Lecture 4 - k-layer Neural Networks

DD2424

May 19, 2017

Linear scoring function

$$s = Wx + b$$

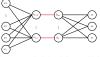
Before

$$W\mathbf{x} + \mathbf{b}$$

2-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$

 $\mathbf{h} = \max(0, \mathbf{s}_1)$
 $\mathbf{s} = W_2 \mathbf{h} + \mathbf{b}_2$



Now

Some terminology

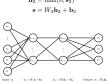
Not restricted to two layers

2-layer Neural Network
$$\mathbf{s}_1 = W_1\mathbf{x} + \mathbf{b}_1$$

$$\mathbf{h} = \max(0, \mathbf{s}_1)$$

$$\mathbf{s} = W_2\mathbf{h} + \mathbf{b}_2$$

 $\mathbf{h} = \max(0, \mathbf{e}_i)$



3-layer Neural Network

$$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1$$

$$\mathbf{h}_1 = \max(0, \mathbf{s}_1)$$

$$\mathbf{s}_2 = W_2 \mathbf{h}_1 + \mathbf{b}_2$$

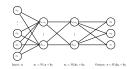
$$\mathbf{h}_2 = \max(0, \mathbf{s}_2)$$

3-layer Neural Network

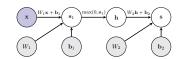
$$\mathbf{s}_1 = W_1\mathbf{x} + \mathbf{b}_1$$
 W_1 is $m_1 imes d$

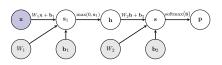
1st hidden layer activations
$$o$$
 $\mathbf{h}_1 = \max(\mathbf{0}, \mathbf{s}_1) \leftarrow$ apply non-linearity via activation fn $\mathbf{s}_2 = W_2 \mathbf{h}_1 + \mathbf{b}_2 \quad _{W_2 \text{ is } m_2 \times m_1}$

2nd hidden layer activations
$$ightarrow \mathbf{h}_2 = \max(\mathbf{0}, \mathbf{s}_2) \leftarrow$$
 apply non-linearity via activation fn Output responses $ightarrow \mathbf{s} = W_3 \mathbf{h}_2 + \mathbf{b}_3$ $W_3 \mathbf{h}_3 \in \times m_2$



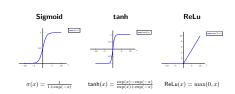
Sometimes referred to as a 2-hidden-layer neural network.



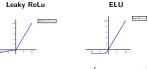


Options for activation functions

Options for activation Functions

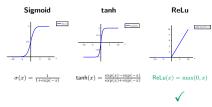


Activation function is applied independently to each element of the score vector.

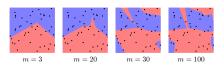


$$\max(0.1x, x) \qquad \text{ELU}(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha \left(\exp(x) - 1 \right)) & \text{otherwise} \end{cases}$$

Activation function is generally applied independently to each element of vector.

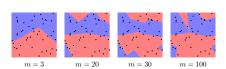


In modern networks ReLU is the most common activation function.



- m is the number of nodes in the hidden layer.
- No regularization.

Result depends on parameter initialization



- m is the number of nodes in the hidden layer.
- No regularization.
- · Different random parameter initialization to previous slide.

Effect of regularization

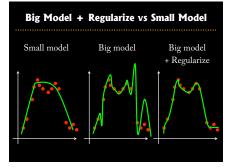
$$J(\mathcal{D},\lambda,\Theta) = \sum_{(\mathbf{x},y)\in\mathcal{D}} l(\mathbf{x},y,\Theta) + \lambda R(\Theta)$$

$$\lambda = 0 \qquad \lambda = .001 \qquad \lambda = .01 \qquad \lambda = .1$$

- \bullet m=100 nodes in the hidden layer.
- L₂ regularization.

Do not use size of neural network as a regularizer.

Use stronger regularization.



