Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version cf844ad of Mon May 15 09:02:18 2017

Part |

Introduction

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Motivation

@ Complex systems almost certainly contain bugs.
o Critical systems (e. g. avionics) need to meet very high standards.

@ It is infeasible in practice to achieve such high standards just by
testing.

@ Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

3/195

Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

@ Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

@ Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)
e Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

4 /195

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

@ proof can show absence of errors in design
@ but proofs talk about a design, not a real system

@ = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

5/195

Mathematical vs. Formal Proof

Mathematical Proof Formal Proof

@ informal, convince other o formal, rigorously use a

mathematicians

checked by community of
domain experts

subtle errors are hard to find

often provide some new
insight about our world

often short, but require
creativity and a brilliant idea

logical formalism

checkable by stupid
machines

very reliable

often contain no new ideas
and no amazing insights

often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6

195

Detail Level of Formal Proof {‘Zn?a

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/195

Automated vs Manual (Formal) Proof

Fully Manual Proof
@ very tedious one has to grind through many trivial but detailed proofs
@ easy to make mistakes
@ hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
@ amazing success in certain areas
but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/195

Interactive Proofs

@ combine strengths of manual and automated proofs
@ many different options to combine automated and manual proofs

» mainly check existing proofs (e.g. HOL Zero)

» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)

» most systems are somewhere in the middle

o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/195

Typical Interactive Proof Activities

@ provide precise definitions of concepts

@ state properties of these concepts
@ prove these properties
» human provides insight and structure
» computer does book-keeping and automates simple proofs
build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

10 /195

Different Interactive Provers

@ there are many different interactive provers, e.g.

> lIsabelle/HOL

» Coq

PVS

HOL family of provers
ACL2

vV vy VvVYyy

@ important differences

» the formalism used

level of trustworthiness
level of automation

libraries

languages for writing proofs
user interface

vV VY vy VY VY

11 /195

Which theorem prover is the best one? :-)

@ there is no best theorem prover

@ better question: Which is the best one for a certain purpose?

@ important points to consider
> existing libraries

YV VY VY VY VY VY VvYY

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 /195

Part |l

Organisational Matters

ahy

N ik
EKTHY

VETENSKAP
39 OCH KONST %

) 9

& %X‘% ©

Aims of this Course

Aims
e introduction to interactive theorem proving (ITP)
being able to evaluate whether a problem can benefit from ITP
hands-on experience with HOL
learn how to build a formal model

°
°
°
@ learn how to express and prove important properties of such a model
@ learn about basic conformance testing

°

use a theorem prover on a small project

Required Prerequisites
@ some experience with functional programming

@ knowing Standard ML syntax

@ basic knowledge about logic (e.g. First Order Logic)

14 /195

Dates

Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

always in room 4523 or 4532
each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
last lecture: 12th of June
last practical session: 21st of June

9 lectures, 17 practical sessions

15 /195

Exercises

@ after each lecture an exercise sheet is handed out

@ work on these exercises alone, except if stated otherwise explicitly
@ exercise sheet contains due date

» usually 10 days time to work on it

» hand in during practical sessions

> lecture Monday — hand in at latest in next week's Friday session
@ main purpose: understanding ITP and learn how to use HOL

» no detailed grading, just pass/fail
retries possible till pass
if stuck, ask me or one another
practical sessions intend to provide this opportunity

v

v

v

16 /195

Practical Sessions

very informal

main purpose: work on exercises

» | have a look and provide feedback

» you can ask questions

> | might sometimes explain things not covered in the lectures
> | might provide some concrete tips and tricks

> you can also discuss with each other

@ attendance not required, but highly recommended
> exception: session on 21st April

only requirement: turn up long enough to hand in exercises

you need to bring your own computer

17 /195

Handing-in Exercises

@ exercises are intended to be handed-in during practical sessions

@ attend at least one practical session each week
@ leave reasonable time to discuss exercises
» don’t try to hand your solution in Friday 14:55

@ retries possible, but reasonable attempt before deadline required
@ handing-in outside practical sessions

» only if you have a good reason
» decided on a case-by-case basis

@ electronic hand-ins
» only to get detailed feedback
does not replace personal hand-in

>
> exceptions on a case-by-case basis if there is a good reason
» | recommend using a KTH GitHub repo

18 /195

Passing the ITP Course

o there is only a pass/fail mark
@ to pass you need to

» attend at least 7 of the 9 lectures
> pass 8 of the 9 exercises

19/195

Communication

we have the advantage of being a small group
therefore we are flexible

so please ask questions, even during lectures
there are many shy people, therefore

» anonymous checklist after each lecture
» anonymous background questionnaire in first practical session

further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

20 /195

Part Il

HOL 4 History and Architecture

ahy

N ik
EKTHY

VETENSKAP
&9 OCH KONST %%

T

LCF - Logic of Computable Functions

e Standford LCF 1971-72 by Milner et al.
@ formalism devised by Dana Scott in 1969

@ intended to reason about recursively defined
functions

@ intended for computer science applications

@ strengths

» powerful simplification mechanism
» support for backward proof

@ limitations

Robin Milner
» proofs need a lot of memory (1934 - 2010)

» fixed, hard-coded set of proof commands

22 /195

LCF - Logic of Computable Functions Il

@ Milner worked on improving LCF in Edinburgh

@ research assistants

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

23 /195

LCF Approach

@ implement an abstract datatype thm to represent theorems

@ semantics of ML ensure that values of type thm can only be created
using its interface

@ interface is very small

> predefined theorems are axioms
» function with result type theorem are inferences

@ —> However you create a theorem, it is valid.

@ together with similar abstract datatypes for types and terms, this
forms the kernel

24 /195

LCF Approach I

Modus Ponens Example

Inference Rule SML function
N'Fa=b Ara val MP : thm -> thm -> thm
FTUAFDb MP(TFa= b)(Ata)=(TUAF b)

@ very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

25 /195

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
e HOL family

HOL theorem prover
HOL Light

HOL Zero

Proof Power

v

v v VvYy

Isabelle
Nuprl
Coq

26 /195

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

@ 1981 Mike Gordon becomes lecturer in Cambridge
@ 1985 Cambridge LCF

» Larry Paulson and Geérard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
> intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

27 /195

Family of HOL

o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

o HOL Light
lean CAML / OCaml port by John Harrison

e HOL Zero
trustworthy proof checker by Mark Adams
o Isabelle
» 1990 by Larry Paulson
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little
» nowadays probably the most widely used
HOL system
» originally designed for software verification

Edinburgh LCF
Cambridge LCF

HOLS88

/ Isabelle/HOL

hol90
ProofPower

HOL Light

hol98 HOL Zero

HOL4

28 /195

Part IV

HOL's Logic

ahy

N ik
EKTHY

VETENSKAP
39 OCH KONST %

) 9

& %X‘% ©

HOL Logic

@ the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

@ this sounds complicated, but is intuitive for SML programmers
@ (S)ML and HOL logic designed to fit each other
@ if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

30 /195

Types

@ SML datatype for types

» Type Variables (’a, «, ’b, 8, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy, ...,0, argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 03 is the type of total functions from o7 to o5.

