
Homework II, Foundations of Cryptography 2017
Before you start:

1. The deadlines in this course are strict and stated on the course homepage.

2. Read the detailed homework rules at the course homepage.

3. Read about I and T-points and grades in the course description.

The problems are given in no particular order. If something seems wrong, then visit the
course homepage to see if any errata was posted. If this does not help, then email dog@kth.se.
Don’t forget to prefix your email subject with Krypto17. We may publish hints on the
homepage as if a problem appears to be harder than expected.

IMPORTANT! Use java.math.BigInteger for implementation exercises instead
of GMP to avoid problems with Kattis

Definition 1 The RSA assumption states that if N = pq, where p and q are randomly chosen
primes with the same number of bits, e ∈ Z∗φ(N), e > 1, and g is randomly chosen in Z∗N , then
for every polynomial time algorithm A, Pr [A(N, e, g) = β ∧ βe = g mod N ] is negligible.

Definition 2 The Strong RSA assumption states that if N = pq, where p and q are randomly
chosen primes with the same number of bits and g is randomly chosen in Z∗N , then for every
polynomial time algorithm A, Pr [A(N, g) = (e, β) ∧ βe = g mod N ∧ e > 1] is negligible.

1 This is an old problem. Be the first to solve it completely and correctly!
In class we considered the RSA signature scheme, i.e., RSA with full domain hash. In this

problem we develop a different scheme based on the strong RSA assumption. Our construction
is similar to some efficient provably secure signature schemes, but we only consider a simplified
scheme and analyze its security in the random oracle model.

The private key of our scheme consists of two random n/2-bit safe1 primes p and q. The
public key consists of the modulus N = pq and a random element g from the subgroup QRN of
quadratic residues in ZN . Suppose that H : {0, 1}∗ → P ∩{0, 1}n/3 is a random oracle, where P
denotes the set of odd primes. A signature s of a message m is computed as s = g1/H(m) mod N ,
where 1/H(m) should be understood as H(m)−1 mod 1

2(p − 1)(q − 1). To verify a signature s,
one simply checks that sH(m) mod N = g.

1a (1T) For a standard RSA modulus we do not require that p and q are safe. Prove that
this does not change the hardness of factoring N in any essential way. Hint: Use the prime
number theorem to estimate heuristically the probability that a randomly chosen prime is
safe by chance.

1A prime p is safe if (p− 1)/2 is prime as well.

Page 1 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström



1b (1T) Prove that if the strong RSA assumption holds, then the standard RSA assumption
holds. (The opposite direction is unknown.)

1c (1T) Prove that the signature scheme is correct for every message m.

1d (1T) Let p1, . . . , pk ∈ P ∩{0, 1}n/3 be primes and let g′ ∈ QRN be randomly chosen. Prove
that if we define g = (g′)

∏k
i=1 pi mod N , then g is randomly distributed in QRN . Thus,

given a random element g′ we can construct another random element g of which we can
take any pith root modulo N .

1e (1T) Suppose that there exists a polynomial time algorithm A such that for random keys
(pk , sk) = ((N, g), (p, q)) and random H,

Pr[ASignsk (·),H(·)(pk) = (m, s) ∧ Verifypk (m, s) = 1 ∧ ∀i : mi 6= m] ≥ δ ,

where mi is the ith query to the signature oracle Signsk (·) and δ is non-negligible, i.e., A
breaks the signature scheme. (In the literature the random oracle is often implicit. Here
we make it explicit.)

Prove that without loss of generality we may assume that A never asks the same query
twice and that it always evaluates the random oracle H on the message m of its output.

1f (1T) Use the above to prove that given a random RSA modulus N and a random element
g′ ∈ QRN you can generate a public key pk = (N, g) such that you can simulate (without
the secret key sk) a signature oracle Sign′(·) and a random oracle H(·) such that

Pr[ASign′(·),H(·)(pk) = (m, s) ∧ Verifypk (m, s) = 1 ∧ ∀i : mi 6= m] ≥ δ − ε ,

where mi is the ith query to the “signature oracle” Sign′(·) and ε is exponentially small.

