Interactive Theorem Proving (ITP) Course Parts X, XI

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 625b457 of Mon May 8 09:30:24 2017

Part X

Basic Definitions

Definitional Extensions

- there are conservative definition principles for types and constants
- conservative means that all theorems that can be proved in extended theory can also be proved in original one
- however, such extensions make the theory more comfortable
- definitions introduce no new inconsistencies
- the HOL community has a very strong tradition of a purely definitional approach

Axiomatic Extensions

- axioms are a different approach
- they allow postulating arbitrary properties, i. e. extending the logic with arbitrary theorems
- this approach might introduce new inconsistencies
- in HOL axioms are very rarely needed
- using definitions is often considered more elegant
- it is hard to keep track of axioms
- use axioms only if you really know what you are doing

Oracles

- oracles are families of axioms
- however, they are used differently than axioms
- they are used to enable usage of external tools and knowledge
- you might want to use an external automated prover
- this external tool acts as an oracle
 - it provides answers
 - it does not explain or justify these answers
- you don't know, whether this external tool might be buggy
- all theorems proved via it are tagged with a special oracle-tag
- tags are propagated
- this allows keeping track of everything depending on the correctness of this tool

Oracles II

- Common oracle-tags
 - DISK_THM theorem was written to disk and read again
 - ► HolSatLib proved by MiniSat
 - HolSmtLib proved by external SMT solver
 - ▶ fast_proof proof was skipped to compile a theory rapidly
 - ▶ cheat we cheated :-)
- cheating via e.g. the cheat tactic means skipping proofs
- it can be helpful during proof development
 - test whether some lemmata allow you finishing the proof
 - skip lengthy but boring cases and focus on critical parts first
 - experiment with exact form of invariants
 - **•** . . .
- cheats should be removed reasonable quickly
- HOL warns about cheats and skipped proofs

Pitfalls of Definitional Approach

- definitions can't introduce new inconsistencies
- they force you to state all assumed properties at one location
- however, you still need to be careful
- Is your definition really expressing what you had in mind?
- Does your formalisation correspond to the real world artefact ?
- How can you convince others that this is the case ?
- we will discuss methods to deal with this later in this course
 - formal sanity
 - conformance testing
 - code review
 - comments, good names, clear coding style
- this is highly complex and needs a lot of effort in general

Specifications

 HOL allows to introduce new constants with certain properties, provided the existence of such constants has been shown

- new_specification is a convenience wrapper
 - ▶ it uses existential quantification instead of Hilbert's choice
 - deals with pair syntax
 - stores resulting definitions in theory
- new_specification captures the underlying principle nicely

Definitions

special case: new constant defined by equality

Specification with Equality

```
> double_EXISTS
val it =
|- ?double. (!n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =
    |- !n. double n = n + n
```

there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

Restrictions for Definitions

- all variables occurring on right-hand-side (rhs) need to be arguments
 - ▶ e.g. new_definition (..., ''F n = n + m'') fails
 - ▶ m is free on rhs
- all type variables occurring on rhs need to occur on lhs

 - IS_FIN_TY would lead to inconsistency
 - ▶ |- FINITE (UNIV : bool set)
 - ► |- ~FINITE (UNIV : num set)
 - ► T <=> FINITE (UNIV:bool set) <=> IS_FIN_TY <=>
 - FINITE (UNIV:num set) <=> F
 - therefore, such definitions can't be allowed

Underspecified Functions

- function specification do not need to define the function precisely
- multiple different functions satisfying one spec are possible
- functions resulting from such specs are called underspecified
- underspecified functions are still total, one just lacks knowledge
- one common application: modelling partial functions
 - functions like e.g. HD and TL are total
 - they are defined for empty lists
 - however, is is not specified, which value they have for empty lists
 - only known: HD [] = HD [] and TL [] = TL []
 val MY_HD_EXISTS = prove (''?hd. !x xs. (hd (x::xs) = x)'', ...);
 val MY_HD_SPEC =
 new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

Primitive Type Definitions

- HOL allows introducing non-empty subtypes of existing types
- a predicate P : ty -> bool describes a subset of an existing type ty
- ty may contain type variables
- only non-empty types are allowed
- therefore a non-emptyness proof ex-thm of form ?e. P e is needed
- new_type_definition (op-name, ex-thm) then introduces a new type op-name specified by P

Primitive Type Definitions - Example 1

- lets try to define a type dlist of lists containing no duplicates
- predicate ALL_DISTINCT : 'a list -> bool is used to define it
- easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1
- val dlist_TY_DEF = new_type_definitions("dlist", dlist_exists) defines a new type 'a dlist and returns a theorem

```
|- ?(rep :'a dlist -> 'a list).
     TYPE_DEFINITION ALL_DISTINCT rep
```

