recursive definitions

Non Recursive Definitions
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)

val DOUBLE_DEF =

|- !n. DOUBLE n = n + n

131 / 180

Restrictions for Definitions

all variables occurring on right-hand-side (rhs) need to be arguments
I e. g. new definition (..., ‘‘F n = n + m‘‘) fails
I m is free on rhs

all type variables occurring on rhs need to occur on lhs
I e. g. new definition ("IS FIN TY",

‘‘IS FIN TY = FINITE (UNIV : ’a set)‘‘) fails
I IS FIN TY would lead to inconsistency
I |- FINITE (UNIV : bool set)
I |- ~FINITE (UNIV : num set)
I T <=> FINITE (UNIV:bool set) <=>

IS FIN TY <=>

FINITE (UNIV:num set) <=> F
I therefore, such definitions can’t be allowed

132 / 180

Underspecified Functions

function specification do not need to define the function precisely

multiple different functions satisfying one spec are possible

functions resulting from such specs are called underspecified

underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions
I functions like e. g. HD and TL are total
I they are defined for empty lists
I however, is is not specified, which value they have for empty lists
I only known: HD [] = HD [] and TL [] = TL []

val MY_HD_EXISTS = prove (‘‘?hd. !x xs. (hd (x::xs) = x)‘‘, ...);

val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

133 / 180

Primitive Type Definitions

HOL allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty

ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex-thm of form ?e. P e is needed

new type definition (op-name, ex-thm) then introduces a new
type op-name specified by P

134 / 180

Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates

predicate ALL DISTINCT : ’a list -> bool is used to define it

easy to prove theorem dlist exists: |- ?l. ALL DISTINCT l

val dlist TY DEF = new type definitions("dlist",

dlist exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).

TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
I rep is injective
I a list satisfies ALL DISTINCT iff there is a corresponding dlist

135 / 180

Primitive Type Definitions - Example 2

define new type bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",

REP="rep_dlist", tyax=dlist_TY_DEF}

val it =

|- (!a. abs_dlist (rep_dlist a) = a) /\

(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

other useful theorems can be automatically proved by
I prove abs fn one one
I prove abs fn onto
I prove rep fn one one
I prove rep fn onto

136 / 180

Primitive Definition Principles Summary

primitive definition principles are easily explained

they lead to conservative extensions

however, they are cumbersome to use

LCF approach allows implementing more convenient definition tools
I Datatype package
I TFL (Terminating Functional Programs) package
I IndDef (Inductive Definition) package
I quotientLib Quotient Types Library
I ...

137 / 180

Functional Programming

the Datatype package allows to define datatypes conveniently

the TFL package allows to define (mutually recursive) functions

the EVAL conversion allows evaluating those definitions

this gives many HOL developments the feeling of a functional program

there is really a close connection between functional programming an
definitions in HOL

I functional programming design principles apply
I EVAL is a great way to test quickly, whether your definitions are

working as intended

138 / 180

Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist‘

val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))‘

Definition has been stored under "mylen def"

val it =

|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs):

thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))‘‘

val it =

|- mylen (L 2 (L 3 (L 1 E))) = 3:

thm

139 / 180

Datatype Package

the Datatype package allows to define SML style datatypes easily

there is support for
I algebraic datatypes
I record types
I mutually recursive types
I ...

many constants are automatically introduced
I constructors
I case-split constant
I size function
I field-update and accessor functions for records
I ...

many theorems are derived and stored in current theory
I injectivity and distinctness of constructors
I nchotomy and structural induction theorems
I rewrites for case-split, size and record update functions
I ...

140 / 180

Datatype Package - Example I

Tree Datatype in SML
datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL
Datatype ‘btree = Leaf ’a

| Node btree ’b btree‘

Tree Datatype in HOL — Deprecated Syntax
Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree‘

141 / 180

Datatype Package - Example I - Derived Theorems 1

btree distinct
|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree 11
|- (!a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\

(!a0 a1 a2 a0’ a1’ a2’.

(Node a0 a1 a2 = Node a0’ a1’ a2’) <=>

(a0 = a0’) /\ (a1 = a1’) /\ (a2 = a2’))

btree nchotomy

|- !bb. (?a. bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)

btree induction
|- !P. (!a. P (Leaf a)) /\

(!b b0. P b /\ P b0 ==> !b1. P (Node b b1 b0)) ==>

!b. P b

142 / 180

Datatype Package - Example I - Derived Theorems 2

btree size def
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\

(!f f1 a0 a1 a2.

btree_size f f1 (Node a0 a1 a2) =

1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))

bbtree case def
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\

(!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)

btree case cong

|- !M M’ f f1.

