Interactive Theorem Proving (ITP) Course
Parts X - XII

Thomas Tuerk (tuerk@kth.se)

v

F,

FKTHS

Academic Year 2016/17, Period 4

version cf844ad of Mon May 15 09:02:18 2017



Part X

Basic Definitions

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

& %‘X‘% 1




Definitional Extensions

@ there are conservative definition principles for types and constants

@ conservative means that all theorems that can be proved in extended
theory can also be proved in original one

@ however, such extensions make the theory more comfortable
@ definitions introduce no new inconsistencies

o the HOL community has a very strong tradition of a purely
definitional approach

125 /195



Axiomatic Extensions

(]

e 6 6 o o

axioms are a different approach

they allow postulating arbitrary properties, i.e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies
in HOL axioms are very rarely needed

using definitions is often considered more elegant
it is hard to keep track of axioms

use axioms only if you really know what you are doing

126 /195



Oracles

e 6 6 o6 o

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

you might want to use an external automated prover
this external tool acts as an oracle

> it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 /195



Oracles Il

@ Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast _proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

vV vy vy VvYyy

@ cheating via e. g. the cheat tactic means skipping proofs
@ it can be helpful during proof development

v

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

@ cheats should be removed reasonable quickly
@ HOL warns about cheats and skipped proofs

128 /195



Pitfalls of Definitional Approach

definitions can't introduce new inconsistencies

they force you to state all assumed properties at one location
however, you still need to be careful

Is your definition really expressing what you had in mind ?
Does your formalisation correspond to the real world artefact ?

How can you convince others that this is the case ?

we will discuss methods to deal with this later in this course

» formal sanity

» conformance testing

» code review

» comments, good names, clear coding style
>

this is highly complex and needs a lot of effort in general

129 /195



Specifications

@ HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and 0DD

> EVEN_ODD_EXISTS
val it = |- ?even odd. even O /\ “odd 0 /\ (!n. even (SUC n) <=> odd n) /\
('n. odd (SUC n) <=> even n)

> val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EO_SPEC = |- EVEN O /\ ~0DD O /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) )

@ new_specification is a convenience wrapper
> it uses existential quantification instead of Hilbert's choice

» deals with pair syntax
> stores resulting definitions in theory

@ new_specification captures the underlying principle nicely

130 /195



Definitions

@ special case: new constant defined by equality

Specification with Equality

> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- 'n. double n =n + n

@ there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n

131 /195



Restrictions for Definitions

@ all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. new.definition (..., ““Fn =n + n‘) fails
» m is free on rhs

@ all type variables occurring on rhs need to occur on lhs

» e.g. new definition ("IS_FIN_TY",
‘IS FIN.TY = FINITE (UNIV : ’a set)‘‘) fails
IS_FIN_TY would lead to inconsistency
|- FINITE (UNIV : bool set)
|- ~FINITE (UNIV : num set)
T <=> FINITE (UNIV:bool set) <=>
IS_FIN_TY <=>
FINITE (UNIV:num set) <=> F
» therefore, such definitions can't be allowed

vV vy VvVYyy

132 /195



Underspecified Functions

function specification do not need to define the function precisely
multiple different functions satisfying one spec are possible
functions resulting from such specs are called underspecified
underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions

functions like e. g. HD and TL are total
they are defined for empty lists
however, is is not specified, which value they have for empty lists
only known: HD [1 = HD [] and TL [] = TL []
val MY_HD_EXISTS = prove (‘‘?hd. !'x xs. (hd (x::xs) =x)¢‘, ...);
val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

v vy VvYy

133 /195



Primitive Type Definitions

HOL allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty
ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex—-thm of form 7e. P e is needed

new_type_definition (op-name, ex-thm) then introduces a new
type op-name specified by P

134 /195



Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates
predicate ALL_ DISTINCT : ’a list -> bool is used to define it
easy to prove theorem dlist_exists: |- 71. ALL_DISTINCT 1

val dlist_TY DEF = new_type_definitions("dlist",
dlist_exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).
TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
> rep is injective
> a list satisfies ALL_DISTINCT iff there is a corresponding dlist