1g (1T) Prove that if A has polynomial running time T (n) and j is randomly chosen in
{1, 2, . . . , Q}, Q ≤ T (n), where Q is the number of queries made by A to H(·), then

Pr[ASign′(·),H(·)(pk) = (m, s) ∧ Verifypk (m, s) = 1 ∧ ∀i : mi 6= m ∧m = m′j ]

≥ δ/T (n)− ε′

where mi is the ith query to the signature oracle and m′j is the jth query to the random
oracle, and ε′ is exponentially small.

1h (2T) Let N be an RSA modulus, let g′ ∈ QRN , and define g = (g′)
∏

i 6=j pi mod N . Prove
that if (m, s) satisfies Verifypk (m, s) = 1 and H(m) = pj , then we can find integers a and
b such that apj + b

∏
i 6=j pi = 1 and construct (β, ρ) such that βρ mod N = g′ and ρ > 2.

Page 2 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström



1i (3T) Use the above observatations to describe an algorithm A′ that runs A as a subroutine
and breaks the strong RSA assumption, i.e., A′ takes an RSA modulus N and a random
element g′ ∈ QRN as input and must use A to output (β, ρ) such that βρ mod N = g′ and
ρ > 2 with non-negligible probability.

1j (2T) Suppose that we only wish to sign a polynomial h(n) number of distinct messages
known in advance (we can think of the messages as the integers 1, . . . , h(n)). Can you
modify the signature scheme for this setting and prove its security without the random
oracle?

2 In this problem we investigate some implications of using different groups.

2a (2T) Let q be an n bit prime and let Aq denote the additive group modulo q, i.e., Zq
as an additive group. Present an algorithm for solve discrete logarithms in Aq efficiently
and explain why the running time of your algorithm implies that Aq is unsuitable for
cryptographic applications.

2b (3T) In class we briefly discussed how the running times of discrete logarithm algorithms
in multiplicative groups and elliptic curve groups influence how large security parameters
must be.

Consider the following two parameterized types of groups:

1. Multiplicative group with a prime modulus p and prime order q subgroup Gq of Z∗p.
2. Elliptic curve group Er of prime order r over a prime order field Zs where log s = c log r

for a small constant c. (Assume that the curve has been chosen to avoid weak curves.)

State how big log p, log q, log r, and log s must be to give a (conjectured) security level of
1024 against classical computers (not quantum computers).

Hint: Search for literature about recommended key sizes.

2c (2T) Describe why neither Gq nor Er is suitable for cryptographic use if the adversary has
access to a quantum computer with arbitrarily large entangled state.

2d (3T) It turns out that log q can be significantly smaller than log p without making discrete
logarithms easier to solve in Gq. Explain why it is difficult to base the El Gamal cryptosys-
tem on such groups and what you can do about it if you do not need the homomorphic
property.

Page 3 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström



2e (3T) Suppose that p = 2q + 1 and we use the El Gamal cryptosystem defined over Gq.
Suppose that k honest parties wish to encrypt messages mi ∈ {0, 1}(log q)/(2k) using the
El Gamal cryptosystem under a joint public key pk = (g, y). Construct efficiently com-
putable/invertible injections ιi : {0, 1}(log q)/(2k) → Gq such that

k∏
i=1

Encpk (ιi(mi)) = Encpk

(
k∏
i=1

ιi(mi)

)
.

This is interesting, since it allows compacting multiple ciphertexts into one and later sep-
arate the plaintext submitted by different senders after decryption.

3 (4T) Read about Lamport’s basic one-time signature scheme (Gen, Sign,Verify) (where a mes-
sage is signed as is) and consider the following modified scheme (Gen, Sign′,Verify′) defined by
Sign′sk (m) = Signsk (SHA256(m)) and Verifypk (σ,m) = Verifypk (σ, SHA256(m)).