(M = M’) /\ (!a. (M’ = Leaf a) ==> (f a = f’ a)) /\

(!a0 a1 a2.

(M’ = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1’ a0 a1 a2)) ==>

(btree_CASE M f f1 = btree_CASE M’ f’ f1’)

143 / 180

Datatype Package - Example II

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3‘

144 / 180

Datatype Package - Example II - Derived Theorems

my enum nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my enum distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my enum2num thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my enum2num num2my enum

|- !r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

145 / 180

Datatype Package - Example III

Record type in SML
type rgb = { r : int, g : int, b : int }

Record type in HOL
Datatype ‘rgb = <| r : num; g : num; b : num |>‘

146 / 180

Datatype Package - Example III - Derived Theorems

rgb component equality

|- !r1 r2. (r1 = r2) <=>

(r1.r = r2.r) /\ (r1.g = r2.g) /\ (r1.b = r2.b)

rgb nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb r fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb updates eq literal

|- !r n1 n0 n.

r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>

147 / 180

Datatype Package - Example IV

nested record types are not allowed

however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML
datatype file = Text of string

| Dir of {owner : string ,

files : (string * file) list}

Not Supported Nested Record Type Example in HOL
Datatype ‘file = Text string

| Dir <| owner : string ;

files : (string # file) list |>‘

Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string

| Dir directory

;

directory = <| owner : string ;

files : (string # file) list |>‘

148 / 180

Datatype Package - No support for Co-Algebraic Types

there is no support for co-algebraic types

the Datatype package could be extended to do so

other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists
datatype ’a lazylist = Nil

| Cons of (’a * (unit -> ’a lazylist))

149 / 180

Datatype Package - Discussion

Datatype package allows to define many useful datatypes

however, there are many limitations
I some types cannot be defined in HOL, e. g. empty types
I some types are not supported, e. g. co-algebraic types
I there are bugs (currently e. g. some trouble with certain mutually

recursive definitions)

biggest restrictions in practice (in my opinion and my line of work)
I no support for co-algebraic datatypes
I no nested record datatypes

depending on datatype, different sets of useful lemmata are derived

most important ones are added to TypeBase
I tools like Induct on, Cases on use them
I there is support for pattern matching

150 / 180

TFL package

TFL package implements support for terminating functional definitions

Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL

151 / 180

Well-Founded Relations

a relation R : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. !n. R (f (SUC n)) (f n)

Example: $< : num -> num -> bool is well-founded

if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

this is the essence of termination proofs

152 / 180

Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

this recursion principle is called WFREC in HOL

idea of WFREC
I if arguments get smaller according to R, perform recursive call
I otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

153 / 180

Define - Initial Examples

Simple Definitions
> val DOUBLE_def = Define ‘DOUBLE n = n + n‘

val DOUBLE_def =

|- !n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))‘

val MY_LENGTH_def =

|- (MY_LENGTH [] = 0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

thm

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys))‘

val MY_APPEND_def =

|- (!ys. MY_APPEND [] ys = ys) /\

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm

154 / 180

Define discussion

Define feels like a function definition in HOL

it can be used to define ”terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define sometimes hard to predict

the input descriptions are only hints
I the produced function and the definitional theorem might be different
I in simple examples, quantifiers added
I pattern compilation takes place
I earlier “conjuncts” have precedence

155 / 180

Define - More Examples

> val MY_HD_def = Define ‘MY_HD (x :: xs) = x‘

val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ‘

(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\

(IS_SORTED _ = T)‘

val IS_SORTED_def =

|- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\

(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN 0 = T) /\ (ODD 0 = F) /\

(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n)‘

val EVEN_def =

|- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP = [])‘

val ZIP_def =

|- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(!v1. ZIP [] v1 = []) /\ (!v4 v3. ZIP (v3::v4) [] = []) : thm

156 / 180

Primitive Definitions

Define introduces (if needed) the function using WFREC

intended definition derived as a theorem

the theorems are stored in current theory

usually, one never needs to look at it

Examples
val IS_SORTED_primitive_def =

|- IS_SORTED =

WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))

(\IS_SORTED a.

case a of

[] => I T

| [x1] => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

157 / 180

Induction Theorems

Define automatically defines induction theorems

these theorems are stored in current theory with suffix ind

use DB.fetch "-" "something ind" to retrieve them

these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.