- rep is a function taking a 'a dlist to the list representing it
 - ► rep is injective
 - ▶ a list satisfies ALL_DISTINCT iff there is a corresponding dlist

Primitive Type Definitions - Example 2

 define_new_type_bijections can be used to define bijections between old and new type

- other useful theorems can be automatically proved by
 - prove_abs_fn_one_one
 - ► prove_abs_fn_onto
 - prove_rep_fn_one_one
 - prove_rep_fn_onto

Primitive Definition Principles Summary

- primitive definition principles are easily explained
- they lead to conservative extensions
- however, they are cumbersome to use
- LCF approach allows implementing more convenient definition tools
 - Datatype package
 - TFL (Terminating Functional Programs) package
 - IndDef (Inductive Definition) package
 - quotientLib Quotient Types Library
 - **.**..

Functional Programming

- the Datatype package allows to define datatypes conveniently
- the TFL package allows to define (mutually recursive) functions
- the EVAL conversion allows evaluating those definitions
- this gives many HOL developments the feeling of a functional program
- there is really a close connection between functional programming an definitions in HOL
 - functional programming design principles apply
 - ► EVAL is a great way to test quickly, whether your definitions are working as intended

Functional Programming Example

Datatype Package

- the Datatype package allows to define SML style datatypes easily
- there is support for
 - algebraic datatypes
 - record types
 - mutually recursive types
 - **...**
- many constants are automatically introduced
 - constructors
 - case-split constant
 - size function
 - field-update and accessor functions for records
 - **.**...
- many theorems are derived and stored in current theory
 - injectivity and distinctness of constructors
 - nchotomy and structural induction theorems
 - rewrites for case-split, size and record update functions
 - **.**..

Datatype Package - Example I

Tree Datatype in SML

```
datatype ('a,'b) btree = Leaf of 'a
| Node of ('a,'b) btree * 'b * ('a,'b) btree
```

Tree Datatype in HOL

```
Datatype 'btree = Leaf 'a | Node btree 'b btree'
```

Tree Datatype in HOL — Deprecated Syntax

Datatype Package - Example I - Derived Theorems 1

btree_distinct

|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree_11

```
|- (!a a'. (Leaf a = Leaf a') <=> (a = a')) /\
    (!a0 a1 a2 a0' a1' a2'.
        (Node a0 a1 a2 = Node a0' a1' a2') <=>
        (a0 = a0') /\ (a1 = a1') /\ (a2 = a2'))
```

btree_nchotomy

```
|-!bb. (?a. bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)
```

btree_induction

Datatype Package - Example I - Derived Theorems 2

btree_size_def

```
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
  (!f f1 a0 a1 a2.
   btree_size f f1 (Node a0 a1 a2) =
   1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))
```

bbtree_case_def

```
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\
   (!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)
```

btree_case_cong

```
|- !M M' f f1.
   (M = M') /\ (!a. (M' = Leaf a) ==> (f a = f' a)) /\
   (!a0 a1 a2.
        (M' = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1' a0 a1 a2)) ==>
   (btree_CASE M f f1 = btree_CASE M' f' f1')
```

Datatype Package - Example II

Enumeration type in SML

datatype my_enum = E1 | E2 | E3

Enumeration type in HOL

Datatype 'my_enum = E1 | E2 | E3'

Datatype Package - Example II - Derived Theorems

my_enum_nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my_enum_distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- $(my_enum2num E1 = 0) / (my_enum2num E2 = 1) / (my_enum2num E3 = 2)$

my_enum2num_num2my_enum

 $|-!r.r < 3 \iff (my_enum2num (num2my_enum r) = r)$

Datatype Package - Example III

Record type in SML

```
type rgb = \{ r : int, g : int, b : int \}
```

Record type in HOL

```
Datatype 'rgb = < | r : num; g : num; b : num |>'
```

Datatype Package - Example III - Derived Theorems

rgb_component_equality

rgb_nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb_r_fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb_updates_eq_literal

```
|- !r n1 n0 n.
r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>
```

Datatype Package - Example IV

- nested record types are not allowed
- however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

Not Supported Nested Record Type Example in HOL

Filesystem Datatype - Mutual Recursion in HOL

Datatype Package - No support for Co-Algebraic Types

KTH VETTE NAME OCH KONST

- there is no support for co-algebraic types
- the Datatype package could be extended to do so
- other systems like Isabelle/HOL provide high-level methods for defining such types

```
Co-algebraic Type Example in SML — Lazy Lists
```