Gradient Computations for a k-layer neural network

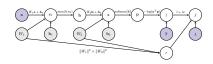
High-level overview of how to train network

Mini-batch SGD (or variant)

Loop

- 1. Sample a batch of the training data.
- Forward propagate it through the graph and calculate loss/cost.
- Backward propagate to calculate the gradients.
 - 4. Update the parameters using the gradient.

Back propagation for 2-layer neural network

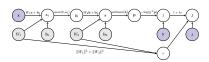


For a single labelled training example:

- 1. Forward propagate it through the graph and calculate loss.
- 2. Backward propagate to calculate the gradients.

Back propagation for 2-layer neural network

Backward Pass: Gradient of current node



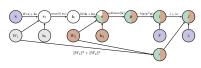
For a single labelled training example:

- Forward propagate it through the graph and calculate loss.

 † this is straightforward.
- 2. Backward propagate to calculate the gradients.

 Focus on this.

Starting point of our demonstration

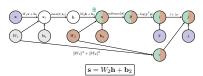


In Lecture 3 explicitly computed **filled in** *local Jacobians* and *gradients*.

Backward Pass

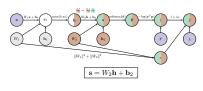
Backward Pass

Compute local Jacobian of node ${\bf s}$ w.r.t. its child ${\bf h}$



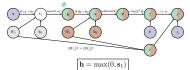
- The Jacobian we need to compute: $\frac{\partial x}{\partial h} = \begin{pmatrix} \frac{\partial x_1}{\partial h_1} & \cdots & \frac{\partial x_1}{\partial h_m} \\ \vdots & \vdots & \vdots \\ \frac{\partial x_n}{\partial h_n} & \cdots & \frac{\partial x_n}{\partial h_m} \end{pmatrix}$
- The individual derivatives: \$\frac{\partial s_i}{\partial h_i} = W_{2,ij}\$
- In vector notation: ^{∂s}/_{∂b} = W₂

Compute gradient of J w.r.t. node $\mathbf h$



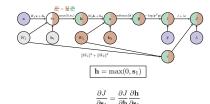
$$\frac{\partial J}{\partial \mathbf{h}} = \frac{\partial J}{\partial \mathbf{s}} \frac{\partial s}{\partial \mathbf{l}}$$

Compute local Jacobian of node ${\bf h}$ w.r.t. its child ${\bf s}_1$



- $\bullet \ \ \text{The Jacobian we need to compute:} \ \frac{\partial h}{\partial s_1} = \begin{cases} \frac{\partial k_1}{\partial s_{1,1}} & \cdots & \frac{\partial k_1}{\partial s_{1,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial k_m}{\partial s_{1,1}} & \cdots & \frac{\partial k_m}{\partial s_{1,m}} \end{cases}$
- $\bullet \ \ \text{The individual derivatives:} \ \ \frac{\partial h_i}{\partial s_{1,j}} = \begin{cases} \mathsf{Ind}(s_{1,j} > 0) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{h}}{\partial \mathbf{s}_1} = \text{diag}(\text{Ind}(\mathbf{s}_1 > 0))$

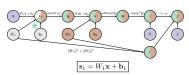
Compute gradient of J w.r.t. node \mathbf{s}_1



Backward Pass

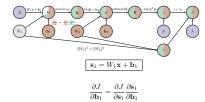
Backward Pass

Compute local Jacobian of node \mathbf{s}_1 w.r.t. its child \mathbf{b}_1

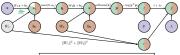


- $\bullet \ \ \, \text{The Jacobian we need to compute:} \ \, \frac{\partial s_1}{\partial s_1} = \begin{pmatrix} \frac{\partial s_{1,1}}{\partial s_1}, & \cdots & \frac{\partial s_{1,1}}{\partial s_{1,m}} \\ \vdots & & & \vdots \\ \frac{\partial s_{1,m}}{\partial s_{1,1}}, & \cdots & \frac{\partial s_{1,m}}{\partial s_{1,m}} \end{pmatrix}$
- The individual derivatives: $\frac{\partial s_{1,i}}{\partial b_{1,j}} = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}_1}{\partial \mathbf{b}_1} = I_m$