135/195



Primitive Type Definitions - Example 2

@ define new_type_bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=d1ist_TY_DEF}

val it =
|- ('a. abs_dlist (rep_dlist a) = a) /\
(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

@ other useful theorems can be automatically proved by

» prove_abs_fn_one_one
» prove_abs_fn_onto
» prove_rep_fn_one_one
» prove_rep_fn_onto

136 /195



Primitive Definition Principles Summary

@ primitive definition principles are easily explained
@ they lead to conservative extensions
@ however, they are cumbersome to use

@ LCF approach allows implementing more convenient definition tools

» Datatype package

» TFL (Terminating Functional Programs) package
» IndDef (Inductive Definition) package

» quotientLib Quotient Types Library

>

137 /195



Functional Programming

the Datatype package allows to define datatypes conveniently
the TFL package allows to define (mutually recursive) functions

o

o

@ the EVAL conversion allows evaluating those definitions

@ this gives many HOL developments the feeling of a functional program
o

there is really a close connection between functional programming an
definitions in HOL
» functional programming design principles apply
» EVAL is a great way to test quickly, whether your definitions are
working as intended

138 /195



Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist®
val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))°¢
Definition has been stored under "mylen_def"
val it =
|- (mylen E = 0) /\ 'x xs. mylen (L x xs) = SUC (mylen xs):
thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*¢
val it =
|- mylen (L 2 (L 3 (L 1E))) =3:
thm

139 /195



Datatype Package

@ the Datatype package allows to define SML style datatypes easily
@ there is support for

> algebraic datatypes

> record types

» mutually recursive types

>
@ many constants are automatically introduced

> constructors

> case-split constant

» size function

» field-update and accessor functions for records
| 3

@ many theorems are derived and stored in current theory

» injectivity and distinctness of constructors

» nchotomy and structural induction theorems

> rewrites for case-split, size and record update functions
>

140 /195



Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a
| Node btree ’b btree

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btree®

141 /195



Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 'a2 al a0 a. Leaf a <> Node a0 al a2

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
('a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (al = a1’) /\ (a2 = a2’))

btree nchotomy

|- 'bb. (7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. ('a. P (Leaf a)) /\

(!'b b0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
'b. P b

142 /195



Datatype Package - Example | - Derived Theorems 2

btree_size_def

|- ('f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2)))

bbtree_case_def

|- (la f f1. btree_CASE (Leaf a) f f1 = f a) /\
('a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)

btree_case_cong

|- M M> £ f1.
M =M) /\ (ta. (M’ = Leaf a) ==> (f a = £’ a)) /\
(a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1°)

143 /195



Datatype Package - Example Il ﬁ‘@i

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

u]
o)
I

i
it

144 /195



Datatype Package - Example Il - Derived Theorems

my_enum_nchotomy
|- 'P. PEL /\PE2/\PE3==>1!a Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my_enum2num_num2my_enum

|- 'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

145 /195



Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }

Record type in HOL

Datatype ‘rgb = <| r : num; g : num; b : num |[>¢

146 /195



Datatype Package - Example Ill - Derived Theorems

rgb_component_equality

|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (rl.g = r2.g) /\ (rl.b = r2.b)

rgb_nchotomy

|- 'rr. ?n n0 nl. rr = rgb n n0 nl

rgb_r_fupd

|- 'f n n0 nl. rgb n n0 nl with r updated_by f = rgb (f n) n0 ni

rgb_updates_eq_literal

|- 'r n1 nO n.
r with <|r :=nl; g := n0; b := n|> = <|r :=nl; g := n0; b

:= n|>

147 /195



Datatype Package - Example IV

@ nested record types are not allowed
@ however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}

et

Not Supported Nested Record Type Example in HOL

Datatype ‘file = Text string
| Dir <| owner : string ;
files : (string # file) list [>¢

