Interactive Theorem Proving (ITP) Course Parts X - XII

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version b330e12 of Mon May 15 13:46:50 2017

Definitional Extensions

Axiomatic Extensions

- there are conservative definition principles for types and constants
- conservative means that all theorems that can be proved in extended theory can also be proved in original one
- however, such extensions make the theory more comfortable
- definitions introduce no new inconsistencies
- the HOL community has a very strong tradition of a purely definitional approach

Part X

Basic Definitions

- axioms are a different approach
- they allow postulating arbitrary properties, i. e. extending the logic with arbitrary theorems
- this approach might introduce new inconsistencies
- in HOL axioms are very rarely needed
- using definitions is often considered more elegant
- it is hard to keep track of axioms
- use axioms only if you really know what you are doing

Oracles

Oracles II

- oracles are families of axioms
- however, they are used differently than axioms
- they are used to enable usage of external tools and knowledge
- you might want to use an external automated prover
- this external tool acts as an oracle
 - ► it provides answers
 - ▶ it does not explain or justify these answers
- you don't know, whether this external tool might be buggy
- all theorems proved via it are tagged with a special oracle-tag
- tags are propagated
- this allows keeping track of everything depending on the correctness of this tool

- Common oracle-tags
 - ► DISK_THM theorem was written to disk and read again
 - ► HolSatLib proved by MiniSat
 - ► HolSmtLib proved by external SMT solver
 - ► fast_proof proof was skipped to compile a theory rapidly
 - ► cheat we cheated :-)
- cheating via e.g. the cheat tactic means skipping proofs
- it can be helpful during proof development
 - ▶ test whether some lemmata allow you finishing the proof
 - ▶ skip lengthy but boring cases and focus on critical parts first
 - ► experiment with exact form of invariants
 - ▶ ..
- cheats should be removed reasonable quickly
- HOL warns about cheats and skipped proofs

127 / 196

128 / 196

Pitfalls of Definitional Approach

- definitions can't introduce new inconsistencies
- they force you to state all assumed properties at one location
- however, you still need to be careful
- Is your definition really expressing what you had in mind?
- Does your formalisation correspond to the real world artefact ?
- How can you convince others that this is the case ?
- we will discuss methods to deal with this later in this course
 - formal sanity
 - conformance testing
 - ▶ code review
 - ► comments, good names, clear coding style
 - ▶ ..
- this is highly complex and needs a lot of effort in general

Specifications

 HOL allows to introduce new constants with certain properties, provided the existence of such constants has been shown

- new_specification is a convenience wrapper
 - ► it uses existential quantification instead of Hilbert's choice
 - ► deals with pair syntax
 - stores resulting definitions in theory
- new_specification captures the underlying principle nicely

Restrictions for Definitions

special case: new constant defined by equality

```
Specification with Equality
> double_EXISTS
val it =
|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =
|- !n. double n = n + n
```

• there is a specialised methods for such non-recursive definitions

```
Non Recursive Definitions
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ''DOUBLE n = n + n'')
val DOUBLE_DEF =
    |- !n. DOUBLE n = n + n
```

• all variables occurring on right-hand-side (rhs) need to be arguments

- ▶ e.g. new_definition (..., "F n = n + m") fails
- ▶ m is free on rhs
- all type variables occurring on rhs need to occur on lhs

 - ► IS_FIN_TY would lead to inconsistency
 - ► |- FINITE (UNIV : bool set)
 - ► |- ~FINITE (UNIV : num set)
 - ► T <=> FINITE (UNIV:bool set) <=> IS_FIN_TY <=>

FINITE (UNIV:num set) <=> F

▶ therefore, such definitions can't be allowed

131 / 196

132 / 196

Underspecified Functions

Primitive Type Definitions

- function specification do not need to define the function precisely
- multiple different functions satisfying one spec are possible
- functions resulting from such specs are called underspecified
- underspecified functions are still total, one just lacks knowledge
- one common application: modelling partial functions
 - ▶ functions like e.g. HD and TL are total
 - ► they are defined for empty lists
 - ▶ however, it is not specified, which value they have for empty lists
 - ▶ only known: HD [] = HD [] and TL [] = TL []
 val MY_HD_EXISTS = prove (''?hd. !x xs. (hd (x::xs) = x)'', ...);
 val MY_HD_SPEC =
 new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

- HOL allows introducing non-empty subtypes of existing types
- a predicate P : ty -> bool describes a subset of an existing type ty
- ty may contain type variables
- only non-empty types are allowed
- therefore a non-emptyness proof ex-thm of form ?e. P e is needed
- new_type_definition (op-name, ex-thm) then introduces a new type op-name specified by P