@ types are never empty in HOL, i.e.
for each type at least one value exists

@ all HOL functions are total

31/195

Terms

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vy vy VvYyy

terms have to be well-typed
same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae

32 /195

Terms Il

HOL term SML expression
0 0

x:’a x:’a

x:bool x:bool

x + 5 x + 5

\x. x +5 fn x => x + 5
(5, T) (5, true)

[5;3;2]++[6] [5,3,2]e[6]

type HOL / SML

num / int

variable of type ’a

variable of type bool

applying function + to x and 5
anonymous (a. k. a. inline) function
of type num -> num

num # bool / int * bool

num list / int list

33/195

Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (¥ <x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and \y. y are alpha-equivalent

Example: x and y are not alpha-equivalent

34 /195

Theorems

@ theorems are of the form I' - p where
» [is a set of hypothesis
» pis the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool
o [p records that using [the statement p has been proved
@ notice difference to logic: there it means can be proved
@ the proof itself is not recorded
@ theorems can only be created through a small interface in the kernel

35 /195

HOL Light Kernel

o the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
= ’a -> ’a -> bool

» @ : (a -> bool) —> ’a

@ there are two predefined types

> bool
> ind

>

@ the meaning of these types and constants is given by inference rules
and axioms

36 /195

HOL Light Inferences |

REFL
lFs=t
Atbt=u
— TRANS
rUAl_S:u
AFu=v
types fit

COMB

lEs=t
x not free in T

ABS
M- x.s=MXx.t

—— BETA
F(Ax. t)x =t

ASSUME
{p}Fp

37 /195

HOL Light Inferences Il

N-p<e A
P9 pEQ,MP
FTUAFgq
MNe=p Al gq

DEDUCT_ANTISYM_RULE

(Mr—{ehu(Aa—-{ph)Fpegq

Flx1, .. xa] Foplx, .-y X
Mt1, ... ta] Fplta, ..., ta]

INST

Moa,...,an| F plaa, ..., an)

INST_TYPE
M-yl byl

38 /195

HOL Light Axioms and Definition Principles

@ 3 axioms needed

ETA_AX | —(Ax. tx)=t
SELECT_AX |—=P x= P((Q)P))
INFINITY_AX predefined type ind is infinite

definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

definition principle for types
> new types can be defined as non-empty subtypes of existing types
@ both principles
> lead to conservative extensions
> preserve consistency

39 /195

HOL Light derived concepts

Everything else is derived from this small kernel.

T
AN

—
v
3

—def
—def
—def
—def
—def

(Ap. p) = (Ap. p)

Apg. (M. fpg)=(\f.fTT)
Apq. (PAq<p)
AP.(P=Mx.T)

AP. (Vq. (Vx. P(x) = q) = q)

40 /195

Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems
@ one does not need to look at the internal implementation

@ therefore, easy to exchange
@ there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

41 /195

HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
> syntax
> type system
> type inference
HOL theorem prover very trustworthy because of LCF approach

> there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction

42 /195

Part V

Basic HOL Usage

ahy

N ik
EKTHY

VETENSKAP
39 OCH KONST %

) 9

& %X‘% ©

HOL Technical Usage Issues

(]

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

vV vy VvYy

@ exercise sheets sometimes
» ask to read some documentation
> provide examples
> list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 /195

mailto:tuerk@kth.se

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

| recommend using PolyML

please use emacs with
> hol-mode
> sml-mode
» hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

45 /195

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

@ HOL is a collection of SML modules
o starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded
» some default modules opened
> an input wrapper to help parsing terms called unquote

@ unquote provides special quotes for terms and types

» implemented as input filter

> ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]

» ‘‘“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
@ main interfaces

» emacs (used in the course)

> vim

> bare shell

46 /195

Filenames

@ *Script.sml — HOL proof script file

>

| 3
>
>

script files contain definitions and proof scripts

executing them results in HOL searching and checking proofs
this might take very long

resulting theorems are stored in *Theory.{sml|sig} files

e xTheory.{sml|sig} — HOL theory

>

>

>

auto-generated by corresponding script file
load quickly, because they don't search/check proofs
do not edit theory files

e *Syntax.{sml|sig} — syntax libraries

>

>

contain syntax related functions
i.e. functions to construct and destruct terms and types

e xLib.{sml|sig} — general libraries

e *Simps.{sml|sig} — simplifications

@ selftest.sml — selftest for current directory

47 /195

Directory Structure

@ bin — HOL binaries
@ src — HOL sources
o examples — HOL examples
> interesting projects by various people
» examples owned by their developer
» coding style and level of maintenance differ a lot
@ help — sources for reference manual

» after compilation home of reference HTML page
@ Manual — HOL manuals

» Tutorial

» Description

> Reference (PDF version)
> Interaction

» Quick (cheat pages)

» Style-guide

> L.

48 /195

Unicode

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

@ | recommend turning Unicode output off initially
» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output

49 /195

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

50 /195

https://hol-theorem-prover.org
mailto:tuerk@kth.se

Part VI

Forward Proofs

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Kernel too detailed

@ we already discussed the HOL Logic

o the kernel itself does not even contain basic logic operators
@ usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

@ let's now look at this more common abstraction level

52 /195

Common Terms and Types
Unicode ASCII

type vars a, B, ... ’a, ’b, ...
type annotated term term:type term:type
true T T

false F F

negation —b ~b

conjunction bl A b2 bl /\ b2
disjunction bl V b2 bl \/ b2
implication bl = b2 Dbl ==> b2
equivalence bl <= b2 bl <=> b2
disequation vl # v2 vl <> v2
all-quantification Vx. P x 'x. P x
existential quantification dx. P x ?7x. P x
Hilbert's choice operator @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

53 /195

Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x
> infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (\x. P x)
@ infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
@ quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y
@ there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2
@ associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /195

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /195

Creating Terms |l

Parser Syntax Funs

““:bool"" mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

R A mk_neg (negation of
mk_var ("b", bool)) Boolean var b

el /N LY mkeconj (L., L) conjunction

oo N/ Lo mkdisj Gol., L) disjunction

Coooe==> .0 mkiimp (..., ...) implication

el = Lo mkeq (..., ...) equation

oLl <= L0 Y mkeq (L., olll) equivalence

L. <> L0 mkneg (mkeq (..., ...)) negated equation

56 /195

Inference Rules for Equality

REFL

Ft=t

lEs=t
x not free in T

M= Ax. s = Ax.t

lFs=t
ArFu=v
types fit

FUAF s(u) =t(v)