Filesystem Datatype - Mutual Recursion in HOL

Datatype ‘file = Text string
| Dir directory
directory = <| owner : string ;
files : (string # file) list [>¢

v

148 /195



Datatype Package - No support for Co-Algebraic Typesfg}“ﬂ:

et

@ there is no support for co-algebraic types
@ the Datatype package could be extended to do so

@ other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))

149 /195



Datatype Package - Discussion

Datatype package allows to define many useful datatypes

@ however, there are many limitations

> some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

> there are bugs (currently e. g. some trouble with certain mutually
recursive definitions)

@ biggest restrictions in practice (in my opinion and my line of work)
» no support for co-algebraic datatypes
> no nested record datatypes
@ depending on datatype, different sets of useful lemmata are derived
@ most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
> there is support for pattern matching

150 /195



TFL package

TFL package implements support for terminating functional definitions
Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL

151 /195



Well-Founded Relations

@ arelationR : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

@ Example: $< : num -> num -> bool is well-founded

e if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

@ this is the essence of termination proofs

152 /195



Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

@ this recursion principle is called WFREC in HOL
@ idea of WFREC

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

153 /195



Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define ‘DOUBLE n = n + n‘
val DOUBLE_def =

|- !'n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ¢(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢

val MY_LENGTH_def =
|- (MY_LENGTH []
thm

0) /\ 'x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ¢(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys
val MY_APPEND_def =
|- ('ys. MY_APPEND [] ys = ys) /\

= x :: (MY_APPEND xs ys)) ¢

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm

154 /195



Define discussion

Define feels like a function definition in HOL
it can be used to define "terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define sometimes hard to predict

the input descriptions are only hints

the produced function and the definitional theorem might be different
> in simple examples, quantifiers added

> pattern compilation takes place

» earlier “conjuncts” have precedence

v

155 /195



Define - More Examples

([
ke

> val MY_HD_def = Define ‘MY_HD (x :: xs)
val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\
(IS_SORTED _ = T)°
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN O = T) /\ (ODD O = F) /\
(EVEN (SUC n) = 0DD n) /\ (ODD (SUC n) = EVEN n) ¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zip _ _ = [1)¢
val ZIP_def =
|- ('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(tvi. zIP [1 vi = [1) /\ (!v4 v3. ZIP (v3::v4) [1 = [1) : thm

156 /195



Primitive Definitions

@ Define introduces (if needed) the function using WFREC
@ intended definition derived as a theorem
@ the theorems are stored in current theory

@ usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.

case a of
[1=>1IT
| [x11 => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- 'R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- 'f R x. RESTRICT £ R x = (\y. if R y x then f y else ARB)

157 /195



Induction Theorems

@ Define automatically defines induction theorems
@ these theorems are stored in current theory with suffix ind
@ use DB.fetch "-" "something_ind" to retrieve them

@ these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [1 /\
(tv. P [v])) ==>
'v. P v

158 /195



Define failing

@ Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

> there is a bug :-)

@ termination is an important concept for Define
@ it is easy to misunderstand termination in the context of HOL

@ we need to understand what is meant by termination

159 /195



Termination in HOL

@ in SML it is natural to talk about termination of functions
@ in the HOL logic there is no concept of execution

@ thus, there is no concept of termination in HOL

3 characterisations of a function £ : num -> num

|- 'n. £fn=0

|- (£ 0=0) /\ !n. (f (SUC n) = f n)

|- (£ 0=0) /\ 'n. (£ n=£ (SUC n))

Is £ terminating? All 3 theorems are equivalent.