Datatype Package - Discussion

- Datatype package allows to define many useful datatypes
- however, there are many limitations
 - some types cannot be defined in HOL, e.g. empty types
 - some types are not supported, e.g. co-algebraic types
 - there are bugs (currently e.g. some trouble with certain mutually recursive definitions)
- biggest restrictions in practice (in my opinion and my line of work)
 - no support for co-algebraic datatypes
 - no nested record datatypes
- depending on datatype, different sets of useful lemmata are derived
- most important ones are added to TypeBase
 - tools like Induct_on, Cases_on use them
 - there is support for pattern matching

TFL package

- TFL package implements support for terminating functional definitions
- Define defines functions from high-level descriptions
- there is support for pattern matching
- look and feel is like function definitions in SML
- based on well-founded recursion principle
- Define is the most common way for definitions in HOL

Well-Founded Relations

• a relation R : 'a -> 'a -> bool is called **well-founded**, iff there are no infinite descending chains

```
wellfounded R = \sim ?f. !n. R (f (SUC n)) (f n)
```

- Example: \$< : num -> num -> bool is well-founded
- if arguments of recursive calls are smaller according to well-founded relation, the recursion terminates
- this is the essence of termination proofs

Well-Founded Recursion

- a well-founded relation R can be used to define recursive functions
- this recursion principle is called WFREC in HOL
- idea of WFREC
 - ▶ if arguments get smaller according to R, perform recursive call
 - otherwise abort and return ARB
- WFREC always defines a function
- if all recursive calls indeed decrease according to R, the original recursive equations can be derived from the WFREC representation
- TFL uses this internally
- however, this is well-hidden from the user

Define - Initial Examples

Simple Definitions

```
> val DOUBLE_def = Define 'DOUBLE n = n + n'
val DOUBLE_def =
   |-!n. DOUBLE n = n + n:
  thm
> val MY LENGTH def = Define '(MY LENGTH [] = 0) /\
                              (MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))'
val MY LENGTH def =
   |- (MY_LENGTH [] = 0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):
  thm
> val MY_APPEND_def = Define '(MY_APPEND [] vs = vs) /\
                              (MY\_APPEND (x::xs) ys = x :: (MY\_APPEND xs ys))
val MY APPEND def =
   [-(!ys. MY\_APPEND [] ys = ys) /
      (!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):
  thm
```

Define discussion

- Define feels like a function definition in HOL
- it can be used to define "terminating" recursive functions
- Define is implemented by a large, non-trivial piece of SML code
- it uses many heuristics
- outcome of Define sometimes hard to predict
- the input descriptions are only hints
 - the produced function and the definitional theorem might be different
 - in simple examples, quantifiers added
 - pattern compilation takes place
 - earlier "conjuncts" have precedence

Define - More Examples


```
> val MY HD def = Define 'MY HD (x :: xs) = x'
val MY_HD_def = |-!x xs. MY_HD (x::xs) = x : thm
> val IS SORTED def = Define '
     (IS\_SORTED (x1 :: x2 :: xs) = ((x1 < x2) / (IS\_SORTED (x2 :: xs)))) /
    (IS SORTED = T)'
val IS_SORTED_def =
   |- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
      (IS SORTED [] <=> T) /\ (!v. IS SORTED [v] <=> T)
> val EVEN def = Define '(EVEN 0 = T) /\ (ODD 0 = F) /\
                         (EVEN (SUC n) = ODD n) / \setminus (ODD (SUC n) = EVEN n)
val EVEN_def =
   |- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
      (!n. ODD (SUC n) \iff EVEN n) : thm
> val ZIP_def = Define '(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /
                        (ZIP = [])'
val ZIP def =
   |-(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /
      (!v1. ZIP [] v1 = []) / (!v4 v3. ZIP (v3::v4) [] = []) : thm
```

Primitive Definitions

- Define introduces (if needed) the function using WFREC
- intended definition derived as a theorem
- the theorems are stored in current theory
- usually, one never needs to look at it

Examples

Induction Theorems

- Define automatically defines induction theorems
- these theorems are stored in current theory with suffix ind
- use DB.fetch "-" "something_ind" to retrieve them
- these induction theorems are useful to reason about corresponding recursive functions

Example

```
val IS_SORTED_ind = |- !P.
    ((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /\
    P [] /\
    (!v. P [v])) ==>
!v. P v
```