MK_COMB

lFs=t
— GSYM
l—t=s
lEs=t
AFt=u
———— TRANS
FTUAFs=u
NlN-p&e AF
peq P B MP
FTUAFgq
BETA

F(Ax. t)x=t

57 /195

Inference Rules for free Variables

M[x1, ..oy xa] Foplx, ..y X
Mt1, ..., ta] F plt1, ..., o]

INST

Maa, ..., an] b plat, ..., an)

INST_TYPE
r[717 .. 7’7!1] F P[’Yl, CIEaE 7fyn]

58 /195

Inference Rules for Implication

-p=g¢g
AFp
—— © MP, MATCH.MP e
FTUAF g p DISCH
r—{g}Fg=p
rFrp=gq EQ_IMP_RULE
TEp— o QMP- Mq—
rFp=gq 9= P ynpiscu
N-g—op ru{qttop
N-p=gq N-p=—F
AFg— p i NOT_INTRO
— T 7" IMP_ANTISYM_RULE ~P
FTUAFp=gq
re-p NOT_ELIM
-p=gq M-p— }
AF-qg=r
IMP_TRANS

TUAF p=—r

59 /195

Inference Rules for Conjunction / Disjunction

"P isn

[A+ R
p qCONJ N-p V q

FTUAFpPp A g

"9 Dbige
F-p A I
P~ 9 conguNcTI F=pVva
MN=p

lpVvag

FEp A AL U{ptEr
#CONJUNCT2 A;UE{H
Fq DISJ_CASES

FTUATUA T

60 /195

Inference Rules for Quantifiers

- p[u/x] EXISTS
M= t free in - o -
P X NOt Tree In GEN I+ Jx. p

N=-vx.p
N-3x. p
[Vx. AU u/x|t = r
rl—[u/)l:] SPEC u not free{[iJrE F/,]A},p and r
P CHOOSE

FTUAETr

61 /195

Forward Proofs

@ axioms and inference rules are used to derive theorems
@ this method is called forward proof

> one starts with basic building blocks
» one moves step by step forward
» finally the theorem one is interested in is derived

@ one can also implement own proof tools

62 /195

Forward Proofs — Example |

Let's prove Vp. p = p.

val IMP_REFL_THM = let

val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term

val thml = ASSUME tmil; > val thml = [p] |- p: thm

val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in

GEN tml thm2 > val IMP_REFL_THM =

|- 'p. p ==> p: thm

end
fun IMP_REFL t = > val IMP_REFL =

SPEC t IMP_REFL_THM; fn: term -> thm

63 /195

Forward Proofs — Example Il

Let's

prove VPv. (Ix. (x =v) AP x) < P v.

val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = “‘?x. (x = v) /\ P x°¢

val tm_rhs = mk_comb (tm_P, tm_v);

val

thml = let

val thmla = ASSUME tm_rhs;
val thmlb =

CONJ (REFL tm_v) thmla;

val thmlc =

in

EXISTS (tm_lhs, tm_v) thmlb

DISCH tm_rhs thmlc

end

val thmia = [P v] |- P v: thm
val thmlb =

[Pv] |- (v=v)/\Pv: thm
val thmlc =

[Pv] |I-7x. (x=v) /\Px

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm

64 /195

Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘“(u:’a =v) /\ P u‘*
val thm2b = AP_TERM tm_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a);
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c
in
DISCH tm_lhs thm2d
end

val thm3 = IMP_ANTISYM_RULE thm2 thml

val thm4 = GENL [tm_P, tm_v] thm3

val thm2a
(u=v)

val thm2b
P u <=>

val thm2c
Pv

val thm2d
Pv

val thm2
7x. (x

val thm3

oo

7x. (x =

val thm4
7x. (x

[(w=v) /\NPul |-
/\ P u: thm
[(w=v) /\NPul |-

A

[(w=v) /\NPul |-

[?x. (x = v) /\ P x]

(1

v)

[]
v)

v)

|_
/NP x==>Pyv

|-
/NP x<=>Pv
|- 'P v.

/NP x<=>Pv

65 /195

Part VII

Backward Proofs

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Motivation |

@ let's prove 'A B. A /\ B <=>B /\ A

(* Show |- A /\ B ==>B /\ A %)

val thmia = ASSUME ‘‘A /\ B‘¢;

val thmlb = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmila);
val thmil DISCH ‘A /\ B‘¢ thmlb

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A¢¢;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2

(* Add quantifiers *)
val thm4 = GENL [€‘A:bool‘‘, ‘‘B:bool‘‘] thm3

@ this is how you write down a proof
o for finding a proof it is however often useful to think backwards

67 /195

Motivation |l - thinking backwards

@ we want to prove
» '1AB. A/\B<=>B/\A
@ all-quantifiers can easily be added later, so let's get rid of them
» A /\ B<=>B/\A
@ now we have an equivalence, let's show 2 implications
» A /\B==>B/\A
»B/\NA==>A/\B
@ we have an implication, so we can use the precondition as an
assumption

» using A /\ BshowB /\ A
» A /\B==>B/\A

68 /195

Motivation Il - thinking backwards

@ we have a conjunction as assumption, let's split it

» using A and B show B /\ A
» A /\ B==>B/\A

@ we have to show a conjunction, so let's show both parts
» using A and B show B
» using A and B show A
» A /\ B==>B/\A
@ the first two proof obligations are trivial
» A /\B==>B/\A
o .

@ we are done

69 /195

Motivation IV

@ common practise

» think backwards to find proof
» write found proof down in forward style

@ often switch between backward and forward style within a proof
Example: induction proof
» backward step: induct on ...
» forward steps: prove base case and induction case
@ whether to use forward or backward proofs depend on
» support by the interactive theorem prover you use
* HOL 4 and close family: emphasis on backward proof
* Isabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof
» your way of thinking
> the theorem you try to prove

70 /195

HOL Implementation of Backward Proofs

e in HOL

» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
@ backward proofs are implemented by tactics in HOL

» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems

@ to understand backward proofs in HOL we need to look at

» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

71/195

Goals

@ goals represent proof obligations, i.e. theorems we need /want to prove

@ the SML type goal is an abbreviation for term list * term

@ the goal ([asm_1,
prove the theorem {asm 1,

Example Goals

Goal

([((A((, ((B({]’ ((A /\ B(()
([((B((’ ((A((]’ ((A /\ B(()
([((B /\ A((]’ ttA /\ Btt)

({1,

““B/\A) ==> (A /\B))

Theorem

{A, B} I-A/\B
{A, B} I-A/\'B
{B /\ A} |- A/\B

|- (B /\ A) ==> (A /\ B)

., asmn], c) records that we need/want to
., asmn} |- ¢

v

72 /195

Tactics

@ the SML type tactic is an abbreviation for

the type goal -> goal list * validation
@ validation is an abbreviation for thm list -> thm
@ given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