Primitive Type Definitions - Example 1

Primitive Type Definitions - Example 2

- lets try to define a type dlist of lists containing no duplicates
- predicate ALL_DISTINCT : 'a list -> bool is used to define it
- easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1
- val dlist_TY_DEF = new_type_definitions("dlist",
 dlist_exists) defines a new type 'a dlist and returns a theorem

- rep is a function taking a 'a dlist to the list representing it
 - ► rep is injective
 - ► a list satisfies ALL_DISTINCT iff there is a corresponding dlist

 define_new_type_bijections can be used to define bijections between old and new type

- other useful theorems can be automatically proved by
 - ▶ prove_abs_fn_one_one
 - ▶ prove_abs_fn_onto
 - ▶ prove_rep_fn_one_one
 - ▶ prove_rep_fn_onto

135 / 196

136 / 196

Primitive Definition Principles Summary

Functional Programming

- primitive definition principles are easily explained
- they lead to conservative extensions
- however, they are cumbersome to use
- LCF approach allows implementing more convenient definition tools
 - ► Datatype package
 - ► TFL (Total Functional Language) package
 - ► IndDef (Inductive Definition) package
 - ▶ quotientLib Quotient Types Library
 - ▶ ...

- the Datatype package allows to define datatypes conveniently
- the TFL package allows to define (mutually recursive) functions
- the EVAL conversion allows evaluating those definitions
- this gives many HOL developments the feeling of a functional program
- there is really a close connection between functional programming a definitions in HOL
 - ► functional programming design principles apply
 - ► EVAL is a great way to test quickly, whether your definitions are working as intended

Functional Programming Example

Datatype Package - Example I

```
Tree Datatype in SML

datatype ('a,'b) btree = Leaf of 'a

| Node of ('a,'b) btree * 'b * ('a,'b) btree
```

```
Tree Datatype in HOL

Datatype 'btree = Leaf 'a
| Node btree 'b btree'
```


Datatype Package

- the Datatype package allows to define SML style datatypes easily
- there is support for
 - ► algebraic datatypes
 - record types
 - ► mutually recursive types
 - ▶ ...
- many constants are automatically introduced
 - constructors
 - ► case-split constant
 - ▶ size function
 - ► field-update and accessor functions for records
 - ▶ ..
- many theorems are derived and stored in current theory
 - injectivity and distinctness of constructors
 - nchotomy and structural induction theorems
 - ► rewrites for case-split, size and record update functions
 - ▶ ..

139 / 196

140 / 196

Datatype Package - Example I - Derived Theorems 1

btree_distinct

```
|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2
```

btree_11

```
|- (!a a'. (Leaf a = Leaf a') <=> (a = a')) /\
    (!a0 a1 a2 a0' a1' a2'.
        (Node a0 a1 a2 = Node a0' a1' a2') <=>
        (a0 = a0') /\ (a1 = a1') /\ (a2 = a2'))
```

btree_nchotomy

btree_induction

Datatype Package - Example I - Derived Theorems 2

Datatype Package - Example II

btree_size_def

```
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
   (!f f1 a0 a1 a2.
   btree_size f f1 (Node a0 a1 a2) =
   1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))
```

bbtree_case_def

```
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\
    (!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)
```

btree_case_cong

```
|-!M M' f f1.

(M = M') /\ (!a. (M' = Leaf a) ==> (f a = f' a)) /\

(!a0 a1 a2.

(M' = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1' a0 a1 a2)) ==>

(btree_CASE M f f1 = btree_CASE M' f' f1')
```

Enumeration type in SML

datatype my_enum = E1 | E2 | E3

Enumeration type in HOL

Datatype 'my_enum = E1 | E2 | E3'

144 / 196

143 / 196

Datatype Package - Example II - Derived Theorems

Datatype Package - Example III

my_enum_nchotomy

```
|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a
```

my_enum_distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- $(my_enum2num E1 = 0) / (my_enum2num E2 = 1) / (my_enum2num E3 = 2)$

my_enum2num_num2my_enum

 $|-!r.r < 3 \iff (my_enum2num (num2my_enum r) = r)$

Record type in SML

type rgb = { r : int, g : int, b : int }

Record type in HOL

Datatype 'rgb = <| r : num; g : num; b : num |>'