Compute gradient of J w.r.t. node \mathbf{b}_1



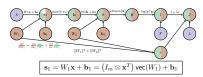
Compute local Jacobian of node \mathbf{s}_1 w.r.t. its child W



$\mathbf{s}_1 = W_1 \mathbf{x} + \mathbf{b}_1 = (I_m \otimes \mathbf{x}) \overline{\text{vec}(W_1)}$

- $\bullet \ \ \mathsf{Let} \ \mathbf{v} = \mathsf{vec}(W_1). \ \ \mathsf{Jacobian} \ \ \mathsf{to} \ \ \mathsf{compute} : \ \frac{\partial s_1}{\partial \mathbf{v}} = \begin{pmatrix} \frac{\partial s_{1,1}}{\partial \mathbf{v}_1} & \cdots & \frac{\partial s_{1,1}}{\partial \mathbf{v}_{dm}} \\ \vdots & \vdots & \vdots \\ \frac{\partial s_{1,m}}{\partial \mathbf{v}_1} & \cdots & \frac{\partial s_{1,m}}{\partial \mathbf{v}_{dm}} \end{pmatrix}$
- $\bullet \ \, \text{ The individual derivatives: } \frac{\partial s_{1,i}}{\partial v_j} = \begin{cases} x_{j-(i-1)d} & \text{if } (i-1)d+1 \leq j \leq id \\ 0 & \text{otherwise} \end{cases}$
- In vector notation: $\frac{\partial \mathbf{s}_1}{\partial \mathbf{w}} = I_m \otimes \mathbf{x}^T$

Compute gradient of J w.r.t. node W_1

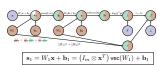


$$\begin{split} \frac{\partial J}{\partial \text{vec}(W_1)} &= \frac{\partial J}{\partial \mathbf{s}_1} \frac{\partial \mathbf{s}_1}{\partial \text{vec}(W_1)} + \frac{\partial J}{\partial r} \frac{\partial r}{\partial \text{vec}(W_1)} \\ &= \left(g_1 \mathbf{x}^T - g_2 \mathbf{x}^T - \cdots - g_m \mathbf{x}^T\right) + \lambda \operatorname{vec}(W_1)^T & \leftarrow \operatorname{gradient needed for learning} \end{split}$$

if we set $\mathbf{g} = \frac{\partial J}{\partial \mathbf{s}_1}$.

Backward Pass

Compute gradient of J w.r.t. node W_1



Can convert

$$\frac{\partial J}{\partial \log(W_1)} = (g_1 \mathbf{x}^T \quad g_2 \mathbf{x}^T \quad \cdots \quad g_m \mathbf{x}^T) + 2\lambda \operatorname{vec}(W_1)^T$$

(where $\mathbf{g} = \frac{\partial J}{\partial \mathbf{s}_1}$) from a vector $(1 \times md)$ back to a 2D matrix $(m \times d)$:

$$\frac{\partial J}{\partial W_1} = \begin{pmatrix} g_1 \mathbf{x}^T \\ g_2 \mathbf{x}^T \\ \vdots \\ g_C \mathbf{x}^T \end{pmatrix} + 2\lambda W_1 = \mathbf{g}^T \mathbf{x}^T + 2\lambda W_1$$

Aggregated backward pass for a 2-layer neural network

1. Let

$$\mathbf{g} = -\frac{\mathbf{y}^T}{\mathbf{p}^T} \left(\operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T \right)$$

2. Gradient of J w.r.t. second bias vector is the $1\times c$ vector

$$\frac{\partial J}{\partial \mathbf{b}_2} = \mathbf{g}$$

3. Gradient of J w.r.t. second weight matrix W_2 is the $c \times m$ matrix

$$\frac{\partial J}{\partial W_i} = \mathbf{g}^T \mathbf{h}^T + 2\lambda W_2$$

Propagate the gradient vector g to the first layers

$$g = gW_2$$

$$\mathbf{g} = \mathbf{g} \operatorname{diag}(\operatorname{Ind}(\mathbf{s}_1 > 0)) \leftarrow \operatorname{assuming} \operatorname{ReLu} \operatorname{activation}$$

