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Definitional Extensions g,g%’;% Axiomatic Extensions gﬁ%%
e sk

. A . o axioms are a different approach
o there are conservative definition principles for types and constants

o they allow postulating arbitrary properties, i.e. extending the logic

o conservative means that all theorems that can be proved in extended . .
with arbitrary theorems

theory can also be proved in original one

] o this approach might introduce new inconsistencies
o however, such extensions make the theory more comfortable PP &

_ ) ] ] ] o in HOL axioms are very rarely needed
o definitions introduce no new inconsistencies

o using definitions is often considered more elegant
o the HOL community has a very strong tradition of a purely & &

definitional approach o it is hard to keep track of axioms

o use axioms only if you really know what you are doing
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Pitfalls of Definitional Approach g‘%

Oracles {ﬁ“}

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

o you might want to use an external automated prover
this external tool acts as an oracle

» it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 /196

definitions can’t introduce new inconsistencies

they force you to state all assumed properties at one location
however, you still need to be careful

Is your definition really expressing what you had in mind 7

Does your formalisation correspond to the real world artefact 7

o How can you convince others that this is the case 7
o we will discuss methods to deal with this later in this course

formal sanity

conformance testing

code review

comments, good names, clear coding style

vy vy VY VvYyy

this is highly complex and needs a lot of effort in general
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o
Oracles Il {Z “‘}

o Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast_proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

vVVvYy VY VvYy

©

cheating via e. g. the cheat tactic means skipping proofs

©

it can be helpful during proof development

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

v

o

cheats should be removed reasonable quickly

©

HOL warns about cheats and skipped proofs
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Specifications f‘%

o HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and ODD

> EVEN_ODD_EXISTS
val it = |- 7even odd. even O /\ “odd 0 /\ (!n. even (SUC n) <=> odd n) /\
('n. odd (SUC n) <=> even n)

> val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EO_SPEC = |- EVEN O /\ ~0DD O /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n)

o new_specification is a convenience wrapper

» it uses existential quantification instead of Hilbert's choice
» deals with pair syntax
» stores resulting definitions in theory

o new_specification captures the underlying principle nicely
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Definitions {ﬁ“}

o special case: new constant defined by equality

Specification with Equality
> double_EXISTS
val it =
|- ?double. (!'n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- 'n. double n = n + n

o there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n
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Underspecified Functions g‘%

©

function specification do not need to define the function precisely

©

multiple different functions satisfying one spec are possible

©

functions resulting from such specs are called underspecified

©

underspecified functions are still total, one just lacks knowledge
one common application: modelling partial functions
» functions like e. g. HD and TL are total
» they are defined for empty lists
» however, it is not specified, which value they have for empty lists
» only known: HD [] = HD [] and TL [] = TL []

val MY_HD_EXISTS = prove (‘‘?hd.
val MY_HD_SPEC =
new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

©

'x xs. (hd (x::x8) =), ...);
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Restrictions for Definitions %;@E

o all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. newdefinition (..., ‘““Fn =mn+n‘) fails
» mis free on rhs

o all type variables occurring on rhs need to occur on lhs
» e.g. new definition ("IS_FIN_TY",

‘IS FIN.TY = FINITE (UNIV : ’a set)‘‘) fails

» IS_FIN_TY would lead to inconsistency
» |- FINITE (UNIV : bool set)

» |- ~FINITE (UNIV : num set)

>

T <=> FINITE (UNIV:bool set) <=>
IS FIN_TY <=>

FINITE (UNIV:num set) <=> F

» therefore, such definitions can't be allowed

132 /196

Primitive Type Definitions s

o HOL allows introducing non-empty subtypes of existing types

©

a predicate P : ty -> bool describes a subset of an existing type ty

o ty may contain type variables

©

only non-empty types are allowed

©

therefore a non-emptyness proof ex-thm of form 7e. P e is needed

0 new_type_definition (op-name, ex-thm) then introduces a new
type op-name specified by P
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Primitive Type Definitions - Example 1

Primitive Definition Principles Summary

©

©

©

©

lets try to define a type dlist of lists containing no duplicates
predicate ALL_DISTINCT :
easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1

val dlist TY DEF = new_type_definitions("dlist",
dlist_exists) defines a new type ’a dlist and returns a theorem

