Part X

Interactive Theorem Proving (ITP) Course

Parts X, XI _ o
Basic Definitions

Thomas Tuerk (tuerk@kth.se)

by

L2y,
ZKTH%

by

F
FKTHY

$ verewscar &

38 OCH KONST %%
e VETENSKAP
39 OCH KONST &%

) 9
Academic Year 2016/17, Period 4 > S

version 625b457 of Mon May 8 09:30:24 2017

Definitional Extensions g,g%’;% Axiomatic Extensions gﬁ%%
e sk

. A . o axioms are a different approach
o there are conservative definition principles for types and constants

o they allow postulating arbitrary properties, i.e. extending the logic

o conservative means that all theorems that can be proved in extended . .
with arbitrary theorems

theory can also be proved in original one

] o this approach might introduce new inconsistencies
o however, such extensions make the theory more comfortable PP &

_)]]] o in HOL axioms are very rarely needed
o definitions introduce no new inconsistencies

o using definitions is often considered more elegant
o the HOL community has a very strong tradition of a purely & &

definitional approach o it is hard to keep track of axioms

o use axioms only if you really know what you are doing

125 /180 126 /180

Pitfalls of Definitional Approach g‘%

Oracles {ﬁ“}

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

o you might want to use an external automated prover
this external tool acts as an oracle

» it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 /180

definitions can’t introduce new inconsistencies

they force you to state all assumed properties at one location
however, you still need to be careful

Is your definition really expressing what you had in mind 7

Does your formalisation correspond to the real world artefact 7

o How can you convince others that this is the case 7
o we will discuss methods to deal with this later in this course

formal sanity

conformance testing

code review

comments, good names, clear coding style

vy vy VY VvYyy

this is highly complex and needs a lot of effort in general

129 /180

o
Oracles Il {Z “‘}

o Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast_proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

vVVvYy VY VvYy

©

cheating via e. g. the cheat tactic means skipping proofs

©

it can be helpful during proof development

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

v

o

cheats should be removed reasonable quickly

©

HOL warns about cheats and skipped proofs

Specifications f‘%

o HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and ODD

> EVEN_ODD_EXISTS
val it = |- 7even odd. even O /\ “odd 0 /\ (!n. even (SUC n) <=> odd n) /\
('n. odd (SUC n) <=> even n)

> val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EO_SPEC = |- EVEN O /\ ~0DD O /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n)

o new_specification is a convenience wrapper

» it uses existential quantification instead of Hilbert's choice
» deals with pair syntax
» stores resulting definitions in theory

o new_specification captures the underlying principle nicely

130 /180

Definitions {ﬁ“}

o special case: new constant defined by equality

Specification with Equality
> double_EXISTS
val it =
|- ?double. (!'n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- 'n. double n = n + n

o there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n

Underspecified Functions g‘%

©

function specification do not need to define the function precisely

©

multiple different functions satisfying one spec are possible

©

functions resulting from such specs are called underspecified

©

underspecified functions are still total, one just lacks knowledge
one common application: modelling partial functions
» functions like e. g. HD and TL are total
» they are defined for empty lists
» however, is is not specified, which value they have for empty lists
» only known: HD [] = HD [] and TL [] = TL []

val MY_HD_EXISTS = prove (‘‘?hd.
val MY_HD_SPEC =
new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

©

'x xs. (hd (x::x8) =), ...);

133 /180

Restrictions for Definitions %;@E

o all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. newdefinition (..., ‘““Fn =mn+n‘) fails
» mis free on rhs

o all type variables occurring on rhs need to occur on lhs
» e.g. new definition ("IS_FIN_TY",

‘IS FIN.TY = FINITE (UNIV : ’a set)‘‘) fails

» IS_FIN_TY would lead to inconsistency
» |- FINITE (UNIV : bool set)

» |- ~FINITE (UNIV : num set)

