ITP Exercise 5

due Friday 26th May

1 Multiple Definitions / Formal Sanity

rich listTheory provides a predicate IS_SUBLIST. It checks whether a list appears somewhere
as part of another list:

|- 111 12. IS_SUBLIST 11 12 <=> 71 1’. 11 = 1 ++ (12 ++ 17)

Define a weaker version of such a predicate called IS_WEAK_SUBLIST that allows additional
elements between the elements of 12. So, for example IS_WEAK_SUBLIST [1;2;3;4;5;6;7]
[2;5;6] should hold. In contrast the statements IS_WEAK_SUBLIST [1;2;3;4;5;6;7] [2;6;5]
or IS_WEAK_SUBLIST [1;2;3;4;5;6;7] [2;5;6;8] do not hold. Another way of describing the
semantics of IS_.WEAK_SUBLIST 11 12 is saying that one can get 12 by removing elements from
11 while keeping the order.

1.1 Recursive Definition

Define IS_WEAK_SUBLIST recursively using Define. Name your function IS_WEAK_SUBLIST_REC.
Test this definition via EVAL and prove at least 2 sanity check lemmata, which do not coincide
with the lemmata you are asked to show below.

1.2 Filter Definition

Define a version of IS_WEAK_SUBLIST called IS_WEAK_SUBLIST_FILTER using the existing list func-
tion FILTER. You might want to use ZIP, MAP, FST and SND as well. The idea is to check for
the existence of a list of booleans of the same length as 11, zip this list with 11 and filter. You
probably want to introduce auxiliary definitions before defining IS_WEAK_SUBLIST FILTER.

The resulting definition is not executable via EVAL. Anyhow, show at least 2 sanity check
lemmata, which do not coincide with the lemmata you are asked to show below.

1.3 Equivalence Proof

Show IS_WEAK_SUBLIST REC = IS_WEAK_SUBLIST_FILTER. You might want to prove various aux-
iliary lemmata first. You might want to use among other things FUN_EQ_THM and the list function
REPLICATE.

1.4 Properties

Show the following properties of IS_WEAK_SUBLIST REC and IS_WEAK_SUBLIST_FILTER. This means
that for each property stated below in terms of IS_WEAK_SUBLIST you should prove one lemma
using IS_WEAK_SUBLIST_REC and another lemma using IS_WEAK_SUBLIST_FILTER. Don’t use the
fact that both functions are equal. The point of this exercise is partly to demonstrate the impact
of different definitions on proofs. You might of course use previously proved lemmata to prove
additional ones.



1. 111 12 12a 12b. IS_WEAK_SUBLIST 11 12 ==
IS_WEAK_SUBLIST 11 (12a ++ 12 ++ 12b)

2. !11a 11b 12a 12b. IS_WEAK_SUBLIST 1lla 12a ==> IS_WEAK_SUBLIST 11b 12b ==
IS_WEAK_SUBLIST (1lia ++ 11b) (12a ++ 12b)

3. 11. IS WEAK SUBLIST 11

4. 111 12 13. IS_WEAK SUBLIST 11 12 ==> IS _WEAK SUBLIST 12 13 ==
IS_WEAK_SUBLIST 11 13

5. 111 12. IS_WEAK_SUBLIST 11 12 ==> IS_WEAK_SUBLIST 12 11 ==> (11 = 12)

2 Deep and Shallow Embeddings

As seen in the lecture let’s define a deep and a shallow embedding of propositional logic. Use
the names and definitions from the lecture notes. Add a definition stating that two propositional
formulas are equivalent, iff their semantics coincides for all variable assignments, i. e.

PROP_IS_EQUIV pl p2 <=> ('a. PROP_SEM a pl = PROP_SEM a p2)

2.1 Syntax for propositional formulas

Define in SML syntax functions for all shallowly embedded propositional formulas. Define for
each constructor a make - function, a destructor and a check. For sh_and I would like to have
for example

e mk sh and : term -> term -> term,
e dest_sh_and : term -> (term * term) and
e is sh and : term -> bool.