’a list —> bool is used to define it

|- ?(rep :’a dlist -> ’a list).
TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a >a dlist to the list representing it
» rep is injective
» a list satisfies ALL_DISTINCT iff there is a corresponding dlist
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primitive definition principles are easily explained
they lead to conservative extensions

however, they are cumbersome to use

LCF approach allows implementing more convenient definition tools
Datatype package

TFL (Total Functional Language) package

IndDef (Inductive Definition) package

quotientLib Quotient Types Library

vV VY VY VY
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Primitive Type Definitions - Example 2

Q

Q

Functional Programming

©

©

© ©

define new_type_bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=dlist_TY_DEF}

val it =
|- (a. abs_dlist (rep_dlist a) = a) /\

(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

other useful theorems can be automatically proved by

» prove_abs_fn_one_one
» prove_abs_fn_onto
» prove_rep_fn_one_one
» prove_rep_fn_onto
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the Datatype package allows to define datatypes conveniently
the TFL package allows to define (mutually recursive) functions
the EVAL conversion allows evaluating those definitions

this gives many HOL developments the feeling of a functional program

there is really a close connection between functional programming a
definitions in HOL
» functional programming design principles apply
» EVAL is a great way to test quickly, whether your definitions are
working as intended
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Functional Programming Example {i‘@“}

> Datatype ‘mylist = E | L ’a mylist¢
val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs)) ¢
Definition has been stored under "mylen_def"
val it =
|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs):
thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*¢
val it =
|- mylen (L 2 (L 3 (L 1E))) = 3:
thm
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Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a

| Node btree ’b btree

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree®
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Datatype Package %‘%E
o the Datatype package allows to define SML style datatypes easily
o there is support for
» algebraic datatypes
» record types
» mutually recursive types
>
© many constants are automatically introduced
» constructors
» case-split constant
» size function
» field-update and accessor functions for records
-
o many theorems are derived and stored in current theory
» injectivity and distinctness of constructors
» nchotomy and structural induction theorems
» rewrites for case-split, size and record update functions
>
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Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 'a2 al a0 a. Leaf a <> Node a0 al a2

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
(a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (al = a1’) /\ (a2 = a2’))

btree_ nchotomy
|- !'bb. (7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. (la. P (Leaf a)) /\
('b 0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
b. P b
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Datatype Package - Example | - Derived Theorems 2 %‘%EI}

btree_size_def

|- ('f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2)))

bbtree_case_def

|- (ta f f1. btree_CASE (Leaf a) f f1 = f a) /\
(a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)

btree_case_cong

|- 'M M’ f f1.
™ =M) /\ (la. (M’ = Leaf a) ==> (f a = £’ a)) /\
(a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1°)
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Datatype Package - Example Il - Derived Theorems g‘ﬁﬁg

Sttt

my_enum_nchotomy
|- 'P. PEL /\ PE2/\PE3==>"!a.Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm
|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my_enum2num_num2my_enum

|- 'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)
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Datatype Package - Example Il

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }
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o,

ey

Record type in HOL

Datatype ‘rgb = <| r : num; g : num; b : num |>¢
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Datatype Package - Example Ill - Derived Theorems

rgb_component_equality

|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (rl.g = r2.g) /\ (r1.b = r2.b)

rgb_nchotomy

|- 'rr. ?n n0 nl. rr = rgb n n0 ni

rgb_r_fupd

|- 'f n n0 nl. rgb n n0 nl with r updated_by f = rgb (f n) n0 ni

rgb_updates_eq_literal

|- !'r n1 nO n.

r with <|r := nl; g := n0; b := n|> = <|r :=nl; g := n0; b :
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ks
St
o there is no support for co-algebraic types
o the Datatype package could be extended to do so
o other systems like Isabelle/HOL provide high-level methods for
defining such types
Co-algebraic Type Example in SML — Lazy Lists
datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))
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Datatype Package - Example IV {i‘%ig
o nested record types are not allowed -
o however, mutual recursive types can mitigate this restriction
Filesystem Datatype in SML
datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}
Not Supported Nested Record Type Example in HOL
Datatype ‘file = Text string
| Dir <| owner : string ;
files : (string # file) list |>¢
Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string
| Dir directory
éirectory = <| owner : string ;
files : (string # file) list [|>¢
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Datatype Package - Discussion gﬁ;%&%
Ly