160 /195



Termination in HOL I

@ it is useful to think in terms of termination

@ the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
@ the required well-founded relation corresponds to a termination proof

@ therefore, it is very natural to think of Define searching a
termination proof

@ important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

161 /195



Termination in HOL Il

ot
@ one can define "non-terminating” functions in HOL

@ however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions

A function £ : num -> num with the following property cannot be defined in HOL unless HOL
has an inconsistancy:

'In. fn=((fn + 1)

Such a function would allow to prove 0 = 1.
v

162 /195



Manual Termination Proofs |

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually
the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- 1 (f:’a -> num) x y. measure f x y <=> (f x < f y)

all measures are well-founded: |- 'f. WF (measure f)

@ moreover, existing well-founded relations can be combined

> lexicographic order LEX

> list lexicographic order LLEX
-

163 /195



Manual Termination Proofs Il

if Define fails to find a termination proof, Hol_defn can be used
Hol _defn defers termination proofs

it derives termination conditions and sets up the function definitions
all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

Defn.tprove and Defn.tgoal are intended for this
proofs usually start by providing relation via tactic WF_REL_TAC

164 /195



Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))‘

val gsort_defn = HOL function definition (recursive)

Equation(s)
[...] |- gsort ord [1 = []
[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)
Induction :

Termination conditions :
0. !'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. 'rst x ord. R (ord,FILTER (($~ o ord) x) rst) (ord,x::rst)
2. WF R

165 /195



Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\

(!'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

166 /195



Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\
('rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)°¢)

1 subgoal :

('rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

166 /195



Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,
WF_REL_TAC ‘measure (\(., 1). LENGTH 1)) >> ...)

val gsort_def =

|- (gsort ord [1 = [1) /\
(gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst))

val gsort_ind =
|- 'P. (lord. P ord [1) /\
(lord x rst.
P ord (FILTER (ord x) rst) /\
P ord (FILTER ($~ o ord x) rst) ==
P ord (x::rst)) ==
'v vi. Pv vl

167 /195



Part XI

Good Definitions

by

N k)
£KTHY

VETENSKAP
@8 OCH KONST 2%

) 9

TS




Importance of Good Definitions

@ using good definitions is very important

» good definitions are vital for clarity
» proofs depend a lot on the form of definitions

unluckily, it is hard to state what a good definition is

even harder to come up with good definitions

let's look at it a bit closer anyhow

169 /195



Importance of Good Definitions — Clarity |

@ HOL guarantees that theorems do indeed hold

@ However, does the theorem mean what you think it does?
@ you can separate your development in

» main theorems you care for
» auxiliary stuff used to derive your main theorems

@ it is essential to understand your main theorems

170 /195



Importance of Good Definitions — Clarity |l

Guarded by HOL Manual review needed for
@ proofs checked @ meaning of main theorems
@ internal, technical definitions @ meaning of definitions used

@ technical lemmata by main theorems

@ meaning of types used by
’ main theorems

@ proof tools

171 /195



Importance of Good Definitions — Clarity Il

@ it is essential to understand your main theorems
» you need to understand all the definitions directly used
» you need to understand the indirectly used ones as well
» you need to convince others that you express the intended statement
> therefore, it is vital to use very simple, clear definitions
@ defining concepts is often the main development task
@ checking resulting model against real aritifact is vital
> testing via e.g. EVAL
» formal sanity
» conformance testing
@ wrong models are main source of error when using HOL
@ proofs, auxiliary lemmata and auxiliary definitions

> can be as technical and complicated as you like
» correctness is guaranteed by HOL
> reviewers don't need to care

172 /195



Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainability

o

o

@ they can improve automation drastically

@ unluckily for proofs definitions often need to be technical
o

this contradicts clarity aims

173 /195



How to come up with good definitions

@ unluckily, it is hard to state what a good definition is

@ it is even harder to come up with them
> there are often many competing interests
> a lot of experience and detailed tool knowledge is needed
» much depends on personal style and taste

@ general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

* one very close to your favourite textbook

* one nice for certain types of proofs

* another one good for evaluation
* L.

@ lessons from functional programming apply

174 /195



Good Definitions in Functional Programming

Objectives
o clarity (readability, maintainability)

e performance (runtime speed, memory usage, ...)