@ special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid

73 /195

Tactic Example — CONJ_TAC

t =conjl /\ conj2

MN=p AlFg asl F conj1 asl F conj2
CONJ
FTUAFpPp A g aslF t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t
in

([(asl, conj1), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 /195

Tactic Example — EQ_TAC

t = 1lhs = rhs
asl 1hs ==> rhs

N-p=—=gq
AF-qg=1p asl F rhs ==> lhs
—— IMP_ANTISYM_RULE
FTUAFp=gq aslkF t

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs) = dest_eq t
in
([(asl, mk_imp (1lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thi th2
| => raise Match)

end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 /195

proofManagerLib / goalStack

@ the proofManagerLib keeps track of open goals

@ it uses goalStack internally
@ important commands
» g — set up new goal
» e — expand a tactic
> p — print the current status
> top_thm — get the proved thm at the end

76 /195

Tactic Proof Example |

Previous Goalstack

User Action
g ‘'AB. A/\ B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\NB<=>B/\A

: proof

u]
o)
I

i
it

77/195

Tactic Proof Example Il

Previous Goalstack
Initial goal:

1A B. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\B<=>B/\A

: proof

v

78 /195

Tactic Proof Example Il {i;n?g

Previous Goalstack
A /\B<=>B/\A

: proof

User Action
e EQ_TAC,;

New Goalstack
B/\ A==>A/\B

A/\NB==>B/\A

: proof

79/195

Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack
B /\ A

80 /195

Tactic Proof Example V

Previous Goalstack
B /\ A

0. A
1. B

User Action
e CONJ_TAC;

New Goalstack

0. A

1. B
B

0. A

1. B

81,195

Tactic Proof Example VI

Previous Goalstack

A

0 A

1 B
B

0 A

1 B

4

User Action

e (ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B/\A==>4/\B

: proof

v

82/195

Tactic Proof Example VII

Previous Goalstack
B /\ A ==>4 /\B

: proof

User Action

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

New Goalstack

Initial goal proved.
|- 'AB. A/\ B <=>B/\A:
proof

D Q>

83/195

Tactic Proof Example VIII gf

Previous Goalstack

Initial goal proved.
|- 'AB. A/\ B<=>B/\ A:
proof

User Action
val thm = top_thm();

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

u]
o)
I
i
it

Qe

84195

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A¢‘,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢‘A:bool‘‘)
1,

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm

85/195

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!'A B. A /\ B <=>B /\ A‘‘,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
));

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm

86 /195

Summary Backward Proofs

@ in HOL most user-level proofs are tactic-based

» automation often written in forward style
> low-level, basic proofs written in forward style
> nearly everything else is written in backward (tactic) style

@ there are many different tactics

@ in the lecture only the most basic ones will be discussed
@ you need to learn about tactics on your own

» good starting point: Quick manual
> learning finer points takes a lot of time
> exercises require you to read up on tactics

@ often there are many ways to prove a statement, which tactics to use
depends on
» personal way of thinking
» personal style and preferences
» maintainability, clarity, elegance, robustness
>

87 /195

Part VIII

Basic Tactics

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Syntax of Tactics in HOL

@ originally tactics were written all in capital letters with underscores
Example: ALL_TAC

@ since 2010 more and more tactics have overloaded lower-case syntax
Example: all _tac

@ sometimes, the lower-case version is shortened
Example: REPEAT, rpt

@ sometimes, there is special syntax
Example: THEN, \\, >>
@ which one to use is mostly a matter of personal taste
all-capital names are hard to read and type
however, not for all tactics there are lower-case versions

>
» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

v

In the lecture we will use mostly the old-style names.

89 /195

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal

90 /195

Tacticals

@ tacticals are SML functions that combine tactics to form new tactics
@ common workflow

» develop large tactic interactively

» using goalStack and editor support to execute tactics one by one
» combine tactics manually with tacticals to create larger tactics

» finally end up with one large tactic that solves your goal

> use prove or store_thm instead of goalStack

@ make sure to clearly mark proof structure by e. g.

> use indentation

> use parentheses

> Uuse appropriate connectives
>

@ goalStack commands like e or g should not appear in your final proof

91 /195

Some Basic Tacticals

tacl >> tac?

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

applies tactics in sequence

applies list of tactics to subgoals
applies tac2 to the first subgoal of tacl
repeats tac until it fails

apply tac n times

reverses the order of subgoals

applies tacl only if tac2 fails

do nothing if tac fails

do nothing

fail

92 /195

Basic Rewrite Tactics

@ (equational) rewriting is at the core of HOL's automation

o we will discuss it in detail later
@ details complex, but basic usage is straightforward
> given a theorem rewr_thm of form |- P x = Q xand aterm t
> rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint
@ warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms rewrite goal using equations found
in given list of theorems

ASM_REWRITE_TAC thms in addition use assumptions

ONCE_REWRITE_TAC thms rewrite once in goal using equations

ONCE_ASM REWRITE TAC thms rewrite once using assumptions

93 /195

Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term
induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

94 /195

Assumption Tactics

POP_ASSUM thm-tac use and remove first assumption
common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac use (and remove) first
also PAT_X_ASSUM term thm-tac assumption matching pattern

WEAKEN_TAC term-pred removes first assumption
satisfying predicate

95 /195

Decision Procedure Tactics

@ decision procedures try to solve the current goal completely
@ they either succeed of fail
@ no partial progress

@ decision procedures vital for automation

TAUT_TAC propositional logic tautology checker
DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover
numLib.ARITH_TAC Presburger arithmetic
intLib.ARITH.TAC uses Omega test

96 /195

Subgoal Tactics

@ it is vital to structure your proofs well
» improved maintainability
» improved readability
» improved reusability
> saves time in medium-run

o therefore, use many small lemmata

@ also, use many explicit subgoals

‘term-frag’ by tac show term with tac and

add it to assumptions
‘term-frag’ sufficies by tac show it sufficies to prove term

97 /195

Term Fragments / Term Quotations

notice that by and sufficies_ by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal
this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments

98 /195

Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals
similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /195

Tactical Proof - Example | - Slide 1

@ we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

@ at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,

Actions
@ rung ‘‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢
@ this is done by hol-mode

@ move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

100 /195

Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

@ the outermost connective is an all-quantor
@ let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€11, LENGTH (1 ++ 1) = 2 * LENGTH 1°¢,
GEN_TAC

Actions
@ run e GEN_TAC
@ this is done by hol-mode

@ mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

v

101 /195

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ LENGTH of APPEND can be simplified

@ let’s search an appropriate lemma with DB.match

Actions
@ run DB.printmatch [] ¢‘LENGTH (_ ++)¢
@ this is done via hol-mode

@ press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

@ this finds the theorem listTheory.LENGTH APPEND
|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

102 /195

Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€€11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ connect the new tactic with tactical >> (THEN)

@ use hol-mode to expand the new tactic

103 /195

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 *x LENGTH 1

@ let's search a theorem for simplifying 2 * LENGTH 1
@ prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ DB.match finds theorem arithmeticTheory.TIMES2