©

Datatype package allows to define many useful datatypes

©

however, there are many limitations

» some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

» there are bugs (currently e.g. some trouble with certain mutually
recursive definitions)

©

biggest restrictions in practice (in my opinion and my line of work)

» no support for co-algebraic datatypes
» no nested record datatypes

©

depending on datatype, different sets of useful lemmata are derived

©

most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
» there is support for pattern matching
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Total Functional Language (TFL) package

©

©

©

©

Well-Founded Recursion

TFL package implements support for terminating functional definitions
Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL
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a well-founded relation R can be used to define recursive functions

this recursion principle is called WFREC in HOL

o idea of WFREC

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user
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Well-Founded Relations

o arelationR :
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

o Example: $< : num -> num -> bool is well-founded

’a —=> ’a -> bool is called well-founded, iff there

o if arguments of recursive calls are smaller according to well-founded

relation, the recursion terminates

o this is the essence of termination proofs
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Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define
val DOUBLE_def =
|- 'n. DOUBLE n = n + n:
thm

‘DOUBLE n = n + nf

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\
(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢
val MY_LENGTH_def =
|- (MY_LENGTH []

thm

0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys)) ¢
val MY_APPEND_def =
|- (lys. MY_APPEND []1 ys = ys) /\
(!'x xs ys. MY_APPEND (x::xs) ys =
thm

x::MY_APPEND xs ys):
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Define discussion {ﬁ“}

o Define feels like a function definition in HOL

o it can be used to define "terminating” recursive functions

o Define is implemented by a large, non-trivial piece of SML code
o it uses many heuristics

o outcome of Define sometimes hard to predict

o the input descriptions are only hints

» the produced function and the definitional theorem might be different
» in simple examples, quantifiers added

» pattern compilation takes place

» earlier “conjuncts” have precedence
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Primitive Definitions g‘%
o Define introduces (if needed) the function using WFREC
o intended definition derived as a theorem
o the theorems are stored in current theory

o usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.

case a of
[=>1IT
| [x1] => 1T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- 'R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- 'f R x. RESTRICT £ R x = (\y. if R y x then f y else ARB)
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Define - More Examples {Z@i;

> val MY_HD_def = Define ‘MY_HD (x :: xs) = x°¢
val MY_HD_def = |- !x xs. MY_HD (x::xs) = : thm

e

> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\
(IS_SORTED _ = T)¢
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ ('v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN O = T) /\ (0ODD O = F) /\
(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n) ‘¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> 0DD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIP _ _ = [1)¢
val ZIP_def =
|- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(!vi. ZIP [1 vi = [1) /\ (!v4 v3. ZIP (v3::v4) [] = [1) : thm
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Induction Theorems

o Define automatically defines induction theorems
o these theorems are stored in current theory with suffix ind
o use DB.fetch "-" "something ind" to retrieve them

o these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [ /\
(lv. P [v])) ==>
'v. Pv
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Define failing {ﬁ“}

o Define might fail for various reasons to define a function
» such a function cannot be defined in HOL
» such a function can be defined, but not via the methods used by TFL
» TFL can define such a function, but its heuristics are too weak and
user guidance is required
» there is a bug :-)

o termination is an important concept for Define

0 it is easy to misunderstand termination in the context of HOL

©

we need to understand what is meant by termination
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Termination in HOL 1l gﬁ%

o it is useful to think in terms of termination

o the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
o the required well-founded relation corresponds to a termination proof

o therefore, it is very natural to think of Define searching a
termination proof

o important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions
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Termination in HOL

o in SML it is natural to talk about termination of functions
o in the HOL logic there is no concept of execution

o thus, there is no concept of termination in HOL

3 characterisations of a function £ : num -> num

|- ln. £n=0
|- (£ 0=0) /\ !'n. (f (SUC n) = f n)
|- (£ 0=0) /\ 'n. (f n =F (SUC n))

Is £ terminating? All 3 theorems are equivalent.