5. Gradient of J w.r.t. the first bias vector is the $1 \times d$ vector ∂J

$$\frac{\partial \mathbf{b}}{\partial \mathbf{b}_1} = \mathbf{g}$$

6. Gradient of J w.r.t. the first weight matrix W_1 is the $m \times d$ matrix $\frac{\partial J}{\partial W_1} = \mathbf{g}^T \mathbf{x}^T + 2\lambda W_1$

2-layer scoring function + SOFTMAX + cross-entropy loss + Regularization

- Compute gradients of l w.r.t. $W_1, W_2, \mathbf{b}_1, \mathbf{b}_2$ for each $(\mathbf{x}, y) \in \mathcal{D}^{(t)}$:
 - Set all entries in ∂L/∂b₁, ∂L/∂b₂, ∂L/∂W₁ and ∂L/∂W₂ to zero.
 - for $(\mathbf{x}, y) \in \mathcal{D}^{(t)}$
 - 1. Let $g = -\frac{y^T}{T} \left(diag(p) pp^T \right)$
 - 2. Add gradient of l w.r.t. b2 computed at (x, y)

$$\frac{\partial L}{\partial \mathbf{b}_2}$$
 += \mathbf{g} , $\frac{\partial L}{\partial W_2}$ += $\mathbf{g}^T \mathbf{h}^T$

Propagate the gradients

$$g = gW_2$$

 $g = g \operatorname{diag}(\operatorname{Ind}(s_1 > 0))$

4. Add gradient of l w.r.t. first layer parameters computed at (\mathbf{x},y)

$$\frac{\partial L}{\partial \mathbf{b}_1} += \mathbf{g}, \quad \frac{\partial L}{\partial W_1} += \mathbf{g}^T \mathbf{x}^T$$
 - Divide by the number of entries in $\mathcal{D}^{(t)}$:

 ∂L , m(t), ∂L

$$\frac{\partial L}{\partial W_i}$$
 /= $|D^{(t)}|$, $\frac{\partial L}{\partial \mathbf{b}_i}$ /= $|D^{(t)}|$ for $i = 1, 2$

Add the gradient for the regularization term

$$\frac{\partial J}{\partial W_i} = \frac{\partial L}{\partial W_i} + 2\lambda W_i, \quad \frac{\partial J}{\partial \mathbf{b}_i} = \frac{\partial L}{\partial \mathbf{b}_i} \quad \text{for } i = 1, 2$$

Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

• Let $\mathbf{y}^T = \mathbf{y}^T = \mathbf{y}^T = \mathbf{y}^T$

$$\mathbf{g} = -\frac{\mathbf{y}^T}{\mathbf{y}^T\mathbf{p}}\left(\mathsf{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T\right)$$

- for i = k, k 1, ..., 1
 - 1. The gradient of J w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial J}{\partial \mathbf{b}} = \mathbf{g}$$

2. Gradient of J w.r.t. weight matrix W_i

$$\frac{\partial J}{\partial W} = \mathbf{g}^T \mathbf{x}^{(i-1)T} + 2\lambda W_i$$

3. Propagate the gradient vector \mathbf{g} to the previous layer (if i > 1)

$$\begin{split} \mathbf{g} &= \mathbf{g}W_i \\ \mathbf{g} &= \mathbf{g} \; \mathsf{diag}(\mathsf{Ind}(\mathbf{s}^{(i-1)} > 0)) \end{split}$$