Datatype Package - Example III - Derived Theorems

Datatype Package - Example IV

nested record types are not allowed

Filesystem Datatype in SML

datatype file = Text of string

Datatype 'file = Text string

however, mutual recursive types can mitigate this restriction

files : (string * file) list}

Not Supported Nested Record Type Example in HOL

```
rgb_component_equality
|- !r1 r2. (r1 = r2) <=>
          (r1.r = r2.r) / (r1.g = r2.g) / (r1.b = r2.b)
```

```
rgb_nchotomy
|- !rr. ?n n0 n1. rr = rgb n n0 n1
```

```
rgb_r_fupd
|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1
```

```
rgb_updates_eq_literal
|- !r n1 n0 n.
     r \text{ with } < |r| := n1; g := n0; b := n| > = < |r| := n1; g := n0; b := n| >
```

| Dir < | owner : string ;

| Dir of {owner : string ,

```
Filesystem Datatype - Mutual Recursion in HOL
Datatype 'file = Text string
              | Dir directory
         directory = <| owner : string ;</pre>
                        files : (string # file) list |>'
```

files : (string # file) list |>'

148 / 196

Datatype Package - No support for Co-Algebraic Types

147 / 196

Datatype Package - Discussion

- there is no support for co-algebraic types
- the Datatype package could be extended to do so
- other systems like Isabelle/HOL provide high-level methods for defining such types

```
Co-algebraic Type Example in SML — Lazy Lists
datatype 'a lazylist = Nil
                   | Cons of ('a * (unit -> 'a lazylist))
```

- Datatype package allows to define many useful datatypes
- however, there are many limitations
 - ▶ some types cannot be defined in HOL, e.g. empty types
 - ▶ some types are not supported, e.g. co-algebraic types
 - ▶ there are bugs (currently e.g. some trouble with certain mutually recursive definitions)
- biggest restrictions in practice (in my opinion and my line of work)
 - ► no support for co-algebraic datatypes
 - ► no nested record datatypes
- depending on datatype, different sets of useful lemmata are derived
- most important ones are added to TypeBase
 - ▶ tools like Induct_on, Cases_on use them
 - ▶ there is support for pattern matching

149 / 196 150 / 196

Total Functional Language (TFL) package

Well-Founded Relations

- TFL package implements support for terminating functional definitions
- Define defines functions from high-level descriptions
- there is support for pattern matching
- look and feel is like function definitions in SML
- based on well-founded recursion principle
- Define is the most common way for definitions in HOL

a relation R: 'a -> 'a -> bool is called well-founded, iff there are no infinite descending chains

```
wellfounded R = \sim ?f. !n. R (f (SUC n)) (f n)
```

- Example: \$< : num -> num -> bool is well-founded
- if arguments of recursive calls are smaller according to well-founded relation, the recursion terminates
- this is the essence of termination proofs

151 / 196

152 / 196

Well-Founded Recursion

Define - Initial Examples

- a well-founded relation R can be used to define recursive functions
- this recursion principle is called WFREC in HOL
- idea of WFREC
 - ▶ if arguments get smaller according to R, perform recursive call
 - ▶ otherwise abort and return ARB
- WFREC always defines a function
- if all recursive calls indeed decrease according to R, the original recursive equations can be derived from the WFREC representation
- TFL uses this internally
- however, this is well-hidden from the user

Simple Definitions

Define discussion

Define - More Examples

> val IS_SORTED_def = Define '

 $(IS_SORTED _ = T)$

val IS_SORTED_def =

> val MY_HD_def = Define 'MY_HD (x :: xs) = x' val $MY_HD_def = |-!x xs. MY_HD (x::xs) = x : thm$

- Define feels like a function definition in HOL
- it can be used to define "terminating" recursive functions
- Define is implemented by a large, non-trivial piece of SML code
- it uses many heuristics
- outcome of Define sometimes hard to predict
- the input descriptions are only hints
 - ▶ the produced function and the definitional theorem might be different
 - ▶ in simple examples, quantifiers added
 - ▶ pattern compilation takes place
 - earlier "conjuncts" have precedence

155 / 196

156 / 196

Primitive Definitions

- Define introduces (if needed) the function using WFREC
- intended definition derived as a theorem
- the theorems are stored in current theory
- usually, one never needs to look at it

```
Examples
val IS_SORTED_primitive_def =
|- IS_SORTED =
  WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))
     (\IS SORTED a.
        case a of
          [] => I T
        | [x1] \Rightarrow I T
        | x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))
|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- !f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)
```

val ZIP def =

Induction Theorems

- Define automatically defines induction theorems
- these theorems are stored in current theory with suffix ind
- use DB.fetch "-" "something_ind" to retrieve them
- these induction theorems are useful to reason about corresponding recursive functions