@ press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

v

104 /195

Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

@ extend the previous rewrite tactic
@ finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
@ add TIMES?2 to the list of theorems used by rewrite tactic

@ use hol-mode to expand the extended rewrite tactic

@ goal is solved, so let's add closing parenthesis and semicolon

v

105 /195

Tactical Proof - Example | - Slide 7

@ we have a finished tactic proving our goal
@ notice that GEN_TAC is not needed
@ let's polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

106 /195

Tactical Proof - Example Il - Slide 1

let’'s prove something slightly more complicated

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

@ at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (%2 <= x3) /\ x3 <= SUC x1) ==>
“(ALL_DISTINCT (11 ++ 12 ++ 13))°‘¢,

107 /195

Tactical Proof - Example Il - Slide 2

Current Goal

Ix1l x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13)) ‘¢,

REPEAT STRIP_TAC

108 /195

Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REPEAT STRIP_TAC

Actions
@ add REPEAT STRIP_TAC to proof script

@ expand this tactic using hol-mode

v

109 /195

Tactical Proof - Example Il - Slide 3

Current Goal

0. MEM x1 11
1. MEM x2 12
2. MEM x3 13
3 x1 <= x2

x2 <= x3
x3 <= SUC x1
ALL_DISTINCT (11 ++ 12 ++ 13)

@ oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions

@ undo REPEAT STRIP_TAC (M-h b)

@ expand more fine-tuned strip tactic

v

110 /195

Tactical Proof - Example Il - Slide 4

Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
@ now let's simplify ALL_DISTINCT

@ search suitable theorems with DB.match

@ use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[1listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]

111 /195

Tactical Proof - Example Il - Slide 5

Current Goal

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ '!e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

@ from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
@ let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...<¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC

112 /195

Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ l'e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1
3. x1 <= x2 6b. x2 = x3

@ both goals are easily solved by first-order reasoning
@ let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_TAC[]
));

113 /195

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
““1x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==

~“(ALL_DISTINCT (11 ++ 12 ++ 13))°°,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS_TAC[]
)

@ notice that proof structure is explicit

@ parentheses and indentation used to mark new subgoals

114 /195

Part IX

Induction Proofs

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Mathematical Induction

@ mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

@ HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==> !n. Pn

@ Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

@ there are many similarish induction theorems in HOL

@ Example: complete induction principle

|- 'P. (In. (!m. m <n==>Pm) ==>Pn) ==> In. Pn

116 /195

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- 'p. P [0 /\ (1t. Pt ==> th. P (h::t)) ==> !1. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

117 /195

Other Induction Theorems

@ there are many induction theorems in HOL

» datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
> recursive relation definitions give rise to induction theorems

» many are manually defined

@ Examples
[-'P. P[] /\ (11. P1==>1!x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P £

[-p. P {} /\

(!'s. FINITE s /\ P s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!'s. FINITE s ==> P s

|- P. (!lxy.Rxy==>Pxy) /\(Uxyz. Pxy/\Pyz-==>Pxz) ==>

lwuv. Rftuv==>Puv

118 /195

Induction (and Case-Split) Tactics

@ the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

@ this is usually what one needs

@ other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

@ similarish Cases_on picks and applies default case-split theorems

119 /195

Induction Proof - Example | - Slide 1

@ let’s prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct

120 /195

Induction Proof - Example | - Slide 2

@ the induction tactic produced two cases

@ base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

@ induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D

121 /195

Induction Proof - Example Il - Slide 2

@ let's prove via induction
1. REVERSE (REVERSE 1) =1

@ we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct

122 /195

Induction Proof - Example Il - Slide 2

@ the induction tactic produced two cases

@ base case:
REVERSE (REVERSE [1) = []

@ induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) =1

@ again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°¢¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D

123 /195

Part X

Basic Definitions

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

& %‘X‘% 1

Definitional Extensions

@ there are conservative definition principles for types and constants

@ conservative means that all theorems that can be proved in extended
theory can also be proved in original one

@ however, such extensions make the theory more comfortable
@ definitions introduce no new inconsistencies

o the HOL community has a very strong tradition of a purely
definitional approach

125 /195

Axiomatic Extensions

(]

e 6 6 o o

axioms are a different approach

they allow postulating arbitrary properties, i.e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies
in HOL axioms are very rarely needed

using definitions is often considered more elegant
it is hard to keep track of axioms

use axioms only if you really know what you are doing

126 /195

Oracles

e 6 6 o6 o

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

you might want to use an external automated prover
this external tool acts as an oracle

> it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 /195

Oracles Il

@ Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast _proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

vV vy vy VvYyy

@ cheating via e. g. the cheat tactic means skipping proofs
@ it can be helpful during proof development

v

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

@ cheats should be removed reasonable quickly
@ HOL warns about cheats and skipped proofs

128 /195

Pitfalls of Definitional Approach

definitions can't introduce new inconsistencies

they force you to state all assumed properties at one location
however, you still need to be careful

Is your definition really expressing what you had in mind ?
Does your formalisation correspond to the real world artefact ?

How can you convince others that this is the case ?

we will discuss methods to deal with this later in this course

» formal sanity

» conformance testing

» code review

» comments, good names, clear coding style
>

this is highly complex and needs a lot of effort in general

129 /195

Specifications

@ HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and 0DD

> EVEN_ODD_EXISTS
val it = |- ?even odd. even O /\ “odd 0 /\ (!n. even (SUC n) <=> odd n) /\
('n. odd (SUC n) <=> even n)

> val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EO_SPEC = |- EVEN O /\ ~0DD O /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n))

@ new_specification is a convenience wrapper
> it uses existential quantification instead of Hilbert's choice

» deals with pair syntax
> stores resulting definitions in theory

@ new_specification captures the underlying principle nicely

130 /195

Definitions

@ special case: new constant defined by equality

Specification with Equality

> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- 'n. double n =n + n

@ there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n

131 /195

Restrictions for Definitions

@ all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. new.definition (..., ““Fn =n + n‘) fails
» m is free on rhs

@ all type variables occurring on rhs need to occur on lhs

» e.g. new definition ("IS_FIN_TY",
‘IS FIN.TY = FINITE (UNIV : ’a set)‘‘) fails
IS_FIN_TY would lead to inconsistency
|- FINITE (UNIV : bool set)
|- ~FINITE (UNIV : num set)
T <=> FINITE (UNIV:bool set) <=>
IS_FIN_TY <=>
FINITE (UNIV:num set) <=> F
» therefore, such definitions can't be allowed

vV vy VvVYyy

132 /195

Underspecified Functions

function specification do not need to define the function precisely
multiple different functions satisfying one spec are possible
functions resulting from such specs are called underspecified
underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions

functions like e. g. HD and TL are total
they are defined for empty lists
however, is is not specified, which value they have for empty lists
only known: HD [1 = HD [] and TL [] = TL []
val MY_HD_EXISTS = prove (‘‘?hd. !'x xs. (hd (x::xs) =x)¢‘, ...);
val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

v vy VvYy

133 /195

Primitive Type Definitions

HOL allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty
ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex—-thm of form 7e. P e is needed

new_type_definition (op-name, ex-thm) then introduces a new
type op-name specified by P