- Let x⁽⁰⁾ = x represent the input.
- for i = 1,...,k − 1

$$\mathbf{s}^{(i)} = W_i \mathbf{x}^{(i-1)} + \mathbf{b}_i$$

$$\mathbf{x}^{(i)} = \max(0, \mathbf{s}^{(i)})$$

- Apply the final linear transformation
 s^(k) = W_b x^(k-1) + b_b
 - $\mathbf{s}^{(\kappa)} = W_k \mathbf{x}^{(\kappa-1)} + \mathbf{b}_k$
- Apply SOFTMAX operation to turn final scores into probabilities

$$\mathbf{p} = \frac{\exp(\mathbf{s}^{(k)})}{\mathbf{1}^T \exp(\mathbf{s}^{(k)})}$$

 Apply cross-entropy loss and regularization to measure performance w.r.t. ground truth label $\mathbf y$

$$J = -\log(\mathbf{y}^T \mathbf{p}) + \lambda \sum_{i=1}^k ||W_i||^2$$

Assumed ReLu is the activation function at each intermediary layer.

Training Neural Networks a little bit of history

A bit of history

- · Perceptron algorithm invented by Frank Rosenblatt (1957).
- Mark 1 Perceptron machine First implementation of the perceptron algorithm.
- · Machine was connected to camera producing 20×20 pixel image and recognized letters.
- · Perceptron classification fn:

$$f(\mathbf{x}; \mathbf{w}) = \begin{cases} 1 & \text{if } \mathbf{w}^T \mathbf{x} + \mathbf{b} > 0 \\ 0 & \text{otherwise} \end{cases}$$

 For labelled training example (x, y) (y ∈ {-1,1}) the Perceptron loss is

$$l_p(\mathbf{x}, y; \mathbf{w}) = \max(0, -y(\mathbf{w}^T \mathbf{x} + b))$$

. Update rule: Use SGD to learn w. If training example (x_i, u_i) is incorrectly classified then

$$\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$$

- ADALINE (Adaptive Linear Element) developed by Widrow and Hoff at Stanford in 1960
- · Adaline a single layer neural network with one output

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b$$

Loss function: for labelled training example (x, y)

$$l(\mathbf{x}, y, \mathbf{w}) = (y - (\mathbf{w}^T \mathbf{x} + b))^2 = (y - \hat{y})^2$$

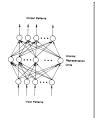
Update rule: Use SGD with learning rate η to learn w:

$$\mathbf{w} \leftarrow \mathbf{w} + n(y - \hat{y})\mathbf{x}$$

Extension Madaline: a three-layer, fully connected, feed-forward artificial

A bit of history

Learning Internal Representations by Error Propagation, D. Rumelhart, G, Hinton and R. Williams, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1986.



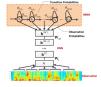
First time back-propagation became popular

New wave of research in Deep Learning.

- · Ability to train networks with many layers.
- Mixture of unsupervised and supervised training.
- Unsupervised: Encoding layers first learnt in stagewise manner using RBMs (restricted Boltzman machines).
- · Decode lavers using an auto-encoder
- · Supervised: Back-prop used to do final update of weights.

Reducing the Dimensionality of Data with Neural Networks. Hinton and Salakhutdinov. Science. 2006.

 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, G. Dahl, D. Yu, L. Deng, A. Acero, 2010.

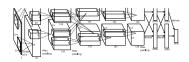


- Beat the widely established approach of GMM-HMM with a DNN-HMM.
- · Improved results on popular datasets by 5.8% and 9.2%.

Better understanding of gradient flows during BackProp helped with these breakthroughs

Understanding Effect of Activation Functions

 ImageNet classification with deep convolutional neural networks A. Krizhevsky, I. Sutskever, G. Hinton, 2012.



- Beat the stagnating established approaches of Handcrafted features + kernel SVM.
- Improved results on ImageNet by $\sim 11\%$.

Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Squashes numbers to range [0,1].
- · Has nice interpretation as a saturating firing rate of a neuron.

Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
 - Have a sigmoid activation

$$s = Wx + b$$

 $h = \sigma(s)$

- Derivative of the sigmoid function is:

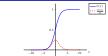
$$\frac{\partial h_i}{\partial s_j} = \begin{cases} \frac{\exp(-s_i)}{(1 + \exp(-s_i))^2} & (= \sigma'(s_i)) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- As

$$\frac{\partial J}{\partial s_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} = \frac{\partial J}{\partial h_i} \sigma'(s_i)$$

What happens to gradient of J w.r.t. s_i when $|s_i| > 5$?

Sigmoid



Problems

1. Saturated activations kill the gradients.

 $\sigma(x) = \frac{1}{1 + \exp(-x)}$

2. Sigmoid outputs are not zero-centered.

- Have a sigmoid activation
$$\mathbf{s} = W\mathbf{x} + \mathbf{b}, \quad \mathbf{h} = \sigma(\mathbf{s})$$

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \underbrace{\frac{\partial J}{\partial h_i}}_{\text{positive or negative}} \overset{\mathbf{v}^T}{\underset{\text{positive or negative}}{\text{positive}}} \overset{\mathbf{x}^T}{\underset{\text{positive or negative}}{\text{positive}}}$$

What happens to $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are positive? \implies entries of $\frac{\partial J}{\partial \mathbf{w}_i}$ are either all positive or all negative.

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
 - Have a sigmoid activation

$$s = Wx + b$$

 $h = \sigma(s)$

- Then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \; \sigma'(s_i) \; \mathbf{x}^T$$

What happens to $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are positive?

Sigmoid

Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
 - Have a sigmoid activation

$$s = Wx + b$$
, $h = \sigma(s)$

 $\mathbf{s} = W \mathbf{X} + \mathbf{B}, \quad \mathbf{H} = \theta (\mathbf{s})$ Then

 $\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial \mathbf{s}_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial \mathbf{w}_i} \qquad = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \sigma'(s_i) \mathbf{x}^T$ What is $\frac{\partial J}{\partial \mathbf{w}_i}$ when all entries in \mathbf{x} are +tive? (occurs after applying sigmoid)

 \implies entries of $\frac{\partial J}{\partial \mathbf{w}_i}$ are either all positive or all negative.

⇒ inefficient zig-zag update paths to find optimal w_i

Sigmoid tanh

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

Problems

- 1. Saturated activations kill the gradients.
- 2. Sigmoid outputs are not zero-centered.
- 3. $\exp()$ is expensive to compute

$\tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}$

Properties

- $1. \ \ {\rm Squashes\ numbers\ to\ range}\ [-1,1].$
- 2. Tanh outputs are zero-centered.
- 3. Saturated activations kill the gradients.

Rectified Linear Unit (ReLu)

Pros

- 1. Does not saturate for large positive \boldsymbol{x} .
- 2. Very computationally efficient.
- 3. In practice training of a ReLu network converges much faster than one with sigmoid/tanh activation functions.

Rectified Linear Unit (ReLu)

Problems

- 1. Output is not zero-centered
- 2. Negative inputs result in zero gradients.
 - Have a ReLu activation

$$s = Wx + b$$

 $h = max(0, s)$

- Derivative of the ReLu function is:

$$\frac{\mathbf{t}_i}{\mathbf{t}_j} = \begin{cases} 1 & \text{if } i = j & \text{& } s_j > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Then

$$\frac{\partial J}{\partial s_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} = \begin{cases} \frac{\partial J}{\partial h_i} & \text{if } s_i > \\ 0 & \text{otherw} \end{cases}$$

Problems

- 1. Output is not zero-centered
- 2. Negative activations have zero gradients and freezes some parameter weights. As

$$s = Wx + b$$
, $h = max(0, s)$

then

$$\frac{\partial J}{\partial \mathbf{w}_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\partial s_i} \frac{\partial s_i}{\partial \mathbf{w}_i} = \begin{cases} \frac{\partial J}{\partial h_i} \ \mathbf{x}^T & \text{if } s_i > 0 \\ \mathbf{0} & \text{otherwise} \end{cases}$$

- ⇒ dead ReLU will never activate
- ⇒ never update parameter weights.