 $(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) / (IS_SORTED (x2::xs)))) /$

|- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\

|- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\

> val ZIP_def = Define '(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(!v1. ZIP [] v1 = []) / (!v4 v3. ZIP (v3::v4) [] = []) : thm

 $(ZIP _ = [])$

|-(!ys y xs x. ZIP(x::xs)(y::ys) = (x,y)::ZIP xs ys)/

(EVEN (SUC n) = ODD n) $/ \setminus$ (ODD (SUC n) = EVEN n)

(IS SORTED $[] \iff T) / (!v. IS SORTED [v] \iff T)$

> val EVEN_def = Define '(EVEN 0 = T) /\ (ODD 0 = F) /\

 $(!n. ODD (SUC n) \iff EVEN n) : thm$

```
Example
val IS_SORTED_ind = |- !P.
    ((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /
     P [] /\
     (!v. P [v])) ==>
    !v. P v
```

157 / 196 158 / 196

Define failing

Termination in HOL

- Define might fail for various reasons to define a function
 - such a function cannot be defined in HOL
 - ▶ such a function can be defined, but not via the methods used by TFL
 - ▶ TFL can define such a function, but its heuristics are too weak and user guidance is required
 - ► there is a bug :-)
- termination is an important concept for Define
- it is easy to misunderstand termination in the context of HOL
- we need to understand what is meant by termination

- in SML it is natural to talk about termination of functions
- in the HOL logic there is no concept of execution
- thus, there is no concept of termination in HOL

3 characterisations of a function f : num -> num

```
| - | n \cdot f \cdot n = 0
```

$$|-(f 0 = 0) / !n. (f (SUC n) = f n)$$

$$|-(f 0 = 0) / !n. (f n = f (SUC n))$$

Is f terminating? All 3 theorems are equivalent.

159 / 196

Termination in HOL II

160 / 196

- it is useful to think in terms of termination
- the TFL package implements heuristics to define functions that would terminate in SML
- the TFL package uses well-founded recursion
- the required well-founded relation corresponds to a termination proof
- therefore, it is very natural to think of Define searching a termination proof
- important: this is the idea behind this function definition package, not a property of HOL

HOL is not limited to "terminating" functions

Termination in HOL III

- one can define "non-terminating" functions in HOL
- however, one cannot do so (easily) with Define

Definition of WHILE in HOL

```
|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x
```

Execution Order

There is no "execution order". One can easily define a complicated constant function: $(myk : num \rightarrow num) (n:num) = (let x = myk (n+1) in 0)$

Unsound Definitions

A function f: num -> num with the following property cannot be defined in HOL unless HOL has an inconsistancy:

!n. f n = ((f n) + 1)

Such a function would allow to prove 0 = 1.

161 / 196 162 / 196

Manual Termination Proofs I

Manual Termination Proofs II

- TFL uses various heuristics to find a well-founded relation
- however, these heuristics may not be strong enough
- in such cases the user can provide a well-founded relation manually
- the most common well-founded relations are **measures**
- measures map values to natural numbers and use the less relation
 |-!(f:'a -> num) x y. measure f x y <=> (f x < f y)
- all measures are well-founded: |- !f. WF (measure f)
- moreover, existing well-founded relations can be combined
 - ► lexicographic order LEX
 - ► list lexicographic order LLEX
 - ▶ ...

- if Define fails to find a termination proof, Hol_defn can be used
- Hol_defn defers termination proofs
- it derives termination conditions and sets up the function definitions
- all results are packaged as a value of type defn
- after calling Hol_defn the defined function(s) can be used
- however, the intended definition theorem has not been derived yet
- to derive it, one needs to
 - provide a well-founded relation
 - ▶ show that termination conditions respect that relation
- Defn.tprove and Defn.tgoal are intended for this
- proofs usually start by providing relation via tactic WF_REL_TAC

163 / 196

164 / 196

Manual Termination Proof Example 1

Manual Termination Proof Example 2


```
> val qsort_defn = Hol_defn "qsort" '
  (qsort ord [] = []) /\
  (qsort ord (x::rst) =
     (qsort ord (FILTER ($~ o ord x) rst)) ++
     [x] ++
     (qsort ord (FILTER (ord x) rst)))'
val qsort_defn = HOL function definition (recursive)
Equation(s):
[...] |- qsort ord [] = []
 [...] |- qsort ord (x::rst) =
            qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
            qsort ord (FILTER (ord x) rst)
Induction: ...
Termination conditions:
 0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
 1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
 2. WF R
```