Define failing

- Define might fail for various reasons to define a function
 - such a function cannot be defined in HOL
 - such a function can be defined, but not via the methods used by TFL
 - ► TFL can define such a function, but its heuristics are too weak and user guidance is required
 - there is a bug :-)
- termination is an important concept for Define
- it is easy to misunderstand termination in the context of HOL
- however, we need to understand it to understand Define

Termination in HOL

- in SML it is natural to talk about termination of functions
- in the HOL logic there is no concept of execution
- thus, there is no concept of termination in HOL
- however, it is useful to think in terms of termination
- the TFL package implements heuristics to define functions that would terminate in SML
- the TFL package uses well-founded recursion
- the required well-founded relation corresponds to a termination proof
- therefore, it is very natural to think of Define searching a termination proof
- important: this is the idea behind this function definition package, not a property of HOL

HOL is not limited to "terminating" functions

Termination in HOL II

- one can define "non-terminating" functions in HOL
- however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order

There is no "execution order". One can easily define a complicated constant function:

```
(myk : num \rightarrow num) (n:num) = (let x = myk (n+1) in 0)
```

Unsound Definitions

A function $f: num \rightarrow num$ with !n. f n = f (n+1) + f (n+2) can be defined in HOL despite termination issues. However a function f with the following property cannot be defined in HOL:

```
!n. f n = ((f n) + 1)
```

Such a function would allow to prove 0 = 1.

Manual Termination Proofs I

- TFL uses various heuristics to find a well-founded relation
- however, these heuristics may not be strong enough
- in such cases the user can provide a well-founded relation manually
- the most common well-founded relations are measures
- measures map values to natural numbers and use the less relation

```
|-!(f:'a \rightarrow num) x y. measure f x y <=> (f x < f y)
```

- moreover, existing well-founded relations can be combined
 - lexicographic order LEX
 - ► list lexicographic order LLEX
 - **.** . . .

Manual Termination Proofs II

- if Define fails to find a termination proof, Hol_defn can be used
- Hol_defn defers termination proofs
- it derives termination conditions and sets up the function definitions
- all results are packaged as a value of type defn
- after calling Hol_defn the defined function(s) can be used
- however, the intended definition theorem has not been derived yet
- to derive it, one needs to
 - provide a well-founded relation
 - show that termination conditions respect that relation
- Defn.tprove and Defn.tgoal for this
- proofs usually start by providing relation via tactic WF_REL_TAC

Manual Termination Proof Example 1


```
> val qsort_defn = Hol_defn "qsort" '
  (gsort ord [] = []) /\
  (qsort ord (x::rst) =
     (gsort ord (FILTER ($~ o ord x) rst)) ++
     [x] ++
     (qsort ord (FILTER (ord x) rst)))'
val qsort_defn = HOL function definition (recursive)
Equation(s):
 [...] |- qsort ord [] = []
 [...] |- qsort ord (x::rst) =
            qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
            qsort ord (FILTER (ord x) rst)
Induction: ...
Termination conditions :
  0. !rst x ord. R (ord.FILTER (ord x) rst) (ord.x::rst)
  1. !rst x ord. R (ord, FILTER (($\sigma$ o ord) x) rst) (ord, x::rst)
  2. WF R
```

Manual Termination Proof Example 2


```
> Defn.tgoal qsort_defn
Initial goal:
?R.,
 WF R /\ (!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
  !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
> e (WF REL TAC 'measure (\(_, 1), LENGTH 1)')
1 subgoal :
(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
(!rst x ord, LENGTH (FILTER (\x', ~ord x x') rst) < LENGTH (x::rst))
> ...
```

Manual Termination Proof Example 3


```
> val (qsort_def, qsort_ind) =
 Defn.tprove (qsort_defn,
   WF_REL_TAC 'measure (\((_, 1). LENGTH 1)') >> ...)
val gsort_def =
|- (qsort ord [] = []) /\
   (qsort ord (x::rst) =
   qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
   qsort ord (FILTER (ord x) rst))
val gsort_ind =
|- !P. (!ord. P ord []) /\
       (!ord x rst.
         P ord (FILTER (ord x) rst) /\
         P ord (FILTER ($~ o ord x) rst) ==>
         P ord (x::rst)) ==>
       Iv v1. P v v1
```

Part XI

Good Definitions

Importance of Good Definitions

- using good definitions is very important
- good definitions are vital for clarity
- proofs depend a lot on the form of definitions
- unluckily, it is hard to state what a good definition is
- even harder to come up with good definitions
- let's look at it a bit closer anyhow

