
Algorithms and Complexity
2017

Extra Mästarprov 1: Algorithms

This test is given to students who failed to get E on the ordinary Mästarprov 1.
It consists of two problems. If both problems are solved correctly (basically) the
test gives grade E. Your solutions should be handed in latest May 19th 16.00.
No collaboration is allowed.

1. At the service center

Let us assume that we have a service center where students can come with
there questions. Let us assume that n students arrive and that each student i
has a task which it takes ti minutes to handle. There is just one line so the
students have to wait for their turn. For each student we define the service time
as the sum of the time the student has to wait plus the time for the student’s
task. We define the total service time (TST) as

∑
i si. This is the sum of the

individual times the students spend in the service center.

For instance, if we have 3 students and serve them in order 3, 1, 2, we get s1 =
t3 + t1, s2 = t3 + t1 + t2, s3 = t3. Then we have TST = 2t1 + t2 + 3t3.

It can be shown that if the students are served in random order, the mean value
of TST is n+1

2

∑
i ti. But if we want to minimize TST we can do better than

this. Describe an algorithm in pseudo-code that find the optimal order to serve
the students in, given that we want to minimize TST. Show that your algorithm
is correct and analyze the complexity.

2. Readable subsets

We have a string s = s1, s2, ..., sn of normal letters. Some substrings of
consecutive letters of s might form readable words. We want to find a maximal
(maximum number of words) set of disjoint readable words in the string. The
words don’t have to form a readable sentence.

As an example, the string WHATZZHOWQRUHELP of contains WHAT HOW
HELP as an obviously maximal set.

How do we find such a set of maximal size? Here is an idea using dynamic
programming: If the string has length n we can define M [k] as the size of an
optimal set when we have the substring of the first k letters in the string. How
do we find M [k+1]? Maybe we can test if there is a readable word ending with
letter k + 1. If so, then... Or else ...

Use this idea and implement a dynamic programming algorithm (preferably in
pseudo-code) that solves to problem, that is, finds M [n] in polynomial time in
n. We assume that we can use a dictionary function read[w] which decides if w
is a readable word in time O(1). (Read returns TRUE or FALSE.) Analyze the
complexity and explain why your algorithm is correct.

1