Is this scheme secure against existential forgery attacks? (definition of security covered in
class) If so, then prove it. If not, then prove that it is not.

4 (12I) Implement the arithmetic of an elliptic curve. A detailed description is found on Kattis.
https://kth.kattis.com/problems/kth.krypto.ellipticcurvearithm. Make sure that your
code is commented and well structured. Up to 12I points may be subtracted if this is not the
case. Keep in mind that you must be able to explain your solution during the oral exam.

5 (7I) Implement the recovery phase of Feldman’s verifiable secret sharing scheme. A detailed de-
scription is found on Kattis. https://kth.kattis.com/problems/kth.krypto.feldman. Make
sure that your code is commented and well structured. Up to 7I points may be subtracted if this
is not the case. Keep in mind that you must be able to explain your solution during the oral
exam.

6 (10I) Implement the SHA-256 hash function. A detailed description is found on Kattis. https:
//kth.kattis.com/problems/kth.krypto.sha256. Feel free to read from different sources on
how to make an efficient implementation, but any borrowed ideas should be explained briefly in
the solutions submitted on paper. You must also be prepared to explain in detail what you did
and why at the oral exam. Make sure that your code is commented and well structured. Up to
10I points may be subtracted if this is not the case.

7 Read about the Dual Elliptic Curve Deterministic Random Bit Generator proposed by NIST in
the original document http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.
pdf. Read other sources you find online as well.

7a (1T) Briefly summarize the controversy regarding this PRG.

7b (1T) Why do you think it was obvious to most researchers that something was not right
with this construction even before the backdoor was made public?

7c (2T) More generally it is worthwhile to consider how a good elliptic curve is chosen. What
is the purpose of the million dollar curve and what is special about how it is generated?

Page 4 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström

https://kth.kattis.com/problems/kth.krypto.ellipticcurvearithm
https://kth.kattis.com/problems/kth.krypto.feldman
https://kth.kattis.com/problems/kth.krypto.sha256
https://kth.kattis.com/problems/kth.krypto.sha256
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf


8 (4T) You are given a pseudo-random function Fn = {fn,γ}γ∈Γn , where n ∈ N is the security
parameter and Γn is a set of possible keys for the security parameter n. Suppose that fn,γ :
{0, 1}n → {0, 1}logn for every γ ∈ Γn. Can you construct a pseudorandom function F ′n =
{f ′n,γ}γ∈Γ′

n
such that f ′n,γ : {0, 1}n → {0, 1}n? Prove that it works in that case, or explain

informally why you think it is not possible if you think it is not possible.

9 (3T) Consider SHA-256 as a random oracle. What would you do if you needed a function in
practice that you could consider to be a random oracle {0, 1}∗ → {0, 1}3000? What is the collision
resistance of your function?

10 The following was covered in class so your task is to give rigorous proofs, i.e., the expectation of
the quality of your solution is significantly higher than for other solutions.

10a (4T) You are given a pseudo-random generator such that PRG : {0, 1}n → {0, 1}n+1 for
every security parameter n ∈ N. Construct a pseudo-random function PRG′ such that
PRG′ : {0, 1}n → {0, 1}2n for every n ∈ N, and prove that it is a pseudo-random generator.

10b (4T) You are given a pseudo-random generator such that PRG : {0, 1}n → {0, 1}2n for
every security parameter n ∈ N. Construct a pseudo-random function Fn = {fn,γ}γ∈Γn

such that fn,γ : {0, 1}logn → {0, 1}n, where n ∈ N is the security parameter and Γn is a
set of possible keys for the security parameter n, and prove that it is a pseudo-random
function.

To ensure that your solution is a simplified version of the general construction we require
that PRG is stateless and applied at most O(log n) times for any input.

Page 5 (of 5)

Foundations of cryptography • Spring 2017
Douglas Wikström