((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /\

P [] /\

(!v. P [v])) ==>

!v. P v

158 / 180

Define failing

Define might fail for various reasons to define a function
I such a function cannot be defined in HOL
I such a function can be defined, but not via the methods used by TFL
I TFL can define such a function, but its heuristics are too weak and

user guidance is required
I there is a bug :-)

termination is an important concept for Define

it is easy to misunderstand termination in the context of HOL

however, we need to understand it to understand Define

159 / 180

Termination in HOL

in SML it is natural to talk about termination of functions

in the HOL logic there is no concept of execution

thus, there is no concept of termination in HOL

however, it is useful to think in terms of termination

the TFL package implements heuristics to define functions that would
terminate in SML

the TFL package uses well-founded recursion

the required well-founded relation corresponds to a termination proof

therefore, it is very natural to think of Define searching a
termination proof

important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

160 / 180

Termination in HOL II

one can define ”non-terminating” functions in HOL

however, one cannot do so (easily) with Define

Definition of WHILE in HOL
|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no ”execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions
A function f : num -> num with !n. f n = f (n+1) + f (n+2) can be defined in HOL
despite termination issues. However a function f with the following property cannot be defined
in HOL:

!n. f n = ((f n) + 1)

Such a function would allow to prove 0 = 1.

161 / 180

Manual Termination Proofs I

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually

the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- !(f:’a -> num) x y. measure f x y <=> (f x < f y)

moreover, existing well-founded relations can be combined
I lexicographic order LEX
I list lexicographic order LLEX
I . . .

162 / 180

Manual Termination Proofs II

if Define fails to find a termination proof, Hol defn can be used

Hol defn defers termination proofs

it derives termination conditions and sets up the function definitions

all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to
I provide a well-founded relation
I show that termination conditions respect that relation

Defn.tprove and Defn.tgoal for this

proofs usually start by providing relation via tactic WF REL TAC

163 / 180

Manual Termination Proof Example 1

> val qsort_defn = Hol_defn "qsort" ‘

(qsort ord [] = []) /\

(qsort ord (x::rst) =

(qsort ord (FILTER ($~ o ord x) rst)) ++

[x] ++

(qsort ord (FILTER (ord x) rst)))‘

val qsort_defn = HOL function definition (recursive)

Equation(s) :

[...] |- qsort ord [] = []

[...] |- qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst)

Induction : ...

Termination conditions :

0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

1. !rst x ord. R (ord,FILTER (($~ o ord) x) rst) (ord,x::rst)

2. WF R

164 / 180

Manual Termination Proof Example 2

> Defn.tgoal qsort_defn

Initial goal:

?R.

WF R /\ (!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\

!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

> e (WF_REL_TAC ‘measure (\(, l). LENGTH l)‘)

1 subgoal :

(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\

(!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

165 / 180

Manual Termination Proof Example 3

> val (qsort_def, qsort_ind) =

Defn.tprove (qsort_defn,

WF_REL_TAC ‘measure (\(, l). LENGTH l)‘) >> ...)

val qsort_def =

|- (qsort ord [] = []) /\

(qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst))

val qsort_ind =

|- !P. (!ord. P ord []) /\

(!ord x rst.

P ord (FILTER (ord x) rst) /\

P ord (FILTER ($~ o ord x) rst) ==>

P ord (x::rst)) ==>

!v v1. P v v1

166 / 180

Part XI

Good Definitions

Importance of Good Definitions

using good definitions is very important

good definitions are vital for clarity

proofs depend a lot on the form of definitions

unluckily, it is hard to state what a good definition is

even harder to come up with good definitions

let’s look at it a bit closer anyhow

168 / 180

Importance of Good Definitions — Clarity

HOL guarentees that theorems do indeed hold

However, does the theorem mean what you think it does?

one can separate your development in
I main theorems you care for
I auxiliary developments used to derive your main theorems

it is essential to understand your main theorems
I you need to understand all the definitions directly used
I you need to understand the indirectly used ones as well
I you need to convince others that you express the intended statement
I therefore, it is vital to use very simple, clear definitions

defining concepts is often the main development task

auxiliary part
I can be as technical and complicated as you like
I correctness is guarenteed by HOL

169 / 180

Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainablity

they can improve automation drastically

unluckily for proofs definitions often need to be technical

this contradicts clarity aims

170 / 180

How to come up with good definitions

unluckily, it is hard to state what a good definition is

it is even harder to come up with them
I there are often many competing interests
I a lot of experience and detailed tool knowledge is needed
I much depends on personal style and taste

general advice: use more than one definition
I in HOL you can derive equivalent definitions as theorems
I define a concept as clearly and easily as possible
I derive equivalent definitions for various purposes

F one very close to your favourite textbook
F one nice for certain types of proofs
F another one good for evaluation
F . . .

lessons from functional programming apply

171 / 180

Good Definitions in Functional Programming

Objectives

clarity (readability, maintainability)

performance (runtime speed, memory usage, ...)