>

T <=> FINITE (UNIV:bool set) <=>
IS FIN_TY <=>

FINITE (UNIV:num set) <=> F

» therefore, such definitions can't be allowed

Primitive Type Definitions s

o HOL allows introducing non-empty subtypes of existing types

©

a predicate P : ty -> bool describes a subset of an existing type ty

o ty may contain type variables

©

only non-empty types are allowed

©

therefore a non-emptyness proof ex-thm of form 7e. P e is needed

0 new_type_definition (op-name, ex-thm) then introduces a new
type op-name specified by P

134 /180

Primitive Type Definitions - Example 1

Primitive Definition Principles Summary

©

©

©

©

lets try to define a type dlist of lists containing no duplicates
predicate ALL_DISTINCT :
easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1

val dlist TY DEF = new_type_definitions("dlist",
dlist_exists) defines a new type ’a dlist and returns a theorem

’a list —> bool is used to define it

|- ?(rep :’a dlist -> ’a list).
TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a >a dlist to the list representing it
» rep is injective
» a list satisfies ALL_DISTINCT iff there is a corresponding dlist

o

primitive definition principles are easily explained
they lead to conservative extensions

however, they are cumbersome to use
LCF approach allows implementing more convenient definition tools
» Datatype package
» TFL (Terminating Functional Programs) package
» IndDef (Inductive Definition) package
» quotientLib Quotient Types Library
>

137 /180

giT;%

Primitive Type Definitions - Example 2

Q

Q

Functional Programming

©

©

© ©

define new_type_bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=dlist_TY_DEF}

val it =
|- (a. abs_dlist (rep_dlist a) = a) /\

(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

other useful theorems can be automatically proved by

» prove_abs_fn_one_one
» prove_abs_fn_onto
» prove_rep_fn_one_one
» prove_rep_fn_onto

the Datatype package allows to define datatypes conveniently
the TFL package allows to define (mutually recursive) functions
the EVAL conversion allows evaluating those definitions

this gives many HOL developments the feeling of a functional program

there is really a close connection between functional programming an
definitions in HOL
» functional programming design principles apply
» EVAL is a great way to test quickly, whether your definitions are
working as intended

138 /180

Functional Programming Example {i‘@“}

> Datatype ‘mylist = E | L ’a mylist¢
val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs)) ¢
Definition has been stored under "mylen_def"
val it =
|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs):
thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*¢
val it =
|- mylen (L 2 (L 3 (L 1E))) = 3:
thm

139 /180

Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a

| Node btree ’b btree

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree®

141 /180

Datatype Package %‘%E
o the Datatype package allows to define SML style datatypes easily
o there is support for
» algebraic datatypes
» record types
» mutually recursive types
>
© many constants are automatically introduced
» constructors
» case-split constant
» size function
» field-update and accessor functions for records
-
o many theorems are derived and stored in current theory
» injectivity and distinctness of constructors
» nchotomy and structural induction theorems
» rewrites for case-split, size and record update functions
>
140 /180

Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 'a2 al a0 a. Leaf a <> Node a0 al a2

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
(a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (al = a1’) /\ (a2 = a2’))

btree_ nchotomy
|- !'bb. (7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. (la. P (Leaf a)) /\
('b 0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
b. P b

142 /180

Datatype Package - Example | - Derived Theorems 2 %‘%EI}

btree_size_def

|- ('f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2)))

bbtree_case_def

|- (ta f f1. btree_CASE (Leaf a) f f1 = f a) /\
(a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)

btree_case_cong

|- 'M M’ f f1.
™ =M) /\ (la. (M’ = Leaf a) ==> (f a = £’ a)) /\
(a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1°)