General Advice
@ use the powerful type-system
@ use many small function definitions

@ encode invariants in types and function signatures

175 /195



Good Definitions — no number encodings

@ many programmers familiar with C encode everything as a number o
@ enumeration types are very cheap in SML and HOL
@ use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER®;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) ;

val list_compare_def = Define ¢

(list_compare cmp [1 [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(* x<y *) LESS
(x x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) ¢;

v

176 /195



Good Definitions — Isomorphic Types

@ the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

@ even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val
val

_ = Datatype ‘vaddr = VAddr num‘;
_ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ¢
virt_to_phys_addr (VAddr a) = PAddr( translation of a )‘;

177 /195



Good Definitions — Record Types |

@ often people use tuples where records would be more appropriate
@ using large tuples quickly becomes awkward
> it is easy to mix up order of tuple entries
* often types coincide, so type-checker does not help
» no good error messages for tuples

* hard to decipher type mismatch messages for long product types
* hard to figure out which entry is missing at which position

* non-local error messages

* variable in last entry can hide missing entries

@ records sometimes require slightly more proof effort

@ however, records have many benefits

178 /195



Good Definitions — Record Types I

@ using records

» introduces field names
» provides automatically defined accessor and update functions
> leads to better type-checking error messages

@ records improve readability

» accessors and update functions lead to shorter code
» field names act as documentation

@ records improve maintainability

> improved error messages
» much easier to add extra fields

179 /195



Good Definitions — Encoding Invariants

@ try to encode as many invariants as possible in the types
@ this allows the type-checker to ensure them for you
@ you don't have to check them manually any more

@ your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,
server : inet_address,
last_ping_time : time option,
last_ping_id : int option,
session_id : string option,
when_initiated : time option,
when_disconnected : time option
}
v

180 /195



Good Definitions — Encoding Invariants Il

Network Connections (Example by Yaron Minsky from Jane Street) Il

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

181 /195



Good Definitions in HOL

Objectives
o clarity (readability)
@ good for proofs

@ performance (good for automation, easily evaluatable, ...)

General Advice
@ same advice as for functional programming applies
@ use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

@ tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability

v

182 /195



Good Definitions in HOL I

Technical Issues

@ write definition such that they work well with HOL's tools
@ this requires you to know HOL well
@ a lot of experience is required

@ general advice

avoid explicit case-expressions
prefer curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zp _ _ = [1)¢

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)
I, )= [O°

val ZIP_BAD2_def = Define ¢(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\
(ZIP _ = [1)°

v

183 /195



Good Definitions in HOL Ill

Multiple Equivalent Definitions

@ satisfy competing requirements by having multiple equivalent
definitions

@ derive them as theorems

@ initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT []1 <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- '1. ALL_DISTINCT 1 <=>
('x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))

|- !1s. ALL_DISTINCT 1ls <=> (CARD (set 1s) = LENGTH 1ls):

184 /195



Formal Sanity

Formal Sanity
@ to ensure correctness test your definitions via e. g. EVAL

@ in HOL testing means symbolic evaluation, i.e. proving lemmata
o formally proving sanity check lemmata is very beneficial
they should express core properties of your definition
thereby they check your intuition against your actual definitions
these lemmata are often useful for following proofs
using them improves robustness and maintainability of your
development

@ | highly recommend using formal sanity checks

185 /195



Formal Sanity Example |

> val ALL_DISTINCT = Define ¢
(ALL_DISTINCT [] = T) /\
(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)°‘;

Example Sanity Check Lemmata

|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
|- !x. ALL_DISTINCT [x]

|- !'x xs. ~(ALL_DISTINCT (x::x::xs))

|- '1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1

|- 'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> ~MEM e 12

186 /195



Formal Sanity Example |l 1

> val ZIP_def = Define ¢
(ZIP [1 ys = [1) /\ (ZIP xs [1 = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (lys. ZIP [1 ys = [1D) /\ (!v3 v2. ZIP (v2::v3) [1 = [1) /\
('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

@ above definition of ZIP looks straightforward
@ small changes cause heuristics to produce different theorems