Define a check is_sh_prop : term -> bool that checks whether a term is a shallowly embedded
propositional formula.

2.2 Getting Rid of Conjunction and Implication

Define a function in HOL PROP_CONTAINS_NO_AND_IMPL : prop -> bool that checks whether
a propositional formula contains no conjunction and implication operators. Define a similar
function sh_prop_contains no_and impl in SML that checks the same property for shallowly
embedded formulas.

Define a function PROP_REMOVE_AND_IMPL in HOL that removes all conjunctions and implica-
tions from a propositional formula and returns an equivalent one. Prove these properties, i.e.
prove

e !p. PROP_IS_EQUIV (PROP_REMOVE_AND_IMPL p) p

e !p. PROP_CONTAINS_NO_AND_IMPL (PROP_REMOVE_AND_IMPL p)



Implement a similar function sh_prop_remove_and_impl : term -> thm in SML that per-
forms the same operation on the shallow embedding and returns a theorem stating that the
input term is equal to a version without conjunctions and implications. The SML version is
allowed to fail, if the input term does not satisfy is_sh_prop.

Notice, that PROP_REMOVE_AND_IMPL is a verified function, whereas sh_prop_remove_and_impl
is a verifying one.

3 Fancy Function Definitions

In the lecture the termination proof for quicksort was briefly discussed. As an exercise, let’s
define minsort. This function minsort sorts a list of natural numbers, by always searching a
minimal element of the list, put it in front of the list a recursively sort the rest of this list. In
HOL, it can be defined as

val expunge_def =
Define

‘ (expunge x []
/\ (expunge x (h::t)

Ny

if x=h then expunge x t else h::expunge x t)°‘;

val min_def =
Define
‘(min [ m = m)
/\ (min (h::t) m = if m <= h then min t m else min t h)‘;

val minsort_defn =
Hol_defn "minsort"
‘(minsort [1 = [1)
/\ (minsort (h::t) =
let m = min t h
in
m: :minsort (expunge m (h::t)))‘;
Notice, that TFL (i. e. Define) is not able to show automatically that minsort is terminating.

You need to do this manually. Show auxiliary lemmata about min and expunge and use them
with Defn.tprove (and Defn.tgoal) to show that minsort terminates.



4 Hints

4.1 Definition of IS_WEAK_SUBLIST
IS_WEAK_SUBLIST REC and IS_WEAK SUBLIST_FILTER can be defined by

val IS_WEAK_SUBLIST_REC_def = Define °
(IS_WEAK_SUBLIST_REC (11 : ’a list) ([J:’a list) = T) /\
(IS_WEAK_SUBLIST_REC [] (_::.) =F) /\
(IS_WEAK_SUBLIST_REC (y::ys) (x::xs) = (
(x = y) /\ IS_WEAK_SUBLIST_REC ys xs) \/ (IS_WEAK_SUBLIST_REC ys (x::xs)))°‘;

val FILTER_BY_BOOLS_def = Define ¢
FILTER_BY_BOOLS bl 1 = MAP SND (FILTER FST (ZIP (bl, 1)))°¢

val IS_WEAK_SUBLIST_FILTER_def = Define ‘IS_WEAK_SUBLIST_FILTER 11 12 =
?7(bl : bool list). (LENGTH bl = LENGTH 11) /\ (12 = FILTER_BY_BOOLS bl 11)°¢

4.2 Termination of minsort

minsort is an example of the TFL library. You can find a termination proof in the HOL sources.
However, really try to prove termination yourself first. Before you start looking up the proof,
here a few hints:

e The main idea is that the length of expunge m (h::t) is shorter than the length of h::t,
i.e. start your termination proof with WF_REL_TAC LENGTH.

e show the lemma !x xs. MEM x xs ==> LENGTH (expunge x xs) < LENGTH xs

e show the lemma !x xs. MEM (min xs x) (x::xs)
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