143 /180

Datatype Package - Example Il - Derived Theorems g‘ﬁﬁg

Sttt

my_enum_nchotomy
|- 'P. PEL /\ PE2/\PE3==>"!a.Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm
|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my_enum2num_num2my_enum

|- 'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

145 /180

Datatype Package - Example Il

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }

144 /180

o,

ey

Record type in HOL

Datatype ‘rgb = <| r : num; g : num; b : num |>¢

146 /180

Datatype Package - Example Ill - Derived Theorems

rgb_component_equality

|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (rl.g = r2.g) /\ (r1.b = r2.b)

rgb_nchotomy

|- 'rr. ?n n0 nl. rr = rgb n n0 ni

rgb_r_fupd

|- 'f n n0 nl. rgb n n0 nl with r updated_by f = rgb (f n) n0 ni

rgb_updates_eq_literal

|- !'r n1 nO n.

r with <|r := nl; g := n0; b := n|> = <|r :=nl; g := n0; b :

o there is no support for co-algebraic types

o the Datatype package could be extended to do so

o other systems like Isabelle/HOL provide high-level methods for

defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))

147 /180

149 /180

Datatype Package - Example IV {i‘%ig
o nested record types are not allowed -
o however, mutual recursive types can mitigate this restriction
Filesystem Datatype in SML
datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}
Not Supported Nested Record Type Example in HOL
Datatype ‘file = Text string
| Dir <| owner : string ;
files : (string # file) list |>¢
Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string
| Dir directory
éirectory = <| owner : string ;
files : (string # file) list [|>¢
148 /180
Datatype Package - Discussion gﬁ;%&%
et

©

Datatype package allows to define many useful datatypes

©

however, there are many limitations

» some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

» there are bugs (currently e.g. some trouble with certain mutually
recursive definitions)

©

biggest restrictions in practice (in my opinion and my line of work)

» no support for co-algebraic datatypes
» no nested record datatypes

©

depending on datatype, different sets of useful lemmata are derived

©

most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
» there is support for pattern matching

150 /180

TFL package

©

©

©

©

Well-Founded Recursion

TFL package implements support for terminating functional definitions
Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL

a well-founded relation R can be used to define recursive functions

this recursion principle is called WFREC in HOL

o idea of WFREC

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

153 /180

Well-Founded Relations

o arelationR :
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

o Example: $< : num -> num -> bool is well-founded

’a —=> ’a -> bool is called well-founded, iff there

o if arguments of recursive calls are smaller according to well-founded

relation, the recursion terminates

o this is the essence of termination proofs

Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define
val DOUBLE_def =
|- 'n. DOUBLE n = n + n:
thm

‘DOUBLE n = n + nf

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\
(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢
val MY_LENGTH_def =
|- (MY_LENGTH []

thm

0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys)) ¢
val MY_APPEND_def =
|- (lys. MY_APPEND []1 ys = ys) /\
(!'x xs ys. MY_APPEND (x::xs) ys =
thm

x::MY_APPEND xs ys):

154 /180

Define discussion {ﬁ“}

o Define feels like a function definition in HOL

o it can be used to define "terminating” recursive functions

o Define is implemented by a large, non-trivial piece of SML code
o it uses many heuristics

o outcome of Define sometimes hard to predict

o the input descriptions are only hints

» the produced function and the definitional theorem might be different
» in simple examples, quantifiers added

» pattern compilation takes place

» earlier “conjuncts” have precedence

Primitive Definitions Pty

o Define introduces (if needed) the function using WFREC
o intended definition derived as a theorem
o the theorems are stored in current theory

o usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))
(\IS_SORTED a.

case a of
[1=>1IT
| [x1] => 1T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

157 /180

Define - More Examples {Z@i;

> val MY_HD_def = Define ‘MY_HD (x :: xs) = x°¢
val MY_HD_def = |- !x xs. MY_HD (x::xs) = : thm

e

> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\
(IS_SORTED _ = T)¢
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ ('v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN O = T) /\ (0ODD O = F) /\
(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n) ‘¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> 0DD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIP _ _ = [1)¢
val ZIP_def =
|- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(!vi. ZIP [1 vi = [1) /\ (!v4 v3. ZIP (v3::v4) [] = [1) : thm