Manual Termination Proof Example 3

Importance of Good Definitions

- using good definitions is very important
 - ► good definitions are vital for **clarity**
 - ► **proofs** depend a lot on the form of definitions
- unluckily, it is hard to state what a good definition is
- even harder to come up with good definitions
- let's look at it a bit closer anyhow

Part XI

Good Definitions

167 / 196

Importance of Good Definitions — Clarity I

- HOL guarantees that theorems do indeed hold
- However, does the theorem mean what you think it does?
- you can separate your development in
 - ► main theorems you care for
 - ► auxiliary stuff used to derive your main theorems
- it is essential to understand your main theorems

Importance of Good Definitions — Clarity II

Importance of Good Definitions — Clarity III

Guarded by HOL

- proofs checked
- internal, technical definitions
- technical lemmata
- proof tools

Manual review needed for

- meaning of definitions used by main theorems
- main theorems

- - meaning of main theorems
- meaning of types used by

• it is essential to understand your main theorems

- ▶ you need to understand all the definitions directly used
- you need to understand the indirectly used ones as well
- ▶ you need to convince others that you express the intended statement
- ▶ therefore, it is vital to use very simple, clear definitions
- defining concepts is often the main development task
- checking resulting model against real artefact is vital
 - ► testing via e.g. EVAL
 - ► formal sanity
 - conformance testing
- wrong models are main source of error when using HOL
- proofs, auxiliary lemmata and auxiliary definitions
 - ▶ can be as technical and complicated as you like
 - correctness is guaranteed by HOL
 - reviewers don't need to care

171 / 196

172 / 196

Importance of Good Definitions — Proofs

How to come up with good definitions

- good definitions can shorten proofs significantly
- they improve maintainability
- they can improve automation drastically
- unluckily for proofs definitions often need to be technical
- this contradicts clarity aims

- unluckily, it is hard to state what a good definition is
- it is even harder to come up with them
 - ▶ there are often many competing interests
 - ▶ a lot of experience and detailed tool knowledge is needed
 - ► much depends on personal style and taste
- general advice: use more than one definition
 - ▶ in HOL you can derive equivalent definitions as theorems
 - ▶ define a concept as clearly and easily as possible
 - ► derive equivalent definitions for various purposes
 - ★ one very close to your favourite textbook
 - ★ one nice for certain types of proofs
 - ★ another one good for evaluation
- lessons from functional programming apply

173 / 196 174 / 196

Good Definitions in Functional Programming

Good Definitions – no number encodings

- many programmers familiar with C encode everything as a number
- enumeration types are very cheap in SML and HOL
- use them instead

Objectives

- clarity (readability, maintainability)
- o performance (runtime speed, memory usage, ...)

General Advice

- use the powerful type-system
- use many small function definitions
- encode invariants in types and function signatures

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and positive integers. In SML and HOL, it is better to use a variant type.

176 / 196

175 / 196

Good Definitions — Record Types I

Good Definitions — Isomorphic Types

- the type-checker is your friendit helps you find errors
 - ► code becomes more robust
 - ▶ using good types is a great way of writing self-documenting code
- therefore, use many types
- even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use separate types to avoid mixing them up.

```
val _ = Datatype 'vaddr = VAddr num';
val _ = Datatype 'paddr = PAddr num';

val virt_to_phys_addr_def = Define '
  virt_to_phys_addr (VAddr a) = PAddr( translation of a )';
```

- often people use tuples where records would be more appropriate
- using large tuples quickly becomes awkward
 - ▶ it is easy to mix up order of tuple entries
 - $\ensuremath{\bigstar}$ often types coincide, so type-checker does not help
 - ► no good error messages for tuples
 - ★ hard to decipher type mismatch messages for long product types
 - ★ hard to figure out which entry is missing at which position
 - ★ non-local error messages
 - ★ variable in last entry can hide missing entries
- records sometimes require slightly more proof effort
- however, records have many benefits

Good Definitions — Record Types II

Good Definitions — Encoding Invariants

your code becomes more robust and clearer

- using records
 - ▶ introduces field names
 - provides automatically defined accessor and update functions
 - ► leads to better type-checking error messages
- records improve readability
 - ▶ accessors and update functions lead to shorter code
 - ▶ field names act as documentation
- records improve maintainability
 - ► improved error messages
 - ▶ much easier to add extra fields

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.