Termination in HOL [l

o one can define "non-terminating” functions in HOL

o however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x
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Execution Order
There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions

A function £ :
has an inconsistancy:

'In. £fn= ((n)+ 1)

Such a function would allow to prove 0 = 1.

num -> num with the following property cannot be defined in HOL unless HOL
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Manual Termination Proofs | {%ﬁ;}

o TFL uses various heuristics to find a well-founded relation

o however, these heuristics may not be strong enough

o in such cases the user can provide a well-founded relation manually
o the most common well-founded relations are measures

o measures map values to natural numbers and use the less relation
|- !'(f:’a -> num) x y. measure f x y <=> (f x < £ y)

o all measures are well-founded: |- !'f. WF (measure f)

o moreover, existing well-founded relations can be combined

» lexicographic order LEX
» list lexicographic order LLEX

> ..
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Manual Termination Proof Example 1 gﬁfb}%
N
> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))°¢
val gsort_defn = HOL function definition (recursive)
Equation(s) :
[...] |- gsort ord [] = []
[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)
Induction : ...
Termination conditions :
0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. !'rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
2. WF R
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Manual Termination Proofs Il {i@i;

o if Define fails to find a termination proof, Hol_defn can be used

o Hol_defn defers termination proofs

o it derives termination conditions and sets up the function definitions
o all results are packaged as a value of type defn

o after calling Hol_defn the defined function(s) can be used

o however, the intended definition theorem has not been derived yet
o to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

o Defn.tprove and Defn.tgoal are intended for this
o proofs usually start by providing relation via tactic WF_REL_TAC
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Manual Termination Proof Example 2 f,ﬁi%

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\

('rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(., 1). LENGTH 1)°¢)

1 subgoal :

('rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...
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Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,

WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)‘) >> ...

val gsort_

|- (gsort
(gsort
gsort
gsort

val gsort_

def =
ord [1 = [1) /\

ord (x::rst) =

ord (FILTER ($~ o ord x) rst) ++ [x] ++
ord (FILTER (ord x) rst))
ind =

|- 'P. (lord. P ord [1) /\
(tord x rst.

'v

P ord (FILTER (ord x) rst) /\

P ord (FILTER ($~ o ord x) rst) ==>
P ord (x::rst)) ==>

vi. P v vl

Importance of Good Definitions

©

>

» proofs depend a lot on the form of definitions

©

©

©

using good definitions is very important

good definitions are vital for clarity

unluckily, it is hard to state what a good definition is
even harder to come up with good definitions

let's look at it a bit closer anyhow
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Importance of Good Definitions — Clarity |

o HOL guarantees that theorems do indeed hold
o However, does the theorem mean what you think it does?

o you can separate your development in

» main theorems you care for
» auxiliary stuff used to derive your main theorems

o it is essential to understand your main theorems
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Importance of Good Definitions — Clarity |l {@T}

KTH

Manual review needed for

Guarded by HOL
o proofs checked © meaning of main theorems
o internal, technical definitions o meaning of definitions used
o technical lemmata by main theorems
o proof tools o meaning of types used by
main theorems
171 /196
Importance of Good Definitions — Proofs g,??}%
Ly
o good definitions can shorten proofs significantly
o they improve maintainability
o they can improve automation drastically
o unluckily for proofs definitions often need to be technical
o this contradicts clarity aims
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Importance of Good Definitions — Clarity IlI {i@i?

o it is essential to understand your main theorems

>

>

>

>

©

©

you need to understand all the definitions directly used

you need to understand the indirectly used ones as well

you need to convince others that you express the intended statement
therefore, it is vital to use very simple, clear definitions

defining concepts is often the main development task
checking resulting model against real artefact is vital

> testing via e.g. EVAL
» formal sanity
» conformance testing

©

©

wrong models are main source of error when using HOL
proofs, auxiliary lemmata and auxiliary definitions

» can be as technical and complicated as you like
» correctness is guaranteed by HOL
» reviewers don't need to care

How to come up with good definitions f‘%
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o unluckily, it is hard to state what a good definition is

o it is even harder to come up with them

>

>

>

there are often many competing interests
a lot of experience and detailed tool knowledge is needed
much depends on personal style and taste

o general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

*
*
*

one very close to your favourite textbook
one nice for certain types of proofs
another one good for evaluation

L

o lessons from functional programming apply
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Good Definitions in Functional Programming {@@?