Induction Theorems

o Define automatically defines induction theorems
o these theorems are stored in current theory with suffix ind
o use DB.fetch "-" "something ind" to retrieve them

o these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [/\
(lv. P [v])) ==>
'v. Pv

158 /180

Define failing {ﬁ“}

©

Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

> there is a bug :-)

©

termination is an important concept for Define

©

it is easy to misunderstand termination in the context of HOL

o however, we need to understand it to understand Define

159 /180

Termination in HOL Il ﬁ%‘a

o one can define "non-terminating” functions in HOL
o however, one cannot do so (easily) with Define

Definition of WHILE in HOL
|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order

There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1l) in 0)

Unsound Definitions

A function £ : num -> num with !'n. £ n = £ (n+1) + f (n+2) can be defined in HOL
despite termination issues. However a function £ with the following property cannot be defined
in HOL:

'In. £fn= ((n)+ 1)

Such a function would allow to prove 0 = 1.

161 /180

Termination in HOL {i@i?
o in SML it is natural to talk about termination of functions
o in the HOL logic there is no concept of execution
o thus, there is no concept of termination in HOL
o however, it is useful to think in terms of termination

o the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
o the required well-founded relation corresponds to a termination proof

o therefore, it is very natural to think of Define searching a
termination proof

o important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

160 /180

Manual Termination Proofs | f‘%

o TFL uses various heuristics to find a well-founded relation

o however, these heuristics may not be strong enough

o in such cases the user can provide a well-founded relation manually
o the most common well-founded relations are measures

© measures map values to natural numbers and use the less relation
|- !'(f:’a -> num) x y. measure f x y <=> (f x < £ y)
o moreover, existing well-founded relations can be combined

» lexicographic order LEX
» list lexicographic order LLEX

> ..

162 /180

Manual Termination Proofs Il

o if Define fails to find a termination proof, Hol_defn can be used

o Hol_defn defers termination proofs

o it derives termination conditions and sets up the function definitions

o all results are packaged as a value of type defn

o after calling Hol_defn the defined function(s) can be used

Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))°¢

val gsort_defn = HOL function definition (recursive)

Equation(s) :
o however, the intended definition theorem has not been derived yet [...] |- gsort ord [1 =[]
.. [...] |- gsort ord (x::rst) =
o to derive it, one needs to gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
» provide a well-founded relation gsort ord (FILTER (ord x) rst)
» show that termination conditions respect that relation)
Induction : ...

o Defn.tprove and Defn.tgoal for this

o proofs usually start by providing relation via tactic WF_REL_TAC

Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\ ('rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
'rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

> e (WF_REL_TAC ‘measure (\(., 1). LENGTH 1)°¢)

1 subgoal :

(!'rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

Termination conditions :
0. 'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. !rst x ord. R (ord,FILTER (($~ o ord) x) rst) (ord,x
2. WF R

163 /180

Foany Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,
WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)‘) >> ...)

val gsort_def =

|- (gsort ord [1 = [1) /\
(gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst))

val gsort_ind =
|- 'P. (tord. P ord [1) /\
(lord x rst.
P ord (FILTER (ord x) rst) /\
P ord (FILTER ($~ o ord x) rst) ==>
P ord (x::rst)) ==>
'v vi. P v vl

165 /180

1:rst)

164 /180

166 /180

Importance of Good Definitions

Part XI

Good Definitions o using good definitions is very important

o good definitions are vital for clarity
o proofs depend a lot on the form of definitions
Qﬁ?@ﬁ&w o unluckily, it is hard to state what a good definition is
i‘gKTHq%& o even harder to come up with good definitions

VETENSKAP g o let's look at it a bit closer anyhow
289 OCH KONST 2%

e

168 /180

Importance of Good Definitions — Clarity gf%;%% Importance of Good Definitions — Proofs Py

o HOL guarentees that theorems do indeed hold

o However, does the theorem mean what you think it does?
o one can separate your development in