Importance of Good Definitions — Clarity

- HOL guarentees that theorems do indeed hold
- However, does the theorem mean what you think it does?
- one can separate your development in
 - main theorems you care for
 - auxiliary developments used to derive your main theorems
- it is essential to understand your main theorems
 - you need to understand all the definitions directly used
 - you need to understand the indirectly used ones as well
 - you need to convince others that you express the intended statement
 - therefore, it is vital to use very simple, clear definitions
- defining concepts is often the main development task
- auxiliary part
 - can be as technical and complicated as you like
 - correctness is guarenteed by HOL

Importance of Good Definitions — Proofs

- good definitions can shorten proofs significantly
- they improve maintainablity
- they can improve automation drastically
- unluckily for proofs definitions often need to be technical
- this contradicts clarity aims

How to come up with good definitions

- unluckily, it is hard to state what a good definition is
- it is even harder to come up with them
 - there are often many competing interests
 - a lot of experience and detailed tool knowledge is needed
 - much depends on personal style and taste
- general advice: use more than one definition
 - ▶ in HOL you can derive equivalent definitions as theorems
 - define a concept as clearly and easily as possible
 - derive equivalent definitions for various purposes
 - ★ one very close to your favourite textbook
 - ★ one nice for certain types of proofs
 - ★ another one good for evaluation
 - *
- lessons from functional programming apply

Good Definitions in Functional Programming

Objectives

- clarity (readability, maintainability)
- performance (runtime speed, memory usage, ...)

General Advice

- use the powerful type-system
- use many small function definitions
- encode invariants in types and function signatures

Good Definitions – no number endcodings

- many programmers familiar with C encode everything as a number
- enumeration types are very cheap in SML and HOL
- use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and positive integers. In SML, it is better to use a variant type.

```
val _ = Datatype 'ordering = LESS | EQUAL | GREATER';
val compare_def = Define '
   (compare LESS lt eq gt = lt)
/\ (compare EQUAL lt eq gt = eq)
/\ (compare GREATER lt eq gt = gt) ';
val list_compare_def = Define '
   (list_compare cmp [] [] = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp l1 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:'a) y)
     (* x<y *) LESS
     (* x=y *) (list_compare cmp 11 12)
     (* x>y *) GREATER) ';
```

Good Definitions — Isomorphic Types

- the type-checker is your friend
 - it helps you find errors
 - code becomes more robust
 - using good types is a great way of writing self-documenting code
- therefore, use many types
- even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use separate types to avoid mixing them up.

```
val _ = Datatype 'vaddr = VAddr num';
val _ = Datatype 'paddr = PAddr num';

val virt_to_phys_addr_def = Define '
  virt_to_phys_addr (VAddr a) = PAddr( translation of a )';
```

Good Definitions — Encoding Invariants

- try to encode as many invariants as possible in the types
- this allows the type-checker to ensure them for you
- you don't have to check them manually any more
- your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.

Good Definitions — Encoding Invariants II

Network Connections (Example by Yaron Minsky from Jane Street) II

```
The following definition of connection_info makes the invariants explicit:
type connected = { last_ping : (time * int) option,
                     session_id : string };
type disconnected = { when_disconnected : time };
type connecting = { when_initiated : time };
datatype connection_state =
  Connected of connected
 Disconnected of disconneted
| Connecting of connecting;
type connection_info = {
 state : connection_state,
 server : inet_address
}
```

Good Definitions in HOL

Objectives

- clarity (readability)
- good for proofs
- performance (good for automation, easily evaluatable, ...)

General Advice

- same advice as for functional programming applies
- use even smaller definitions
 - introduce auxiliary definitions for important function parts
 - use extra definitions for important constants
 - **.**..
- tiny definitions
 - allow keeping proof state small by unfolding only needed ones
 - allow many small lemmata
 - improve maintainability

Good Definitions in HOL II

Multiple Equivalent Definitions

- satisfy competing requirements by having multiple equivalent definitions
- derive them as theorems
- initial definition should be as clear as possible
 - clarity allows simpler reviews
 - simplicity reduces the likelihood of errors

Example - ALL_DISTINCT

Good Definitions in HOL III

Formal Sanity

- directly after your definition, prove some sanity check lemmata
- these should express important properties
- this checks your intuition against your actual definition
- these sanity check lemmata are useful for following proofs
- they improve maintainability

Example - ALL_DISTINCT

|- ALL_DISTINCT []

```
|- !x. ALL_DISTINCT [x]
|- !1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1
```

|- !x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

Good Definitions in HOL IV

Technical Issues

- write definition such that they work well with HOL's tools
- this requires you to know HOL well
- a lot of experience is required
- general advice
 - avoid explicit case-expressions
 - avoid pairs, e.g. use curried functions

Example