• try to encode as many invariants as possible in the types

this allows the type-checker to ensure them for youyou don't have to check them manually any more

179 / 196

180 / 196

Good Definitions — Encoding Invariants II

Good Definitions in HOL

Network Connections (Example by Yaron Minsky from Jane Street) II

The following definition of connection_info makes the invariants explicit:

Objectives

- clarity (readability)
- good for proofs
- performance (good for automation, easily evaluatable, ...)

General Advice

- same advice as for functional programming applies
- use even smaller definitions
 - ▶ introduce auxiliary definitions for important function parts
 - use extra definitions for important constants
 - ▶ ...
- tiny definitions
 - ▶ allow keeping proof state small by unfolding only needed ones
 - allow many small lemmata
 - improve maintainability

Good Definitions in HOL II

Technical Issues

- write definition such that they work well with HOL's tools
- this requires you to know HOL well
- a lot of experience is required
- general advice
 - avoid explicit case-expressions
 - prefer curried functions

Example

183 / 196

Formal Sanity

Formal Sanity Example I

> val ALL_DISTINCT = Define '

Formal Sanity

- to ensure correctness test your definitions via e.g. EVAL
- in HOL testing means symbolic evaluation, i. e. proving lemmata
- formally proving sanity check lemmata is very beneficial
 - they should express core properties of your definition
 - thereby they check your intuition against your actual definitions
 - these lemmata are often useful for following proofs
 - using them improves robustness and maintainability of your development
- I highly recommend using formal sanity checks

Good Definitions in HOL III

Multiple Equivalent Definitions

- satisfy competing requirements by having multiple equivalent definitions
- derive them as theorems
- initial definition should be as clear as possible
 - clarity allows simpler reviews
 - simplicity reduces the likelihood of errors

Example - ALL_DISTINCT

184 / 196

(ALL_DISTINCT [] = T) /\ (ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)';

Example Sanity Check Lemmata

Formal Sanity Example II 1

Part XII

Deep and Shallow Embeddings

Formal Sanity Example II 2


```
val ZIP_def =
|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\
    (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
```

- in your proofs use sanity lemmata, not original definition
- this makes your development robust against
 - small changes to the definition required later
 - ► changes to Define and its heuristics
 - ► bugs in function definition package

187 / 196

188 / 196

Deep and Shallow Embeddings

- often one models some kind of formal language
- important design decision: use deep or shallow embedding
- in a nutshell:
 - ► shallow embeddings just model semantics
 - deep embeddings model syntax as well
- a shallow embedding directly uses the HOL logic
- a deep embedding
 - ► defines a datatype for the syntax of the language
 - provides a function to map this syntax to a semantic

Example: Embedding of Propositional Logic I

Example: Embedding of Propositional Logic II

- propositional logic is a subset of HOL
- a shallow embedding is therefore trivial

- we can also define a datatype for propositional logic
- this leads to a deep embedding

191 / 196

192 / 196

Shallow vs. Deep Embeddings

Example: Embedding of Propositional Logic III

Shallow

- quick and easy to build
- extensions are simple

Deep

- can reason about syntax
- allows verified implementations
- sometimes tricky to define
 - e.g. bound variables

Important Questions for Deciding

- Do I need to reason about syntax?
- Do I have hard to define syntax like bound variables?
- How much time do I have?

- with deep embedding one can easily formalise syntactic properties like
 - ► Which variables does a propositional formula contain?
 - ► Is a formula in negation-normal-form (NNF)?
- with shallow embeddings
 - lacktriangle syntactic concepts can't be defined in HOL
 - ▶ however, they can be defined in SML
 - ► no proofs about them possible

```
val _ = Define '
  (IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\
  (IS_NNF (d_not _) = F) /\
  (IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
  (IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_or p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2))'
```


Summary Deep vs. Shallow Embeddings

Verified Programs

- are formalised in HOL
- their properties have been proven once and for all
- all runs have proven properties
- are usually less sophisticated, since they need verification
- is what one wants ideally
- often require deep embedding

Verifying Programs

- are written in meta-language
- they produce a separate proof for each run
- only certain that current run has properties
- allow more flexibility, e.g. fancy heuristics
- good pragmatic solution
- shallow embedding fine

- deep embeddings require more work
- they however allow reasoning about syntax
 - ► induction and case-splits possible
 - ► a semantic subset can be carved out syntactically
- syntax sometimes hard to define for deep embeddings
- combinatations of deep and shallow embeddings common
 - ► certain parts are deeply embedded
 - ► others are embedded shallowly