Objectives
o clarity (readability, maintainability)

o performance (runtime speed, memory usage, ...)

General Advice
o use the powerful type-system

o use many small function definitions

o encode invariants in types and function signatures
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Good Definitions — Isomorphic Types Pty

o the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

o even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val _ = Datatype ‘vaddr = VAddr num‘;
val _ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ¢
virt_to_phys_addr (VAddr a) = PAddr( translation of a )¢;
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Good Definitions — no number encodings g;%;‘}
o many programmers familiar with C encode everything as a number

o enumeration types are very cheap in SML and HOL
o use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER‘;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) ;

val list_compare_def = Define ¢
(list_compare cmp [] [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) =
(* x<y *) LESS
(* x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) °;

compare (cmp (x:’a) y)
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Good Definitions — Record Types | ff%}é
()

o often people use tuples where records would be more appropriate
o using large tuples quickly becomes awkward
» it is easy to mix up order of tuple entries
* often types coincide, so type-checker does not help
» no good error messages for tuples

* hard to decipher type mismatch messages for long product types
* hard to figure out which entry is missing at which position

* non-local error messages

* variable in last entry can hide missing entries

o records sometimes require slightly more proof effort

o however, records have many benefits
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Good Definitions — Record Types Il {ﬁ}

o using records

» introduces field names
» provides automatically defined accessor and update functions
> leads to better type-checking error messages

o records improve readability

» accessors and update functions lead to shorter code
» field names act as documentation

o records improve maintainability

» improved error messages
» much easier to add extra fields
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Good Definitions — Encoding Invariants ||

Network Connections (Example by Yaron Minsky from Jane Street)

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}
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Good Definitions — Encoding Invariants

©

try to encode as many invariants as possible in the types

©

this allows the type-checker to ensure them for you

o you don’t have to check them manually any more

©

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {
state : connection_state,
: inet_address,
: time option,
: int option,
: string option,
: time option,
when_disconnected : time option

server
last_ping_time
last_ping_id
session_id
when_initiated
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Good Definitions in HOL

Objectives
o clarity (readability)
o good for proofs

o performance (good for automation, easily evaluatable, ...)

General Advice
o same advice as for functional programming applies
o use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

o tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability
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Good Definitions in HOL 1l

Technical Issues

o write definition such that they work well with HOL's tools

©

this requires you to know HOL well

©

a lot of experience is required

©

general advice

avoid explicit case-expressions
prefer curried functions

Example

val ZIP_GOOD_def = Define ¢(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

Zip _ _=[D°
val ZIP_BAD1_def =

Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

I, 2 =>[0°¢

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\

(zIp _ = [1)°

Formal Sanity

Formal Sanity
o to ensure correctness test your definitions via e. g. EVAL

o in HOL testing means symbolic evaluation, i.e. proving lemmata
o formally proving sanity check lemmata is very beneficial
they should express core properties of your definition
thereby they check your intuition against your actual definitions
these lemmata are often useful for following proofs

using them improves robustness and maintainability of your
development

o | highly recommend using formal sanity checks
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Good Definitions in HOL Il

Multiple Equivalent Definitions
o satisfy competing requirements by having multiple equivalent
definitions
o derive them as theorems
o initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT [] <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)
|- 11. ALL_DISTINCT 1 <=>
('x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))

|- 11s. ALL_DISTINCT 1s <=> (CARD (set 1ls) = LENGTH 1s):

Formal Sanity Example |

> val ALL_DISTINCT = Define ¢
(ALL_DISTINCT [1 = T) /\
(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)°‘;

Example Sanity Check Lemmata

ALL_DISTINCT []

'x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
ALL_DISTINCT [x]

1x xs. ~(ALL_DISTINCT (x::x::xs))

11. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1

'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> ~MEM e 12

'x.
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Formal Sanity Example I 1

=9

> val ZIP_def = Define ¢
(zip [0 ys = [1) /\ (1P xs [1 = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))°¢

val ZIP_def =
|- C(tys. ZIP [1 ys = [1) /\ ('v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

o above definition of ZIP looks straightforward
o small changes cause heuristics to produce different theorems

o use formal sanity lemmata to compensate
> val ZIP_def = Define °
(ZIP xs [1 = [1) /\ (ZIP [1 ys = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))°¢
val ZIP_def =

|- (txs. ZIP xs [1 = [1) /\ (!v3 v2. ZIP [1 (v2::v3) = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ysO
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Part XII