©

» main theorems you care for good definitions can shorten proofs significantly

» auxiliary developments used to derive your main theorems

©

they improve maintainablity
o it is essential to understand your main theorems

o

o] they can improve automation drastically
» you need to understand all the definitions directly used

» you need to understand the indirectly used ones as well
» you need to convince others that you express the intended statement
» therefore, it is vital to use very simple, clear definitions

©

unluckily for proofs definitions often need to be technical

©

this contradicts clarity aims

o defining concepts is often the main development task
o auxiliary part

» can be as technical and complicated as you like
» correctness is guarenteed by HOL

169 /180 170 /180

How to come up with good definitions {‘%}

o unluckily, it is hard to state what a good definition is
o it is even harder to come up with them
» there are often many competing interests

> a lot of experience and detailed tool knowledge is needed
» much depends on personal style and taste
o general advice: use more than one definition
» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes
* one very close to your favourite textbook

* one nice for certain types of proofs
* another one good for evaluation
*

o lessons from functional programming apply

171 /180

Good Definitions — no number endcodings ff%‘%

- . . ki
o many programmers familiar with C encode everything as a number e

o enumeration types are very cheap in SML and HOL
o use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER;

val compare_def = Define ¢
(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) *;

val list_compare_def = Define ¢

(list_compare cmp [] [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(* x<y *) LESS
(* x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) ¢;

173 /180

Good Definitions in Functional Programming gﬁ;}
Objectives
o clarity (readability, maintainability)
o performance (runtime speed, memory usage, ...)
General Advice
o use the powerful type-system
o use many small function definitions
o encode invariants in types and function signatures
172 /180
Good Definitions — Isomorphic Types ff%’}%
éé%xiéf

o the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

o even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val _ = Datatype ‘vaddr = VAddr num‘;
val _ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ¢
virt_to_phys_addr (VAddr a) = PAddr(translation of a)‘;

174 /180

Good Definitions — Encoding Invariants

o try to encode as many invariants as possible in the types
o this allows the type-checker to ensure them for you
o you don’t have to check them manually any more

o your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {
state : connection_state,
: inet_address,
: time option,
: int option,
: string option,
: time option,
: time option

server
last_ping_time
last_ping_id
session_id
when_initiated
when_disconnected

}

175 /180
Good Definitions in HOL ff%’i%
Objectives

o clarity (readability)
o good for proofs

o performance (good for automation, easily evaluatable, ...)

General Advice
o same advice as for functional programming applies
o use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

o tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability

177 /180

Good Definitions — Encoding Invariants |l

Network Connections (Example by Yaron Minsky from Jane Street) I

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time 1};

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

176 /180

Good Definitions in HOL Il

Multiple Equivalent Definitions
o satisfy competing requirements by having multiple equivalent
definitions
o derive them as theorems
o initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT [] <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> "MEM h t /\ ALL_DISTINCT t)

|- 1. ALL_DISTINCT 1 <=>
'x. MEM x 1 ==> (FILTER ($= x) 1 = [x])

|- !'1s. ALL_DISTINCT 1s <=> (CARD (set 1ls) = LENGTH 1s):

178 /180

Good Definitions in HOL Il

Formal Sanity

©

directly after your definition, prove some sanity check lemmata

©

these should express important properties

o this checks your intuition against your actual definition

©

these sanity check lemmata are useful for following proofs

©

they improve maintainability

Example - ALL_ DISTINCT

|- ALL_DISTINCT []
|- 'x. ALL_DISTINCT [x]
|- '1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1
|- !'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1
|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12

Good Definitions in HOL IV gjﬁ?

Technical Issues
o write definition such that they work well with HOL's tools
o this requires you to know HOL well
o a lot of experience is required

o general advice

avoid explicit case-expressions
avoid pairs, e.g. use curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zIp _ _ = [

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)
I, 2 =>[°

val ZIP_BAD2_def = Define ¢(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\
(zip _ = [

’

180 /180