134 /195

Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates
predicate ALL_ DISTINCT : ’a list -> bool is used to define it
easy to prove theorem dlist_exists: |- 71. ALL_DISTINCT 1

val dlist_TY DEF = new_type_definitions("dlist",
dlist_exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).
TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
> rep is injective
> a list satisfies ALL_DISTINCT iff there is a corresponding dlist

135/195

Primitive Type Definitions - Example 2

@ define new_type_bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=d1ist_TY_DEF}

val it =
|- ('a. abs_dlist (rep_dlist a) = a) /\
(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

@ other useful theorems can be automatically proved by

» prove_abs_fn_one_one
» prove_abs_fn_onto
» prove_rep_fn_one_one
» prove_rep_fn_onto

136 /195

Primitive Definition Principles Summary

@ primitive definition principles are easily explained
@ they lead to conservative extensions
@ however, they are cumbersome to use

@ LCF approach allows implementing more convenient definition tools

» Datatype package

» TFL (Terminating Functional Programs) package
» IndDef (Inductive Definition) package

» quotientLib Quotient Types Library

>

137 /195

Functional Programming

the Datatype package allows to define datatypes conveniently
the TFL package allows to define (mutually recursive) functions

o

o

@ the EVAL conversion allows evaluating those definitions

@ this gives many HOL developments the feeling of a functional program
o

there is really a close connection between functional programming an
definitions in HOL
» functional programming design principles apply
» EVAL is a great way to test quickly, whether your definitions are
working as intended

138 /195

Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist®
val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))°¢
Definition has been stored under "mylen_def"
val it =
|- (mylen E = 0) /\ 'x xs. mylen (L x xs) = SUC (mylen xs):
thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*¢
val it =
|- mylen (L 2 (L 3 (L 1E))) =3:
thm

139 /195

Datatype Package

@ the Datatype package allows to define SML style datatypes easily
@ there is support for

> algebraic datatypes

> record types

» mutually recursive types

>
@ many constants are automatically introduced

> constructors

> case-split constant

» size function

» field-update and accessor functions for records
| 3

@ many theorems are derived and stored in current theory

» injectivity and distinctness of constructors

» nchotomy and structural induction theorems

> rewrites for case-split, size and record update functions
>

140 /195

Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a
| Node btree ’b btree

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btree®

141 /195

Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 'a2 al a0 a. Leaf a <> Node a0 al a2

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
('a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (al = a1’) /\ (a2 = a2’))

btree nchotomy

|- 'bb. (7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. ('a. P (Leaf a)) /\

(!'b b0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
'b. P b

142 /195

Datatype Package - Example | - Derived Theorems 2

btree_size_def

|- ('f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2)))

bbtree_case_def

|- (la f f1. btree_CASE (Leaf a) f f1 = f a) /\
('a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)

btree_case_cong

|- M M> £ f1.
M =M) /\ (ta. (M’ = Leaf a) ==> (f a = £’ a)) /\
(a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1°)

143 /195

Datatype Package - Example Il ﬁ‘@i

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

u]
o)
I

i
it

144 /195

Datatype Package - Example Il - Derived Theorems

my_enum_nchotomy
|- 'P. PEL /\PE2/\PE3==>1!a Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my_enum2num_num2my_enum

|- 'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

145 /195

Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }

Record type in HOL

Datatype ‘rgb = <| r : num; g : num; b : num |[>¢

146 /195

Datatype Package - Example Ill - Derived Theorems

rgb_component_equality

|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (rl.g = r2.g) /\ (rl.b = r2.b)

rgb_nchotomy

|- 'rr. ?n n0 nl. rr = rgb n n0 nl

rgb_r_fupd

|- 'f n n0 nl. rgb n n0 nl with r updated_by f = rgb (f n) n0 ni

rgb_updates_eq_literal

|- 'r n1 nO n.
r with <|r :=nl; g := n0; b := n|> = <|r :=nl; g := n0; b

:= n|>

147 /195

Datatype Package - Example IV

@ nested record types are not allowed
@ however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}

et

Not Supported Nested Record Type Example in HOL

Datatype ‘file = Text string
| Dir <| owner : string ;
files : (string # file) list [>¢

Filesystem Datatype - Mutual Recursion in HOL

Datatype ‘file = Text string
| Dir directory
directory = <| owner : string ;
files : (string # file) list [>¢

v

148 /195

Datatype Package - No support for Co-Algebraic Typesfg}“ﬂ:

et

@ there is no support for co-algebraic types
@ the Datatype package could be extended to do so

@ other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))

149 /195

Datatype Package - Discussion

Datatype package allows to define many useful datatypes

@ however, there are many limitations

> some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

> there are bugs (currently e. g. some trouble with certain mutually
recursive definitions)

@ biggest restrictions in practice (in my opinion and my line of work)
» no support for co-algebraic datatypes
> no nested record datatypes
@ depending on datatype, different sets of useful lemmata are derived
@ most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
> there is support for pattern matching

150 /195

TFL package

TFL package implements support for terminating functional definitions
Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL

151 /195

Well-Founded Relations

@ arelationR : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

@ Example: $< : num -> num -> bool is well-founded

e if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

@ this is the essence of termination proofs

152 /195

Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

@ this recursion principle is called WFREC in HOL
@ idea of WFREC

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

153 /195

Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define ‘DOUBLE n = n + n‘
val DOUBLE_def =

|- !'n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ¢(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢

val MY_LENGTH_def =
|- (MY_LENGTH []
thm

0) /\ 'x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ¢(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys
val MY_APPEND_def =
|- ('ys. MY_APPEND [] ys = ys) /\

= x :: (MY_APPEND xs ys)) ¢

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm

154 /195

Define discussion

Define feels like a function definition in HOL
it can be used to define "terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define sometimes hard to predict

the input descriptions are only hints

the produced function and the definitional theorem might be different
> in simple examples, quantifiers added

> pattern compilation takes place

» earlier “conjuncts” have precedence

v

155 /195

Define - More Examples

([
ke

> val MY_HD_def = Define ‘MY_HD (x :: xs)
val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\
(IS_SORTED _ = T)°
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN O = T) /\ (ODD O = F) /\
(EVEN (SUC n) = 0DD n) /\ (ODD (SUC n) = EVEN n) ¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zip _ _ = [1)¢
val ZIP_def =
|- ('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(tvi. zIP [1 vi = [1) /\ (!v4 v3. ZIP (v3::v4) [1 = [1) : thm