General Advice

use the powerful type-system

use many small function definitions

encode invariants in types and function signatures

172 / 180

Good Definitions – no number endcodings
many programmers familiar with C encode everything as a number
enumeration types are very cheap in SML and HOL
use them instead

Example Enumeration Types
In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER‘;

val compare_def = Define ‘

(compare LESS lt eq gt = lt)

/\ (compare EQUAL lt eq gt = eq)

/\ (compare GREATER lt eq gt = gt) ‘;

val list_compare_def = Define ‘

(list_compare cmp [] [] = EQUAL) /\ (list_compare cmp [] l2 = LESS)

/\ (list_compare cmp l1 [] = GREATER)

/\ (list_compare cmp (x::l1) (y::l2) = compare (cmp (x:’a) y)

(* x<y *) LESS

(* x=y *) (list_compare cmp l1 l2)

(* x>y *) GREATER) ‘;

173 / 180

Good Definitions — Isomorphic Types

the type-checker is your friend
I it helps you find errors
I code becomes more robust
I using good types is a great way of writing self-documenting code

therefore, use many types

even use types isomorphic to existing ones

Virtual and Physical Memory Addresses
Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val _ = Datatype ‘vaddr = VAddr num‘;

val _ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ‘

virt_to_phys_addr (VAddr a) = PAddr(translation of a)‘;

174 / 180

Good Definitions — Encoding Invariants

try to encode as many invariants as possible in the types

this allows the type-checker to ensure them for you

you don’t have to check them manually any more

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)
Consider the following datatype for network connections. It has many implicit invariants.

datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,

server : inet_address,

last_ping_time : time option,

last_ping_id : int option,

session_id : string option,

when_initiated : time option,

when_disconnected : time option

}

175 / 180

Good Definitions — Encoding Invariants II

Network Connections (Example by Yaron Minsky from Jane Street) II
The following definition of connection info makes the invariants explicit:

type connected = { last_ping : (time * int) option,

session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =

Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {

state : connection_state,

server : inet_address

}

176 / 180

Good Definitions in HOL

Objectives

clarity (readability)

good for proofs

performance (good for automation, easily evaluatable, ...)

General Advice

same advice as for functional programming applies

use even smaller definitions
I introduce auxiliary definitions for important function parts
I use extra definitions for important constants
I ...

tiny definitions
I allow keeping proof state small by unfolding only needed ones
I allow many small lemmata
I improve maintainability

177 / 180

Good Definitions in HOL II

Multiple Equivalent Definitions

satisfy competing requirements by having multiple equivalent
definitions

derive them as theorems

initial definition should be as clear as possible
I clarity allows simpler reviews
I simplicity reduces the likelihood of errors

Example - ALL DISTINCT

|- (ALL_DISTINCT [] <=> T) /\

(!h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- !l. ALL_DISTINCT l <=>

!x. MEM x l ==> (FILTER ($= x) l = [x])

|- !ls. ALL_DISTINCT ls <=> (CARD (set ls) = LENGTH ls):

178 / 180

Good Definitions in HOL III

Formal Sanity

directly after your definition, prove some sanity check lemmata

these should express important properties

this checks your intuition against your actual definition

these sanity check lemmata are useful for following proofs

they improve maintainability

Example - ALL DISTINCT

|- ALL_DISTINCT []

|- !x. ALL_DISTINCT [x]

|- !l. ALL_DISTINCT (REVERSE l) <=> ALL_DISTINCT l

|- !x l. ALL_DISTINCT (SNOC x l) <=> ~MEM x l /\ ALL_DISTINCT l

|- !l1 l2. ALL_DISTINCT (l1 ++ l2) <=>

ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2

179 / 180

Good Definitions in HOL IV

Technical Issues

write definition such that they work well with HOL’s tools

this requires you to know HOL well

a lot of experience is required

general advice
I avoid explicit case-expressions
I avoid pairs, e. g. use curried functions

Example
val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP _ _ = [])‘

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| (_, _) => []‘

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\

(ZIP _ = [])‘

180 / 180

	Basic Definitions
	Definitions, Axioms and Oracles
	Primitive Definition Principles
	Functional Programming
	Datatype Definitions
	Recursive Function Definitions

	Good Definitions