@ use formal sanity lemmata to compensate

> val ZIP_def = Define ¢
(zip xs [1 = [ /\ (ZIP [1 ys = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (Mxs. 2IP xs [1 = [1) /\ (!v3 v2. ZIP [] (v2::v3) = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ysO

187 /195



Formal Sanity Example Il 2

val ZIP_def =

- (tys. ZIP [1 ys = [1) /\ (1v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata

('xs. ZIP xs [1 = [1) /\ (lys. ZIP [] ys = [1) /\
(ly ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
!xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
'x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)
'xsl xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1l ==>
(ZIP (xs1++xs2) (ysl++ys2) = (ZIP xsl ysl ++ ZIP xs2 ys2))

@ in your proofs use sanity lemmata, not original definition
@ this makes your development robust against

» small changes to the definition required later
» changes to Define and its heuristics
» bugs in function definition package

188 /195




Part XII

Deep and Shallow Embeddings

ahy

N ik
EKTHY

VETENSKAP
&9 OCH KONST %%

T




Deep and Shallow Embeddings

often one models some kind of formal language

important design decision: use deep or shallow embedding
@ in a nutshell:

» shallow embeddings just model semantics
> deep embeddings model syntax as well

a shallow embedding directly uses the HOL logic

a deep embedding

> defines a datatype for the syntax of the language
» provides a function to map this syntax to a semantic

190 /195



Example: Embedding of Propositional Logic |

@ propositional logic is

a subset of HOL

@ a shallow embedding is therefore trivial

val
val
val
val
val
val

sh_true_def
sh_var_def
sh_not_def
sh_and_def
sh_or_def
sh_implies_def

= Define

Define
Define

= Define

Define
Define

‘sh_true = T¢;
‘sh_var (v:bool) = v°¢;
‘sh_not b = ~b‘;
‘sh_and bl b2 = (bl /\ b2)¢;
‘sh_or bl b2 = (bl \/ b2)¢;
‘sh_implies bl b2 = (bl ==> b2)°;

191 /195



Example: Embedding of Propositional Logic Il

@ we can also define a datatype for propositional logic
@ this leads to a deep embedding

val _ = Datatype ‘bvar = BVar num‘

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop
| d_and prop prop | d_or prop prop
| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)°

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)°¢

val PROP_SEM_def = Define ¢

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and pl p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or pl p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
a

(PROP_SEM (d_implies pl p2) = (PROP_SEM a pl ==> PROP_SEM a p2))°

192 /195



Shallow vs. Deep Embeddings

Shallow Deep
@ quick and easy to build @ can reason about syntax
@ extensions are simple @ allows verified

implementations
@ sometimes tricky to define
e. g. bound variables

Important Questions for Deciding
@ Do | need to reason about syntax?
@ Do | have hard to define syntax like bound variables?
@ How much time do | have?

193 /195



Example: Embedding of Propositional Logic Ill

@ with deep embedding one can easily formalise syntactic properties like

» Which variables does a propositional formula contain?
» Is a formula in negation-normal-form (NNF)?

@ with shallow embeddings
» syntactic concepts can't be defined in HOL

» however, they can be defined in SML
» no proofs about them possible

val _ = Define °

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) =T) /\
(IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
(IS_NNF (d_and pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_or pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_implies pl p2) = (IS_NNF p1 /\ IS_NNF p2))°

194 /195



Verified vs. Verifying Program

Verified Programs

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

y

Verifying Programs
@ are written in meta-language

@ they produce a separate
proof for each run

@ only certain that current run
has properties

@ allow more flexibility, e. g.
fancy heuristics

@ good pragmatic solution

@ shallow embedding fine

195 /195



	Basic Definitions
	Definitions, Axioms and Oracles
	Primitive Definition Principles
	Functional Programming
	Datatype Definitions
	Recursive Function Definitions

	Good Definitions
	General Discussion
	Functional Programming
	HOL
	Formal Sanity

	Deep and Shallow Embeddings