156 /195

Primitive Definitions

@ Define introduces (if needed) the function using WFREC
@ intended definition derived as a theorem
@ the theorems are stored in current theory

@ usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.

case a of
[1=>1IT
| [x11 => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- 'R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- 'f R x. RESTRICT £ R x = (\y. if R y x then f y else ARB)

157 /195

Induction Theorems

@ Define automatically defines induction theorems
@ these theorems are stored in current theory with suffix ind
@ use DB.fetch "-" "something_ind" to retrieve them

@ these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [1 /\
(tv. P [v])) ==>
'v. P v

158 /195

Define failing

@ Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

> there is a bug :-)

@ termination is an important concept for Define
@ it is easy to misunderstand termination in the context of HOL

@ we need to understand what is meant by termination

159 /195

Termination in HOL

@ in SML it is natural to talk about termination of functions
@ in the HOL logic there is no concept of execution

@ thus, there is no concept of termination in HOL

3 characterisations of a function £ : num -> num

|- 'n. £fn=0

|- (£ 0=0) /\ !n. (f (SUC n) = f n)

|- (£ 0=0) /\ 'n. (£ n=£ (SUC n))

Is £ terminating? All 3 theorems are equivalent.

160 /195

Termination in HOL I

@ it is useful to think in terms of termination

@ the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
@ the required well-founded relation corresponds to a termination proof

@ therefore, it is very natural to think of Define searching a
termination proof

@ important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

161 /195

Termination in HOL Il

ot
@ one can define "non-terminating” functions in HOL

@ however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions

A function £ : num -> num with the following property cannot be defined in HOL unless HOL
has an inconsistancy:

'In. fn=((fn + 1)

Such a function would allow to prove 0 = 1.
v

162 /195

Manual Termination Proofs |

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually
the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- 1 (f:’a -> num) x y. measure f x y <=> (f x < f y)

all measures are well-founded: |- 'f. WF (measure f)

@ moreover, existing well-founded relations can be combined

> lexicographic order LEX

> list lexicographic order LLEX
-

163 /195

Manual Termination Proofs Il

if Define fails to find a termination proof, Hol_defn can be used
Hol _defn defers termination proofs

it derives termination conditions and sets up the function definitions
all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

Defn.tprove and Defn.tgoal are intended for this
proofs usually start by providing relation via tactic WF_REL_TAC

164 /195

Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))‘

val gsort_defn = HOL function definition (recursive)

Equation(s)
[...] |- gsort ord [1 = []
[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)
Induction :

Termination conditions :
0. !'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. 'rst x ord. R (ord,FILTER (($~ o ord) x) rst) (ord,x::rst)
2. WF R

165 /195

Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\

(!'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

166 /195

Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\
('rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)°¢)

1 subgoal :

('rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

166 /195

Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,
WF_REL_TAC ‘measure (\(., 1). LENGTH 1)) >> ...)

val gsort_def =

|- (gsort ord [1 = [1) /\
(gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst))

val gsort_ind =
|- 'P. (lord. P ord [1) /\
(lord x rst.
P ord (FILTER (ord x) rst) /\
P ord (FILTER ($~ o ord x) rst) ==
P ord (x::rst)) ==
'v vi. Pv vl

167 /195

Part XI

Good Definitions

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS

Importance of Good Definitions

@ using good definitions is very important

» good definitions are vital for clarity
» proofs depend a lot on the form of definitions

unluckily, it is hard to state what a good definition is

even harder to come up with good definitions

let's look at it a bit closer anyhow

169 /195

Importance of Good Definitions — Clarity |

@ HOL guarantees that theorems do indeed hold

@ However, does the theorem mean what you think it does?
@ you can separate your development in

» main theorems you care for
» auxiliary stuff used to derive your main theorems

@ it is essential to understand your main theorems

170 /195

Importance of Good Definitions — Clarity |l

Guarded by HOL Manual review needed for
@ proofs checked @ meaning of main theorems
@ internal, technical definitions @ meaning of definitions used

@ technical lemmata by main theorems

@ meaning of types used by
’ main theorems

@ proof tools

171 /195

Importance of Good Definitions — Clarity Il

@ it is essential to understand your main theorems
» you need to understand all the definitions directly used
» you need to understand the indirectly used ones as well
» you need to convince others that you express the intended statement
> therefore, it is vital to use very simple, clear definitions
@ defining concepts is often the main development task
@ checking resulting model against real aritifact is vital
> testing via e.g. EVAL
» formal sanity
» conformance testing
@ wrong models are main source of error when using HOL
@ proofs, auxiliary lemmata and auxiliary definitions

> can be as technical and complicated as you like
» correctness is guaranteed by HOL
> reviewers don't need to care

172 /195

Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainability

o

o

@ they can improve automation drastically

@ unluckily for proofs definitions often need to be technical
o

this contradicts clarity aims

173 /195

How to come up with good definitions

@ unluckily, it is hard to state what a good definition is

@ it is even harder to come up with them
> there are often many competing interests
> a lot of experience and detailed tool knowledge is needed
» much depends on personal style and taste

@ general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

* one very close to your favourite textbook

* one nice for certain types of proofs

* another one good for evaluation
* L.

@ lessons from functional programming apply

174 /195

Good Definitions in Functional Programming

Objectives
o clarity (readability, maintainability)

e performance (runtime speed, memory usage, ...)

General Advice
@ use the powerful type-system
@ use many small function definitions

@ encode invariants in types and function signatures

175 /195

Good Definitions — no number encodings

@ many programmers familiar with C encode everything as a number o
@ enumeration types are very cheap in SML and HOL
@ use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER®;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) ;

val list_compare_def = Define ¢

(list_compare cmp [1 [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(* x<y *) LESS
(x x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) ¢;

v

176 /195

Good Definitions — Isomorphic Types

@ the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

@ even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val
val

_ = Datatype ‘vaddr = VAddr num‘;
_ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ¢
virt_to_phys_addr (VAddr a) = PAddr(translation of a)‘;

177 /195

Good Definitions — Record Types |

@ often people use tuples where records would be more appropriate
@ using large tuples quickly becomes awkward
> it is easy to mix up order of tuple entries
* often types coincide, so type-checker does not help
» no good error messages for tuples

* hard to decipher type mismatch messages for long product types
* hard to figure out which entry is missing at which position

* non-local error messages

* variable in last entry can hide missing entries

@ records sometimes require slightly more proof effort

@ however, records have many benefits

178 /195

Good Definitions — Record Types I

@ using records

» introduces field names
» provides automatically defined accessor and update functions
> leads to better type-checking error messages

@ records improve readability

» accessors and update functions lead to shorter code
» field names act as documentation

@ records improve maintainability

> improved error messages
» much easier to add extra fields

179 /195

Good Definitions — Encoding Invariants

@ try to encode as many invariants as possible in the types
@ this allows the type-checker to ensure them for you
@ you don't have to check them manually any more

@ your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,
server : inet_address,
last_ping_time : time option,
last_ping_id : int option,
session_id : string option,
when_initiated : time option,
when_disconnected : time option
}
v

180 /195

Good Definitions — Encoding Invariants Il

Network Connections (Example by Yaron Minsky from Jane Street) Il

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

181 /195

Good Definitions in HOL

Objectives
o clarity (readability)
@ good for proofs

@ performance (good for automation, easily evaluatable, ...)