Deep and Shallow Embeddings

by

N kY
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e

Formal Sanity Example Il 2 %@j}

val ZIP_def =
|- (lys. ZIP [1 ys = [1) /\ ('v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata
|- (txs. ZIP xs [1 = [1) /\ (lys. ZIP [1 ys = [1) /\
(ly ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
|- !xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
|- 'x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)

|- !'xsl xs2 ysl ys2. LENGTH xs1 = LENGTH ys1 ==>
(ZIP (xs1++xs2) (ysl++ys2) = (ZIP xsl ysl ++ ZIP xs2 ys2))

o in your proofs use sanity lemmata, not original definition
o this makes your development robust against

» small changes to the definition required later
» changes to Define and its heuristics
» bugs in function definition package
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Deep and Shallow Embeddings fg%

©

often one models some kind of formal language

©

important design decision: use deep or shallow embedding
in a nutshell:

©

» shallow embeddings just model semantics
» deep embeddings model syntax as well

©

a shallow embedding directly uses the HOL logic
a deep embedding

©

» defines a datatype for the syntax of the language
» provides a function to map this syntax to a semantic
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Example: Embedding of Propositional Logic | {;%;? Example: Embedding of Propositional Logic Il %;@E

o we can also define a datatype for propositional logic

o this leads to a deep embedding
o propositional logic is a subset of HOL

val _ = Datatype ‘bvar = BVar num‘
o a shallow embedding is therefore trivial val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop
| d_and prop prop | d_or prop prop
| d_implies prop prop¢;
val sh_true_def = Define ‘sh_true = T¢;
val sh_var_def = Define :sh_var (vzbOO}) = v val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)‘
val sh_not_def = Define ‘sh_not b = ~b%; val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)°¢
val sh_and_def = Define ‘sh_and bl b2 = (bl /\ b2)°‘;
val sh_or_def = Define ‘sh_or bl b2 = (b1l \/ b2)‘; val PROP_SEM_def = Define °
val sh_implies_def = Define ‘sh_implies bl b2 = (bl ==> b2)°‘; (PROP_SEM a d_true = T) /\
(PROP_SEM a (d_var v) = VAR_VALUE a v) /\
(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\
(PROP_SEM a (d_and p1 p2) = (PROP_SEM a pi /\ PROP_SEM a p2)) /\
(PROP_SEM a (d_or pl p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
(PROP_SEM a (d_implies pl p2) = (PROP_SEM a pl ==> PROP_SEM a p2))°
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Shallow vs. Deep Embeddings gﬁfb}% Example: Embedding of Propositional Logic Ill gﬁf@ﬁ
o oy
o with deep embedding one can easily formalise syntactic properties like
Shallow Deep » Which variables does a propositional formula contain?
o quick and easy to build o can reason about syntax » Is a formula in negation-normal-form (NNF)?
o extensions are simple o allows verified o with shallow embeddings
implementations > syntactic concepts can't .be defined in HOL
. . . » however, they can be defined in SML
o sometimes tricky to define )
) » no proofs about them possible
e.g. bound variables

val _ = Define ¢

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\

Important Questions for Deciding (IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
(IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\

o Do | have hard to define syntax like bound variables? (IS_NNF (d_or pi p2) = (IS_NNF pl /\ IS_NNF p2)) /\
(IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2))°

o Do | need to reason about syntax?

o How much time do | have?
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Verified vs. Verifying Program

Verified Programs

(*]

(*]

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

Verifying Programs

(*]

(*]

are written in meta-language

they produce a separate
proof for each run

only certain that current run
has properties

allow more flexibility, e. g.
fancy heuristics

good pragmatic solution

shallow embedding fine
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Summary Deep vs. Shallow Embeddings {Z‘%}

©

©

o

deep embeddings require more work
they however allow reasoning about syntax
» induction and case-splits possible
» a semantic subset can be carved out syntactically
syntax sometimes hard to define for deep embeddings
combinatations of deep and shallow embeddings common

» certain parts are deeply embedded
» others are embedded shallowly
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