General Advice
@ same advice as for functional programming applies
@ use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

@ tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability

v

182 /195

Good Definitions in HOL I

Technical Issues

@ write definition such that they work well with HOL's tools
@ this requires you to know HOL well
@ a lot of experience is required

@ general advice

avoid explicit case-expressions
prefer curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zp _ _ = [1)¢

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)
I,)= [O°

val ZIP_BAD2_def = Define ¢(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\
(ZIP _ = [1)°

v

183 /195

Good Definitions in HOL Ill

Multiple Equivalent Definitions

@ satisfy competing requirements by having multiple equivalent
definitions

@ derive them as theorems

@ initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT []1 <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- '1. ALL_DISTINCT 1 <=>
('x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))

|- !1s. ALL_DISTINCT 1ls <=> (CARD (set 1s) = LENGTH 1ls):

184 /195

Formal Sanity

Formal Sanity
@ to ensure correctness test your definitions via e. g. EVAL

@ in HOL testing means symbolic evaluation, i.e. proving lemmata
o formally proving sanity check lemmata is very beneficial
they should express core properties of your definition
thereby they check your intuition against your actual definitions
these lemmata are often useful for following proofs
using them improves robustness and maintainability of your
development

@ | highly recommend using formal sanity checks

185 /195

Formal Sanity Example |

> val ALL_DISTINCT = Define ¢
(ALL_DISTINCT [] = T) /\
(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)°‘;

Example Sanity Check Lemmata

|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
|- !x. ALL_DISTINCT [x]

|- !'x xs. ~(ALL_DISTINCT (x::x::xs))

|- '1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1

|- 'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> ~MEM e 12

186 /195

Formal Sanity Example |l 1

> val ZIP_def = Define ¢
(ZIP [1 ys = [1) /\ (ZIP xs [1 = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (lys. ZIP [1 ys = [1D) /\ (!v3 v2. ZIP (v2::v3) [1 = [1) /\
('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

@ above definition of ZIP looks straightforward
@ small changes cause heuristics to produce different theorems

@ use formal sanity lemmata to compensate

> val ZIP_def = Define ¢
(zip xs [1 = [/\ (ZIP [1 ys = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (Mxs. 2IP xs [1 = [1) /\ (!v3 v2. ZIP [] (v2::v3) = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ysO

187 /195

Formal Sanity Example Il 2

val ZIP_def =

- (tys. ZIP [1 ys = [1) /\ (1v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata

('xs. ZIP xs [1 = [1) /\ (lys. ZIP [] ys = [1) /\
(ly ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
!xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
'x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)
'xsl xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1l ==>
(ZIP (xs1++xs2) (ysl++ys2) = (ZIP xsl ysl ++ ZIP xs2 ys2))

@ in your proofs use sanity lemmata, not original definition
@ this makes your development robust against

» small changes to the definition required later
» changes to Define and its heuristics
» bugs in function definition package

188 /195

Part XII

Deep and Shallow Embeddings

ahy

N ik
EKTHY

VETENSKAP
&9 OCH KONST %%

T

Deep and Shallow Embeddings

often one models some kind of formal language

important design decision: use deep or shallow embedding
@ in a nutshell:

» shallow embeddings just model semantics
> deep embeddings model syntax as well

a shallow embedding directly uses the HOL logic

a deep embedding

> defines a datatype for the syntax of the language
» provides a function to map this syntax to a semantic

190 /195

Example: Embedding of Propositional Logic |

@ propositional logic is

a subset of HOL

@ a shallow embedding is therefore trivial

val
val
val
val
val
val

sh_true_def
sh_var_def
sh_not_def
sh_and_def
sh_or_def
sh_implies_def

= Define

Define
Define

= Define

Define
Define

‘sh_true = T¢;
‘sh_var (v:bool) = v°¢;
‘sh_not b = ~b‘;
‘sh_and bl b2 = (bl /\ b2)¢;
‘sh_or bl b2 = (bl \/ b2)¢;
‘sh_implies bl b2 = (bl ==> b2)°;

191 /195

Example: Embedding of Propositional Logic Il

@ we can also define a datatype for propositional logic
@ this leads to a deep embedding

val _ = Datatype ‘bvar = BVar num‘

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop
| d_and prop prop | d_or prop prop
| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)°

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)°¢

val PROP_SEM_def = Define ¢

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and pl p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or pl p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
a

(PROP_SEM (d_implies pl p2) = (PROP_SEM a pl ==> PROP_SEM a p2))°

192 /195

Shallow vs. Deep Embeddings

Shallow Deep
@ quick and easy to build @ can reason about syntax
@ extensions are simple @ allows verified

implementations
@ sometimes tricky to define
e. g. bound variables

Important Questions for Deciding
@ Do | need to reason about syntax?
@ Do | have hard to define syntax like bound variables?
@ How much time do | have?

193 /195

Example: Embedding of Propositional Logic Ill

@ with deep embedding one can easily formalise syntactic properties like

» Which variables does a propositional formula contain?
» Is a formula in negation-normal-form (NNF)?

@ with shallow embeddings
» syntactic concepts can't be defined in HOL

» however, they can be defined in SML
» no proofs about them possible

val _ = Define °

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) =T) /\
(IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
(IS_NNF (d_and pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_or pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_implies pl p2) = (IS_NNF p1 /\ IS_NNF p2))°

194 /195

Verified vs. Verifying Program

Verified Programs

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

y

Verifying Programs
@ are written in meta-language

@ they produce a separate
proof for each run

@ only certain that current run
has properties

@ allow more flexibility, e. g.
fancy heuristics

@ good pragmatic solution

@ shallow embedding fine

195 /195

	Introduction
	Motivation
	Types of Proofs
	Interactive Theorem Provers

	Organisational Matters
	HOL 4 History and Architecture
	LCF
	History and Family of HOL

	HOL's Logic
	HOL Logic
	Kernel
	HOL Logic Summary

	Basic HOL Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs

	Backward Proofs
	Motivation
	Backward Proofs
	General Discussion

	Basic Tactics
	Basic Tactics
	Examples

	Induction Proofs
	Basic Definitions
	Definitions, Axioms and Oracles
	Primitive Definition Principles
	Functional Programming
	Datatype Definitions
	Recursive Function Definitions

	Good Definitions
	General Discussion
	Functional Programming
	HOL
	Formal Sanity

	Deep and Shallow Embeddings