Leaky ReLu(x) = max(.01x, x)

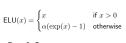
Pros

- 1. Does not saturate.
- 2. Computationally efficient.
- 3. In practice training of a Leaky ReLu network converges much faster than one with sigmoid/tanh activation functions.
- 4 Activations do not die

[Mass et al., 2013] [He et al., 2015]

Exponential Linear Units (ELU)

Which Activation Function?



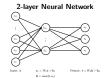
- 1. All the benefits of ReLu.
- 2. Activations do not die.
- 3. Closer to zero mean outputs.
- 4. Computation requires exp()

[Clevert et al., 2015]

In practice

- · Use ReLU.
 - Be careful with your learning rates.
 - Initialize bias vectors to be slightly positive.
- . Try out Leaky ReLU / ELU.
- · Try out tanh but don't expect much.
- · Don't use sigmoid.

Pathological weight initialization



What happens when you initialize each weight matrix entry to

Effect of weight initialization & activation function on gradient flow

zero? (each $W_{i,lm}=0$)

Initialize with small random numbers

Initialize with small random numbers

$$W_{i,lm} \sim N(w; 0, .01^2)$$

What happens in this case?

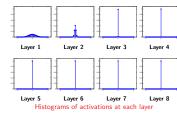
$$W_{i,lm} \sim N(w; 0, .01^2)$$

What happens in this case?

Works okay for small networks, but can lead to non-homogeneous distributions of activations across the layers of a deep network.

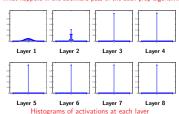
- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each laver.
- Initialize weights will small random numbers.
- Generate random input data (N(0, 1²)) with d = 500.

- · Initialize a 10-layer network with 500 nodes at each layer.
- · Use a tanh activation function at each layer.
- · Initialize weights will small random numbers.
- Generate random input data (N(0,1²)) with d = 500.



Some activation histograms

- All activations become zero at the layers > 2.
- · What happens in the backward pass of the back-prop algorithm?



Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

Let

$$\mathbf{g} = -\frac{\mathbf{y}^T}{\mathbf{y}^T\mathbf{p}}\left(\mathsf{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T\right)$$

• for i = k, k - 1, ..., 1

1. The gradient of J w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial J}{\partial \mathbf{b}_i} = \mathbf{g}$$

2. Gradient of J w.r.t. weight matrix W_i

$$\frac{\partial J}{\partial W_i} = \mathbf{g}^T \mathbf{x}^{(i-1)T} + 2\lambda W_i$$

3. Propagate the gradient vector \mathbf{g} to the previous layer (if i > 1)

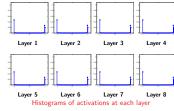
$$\begin{split} \mathbf{g} &= \mathbf{g}W_i \\ \mathbf{g} &= \mathbf{g} \; \mathsf{diag}(\mathsf{Ind}(\mathbf{s}^{(i)} > 0)) \end{split}$$

Change the initialization to bigger random numbers

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each laver.
- Initialize weights with bigger random numbers: W_{i,lm} ~ N(w; 0, 1²).
- Generate random input data (N(0, 1²)) with d = 500.

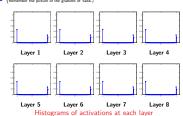
Change the initialization to bigger random numbers

- · Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each layer.
- Initialize weights with bigger random numbers: W_{i,lm} ~ N(w; 0, 1²).
- Generate random input data (N(0, 1²)) with d = 500.



Change the initialization to bigger random numbers

- Almost all neurons completely saturated, either -1 or +1.
- ⇒ Gradients will be all zero
- (Remember the picture of the gradient of tanh.)



Aggregated Backward pass for a k-layer neural network

The gradient computation for one training example (x, y):

Let

$$\mathbf{g} = -\frac{\mathbf{y}^T}{\mathbf{y}^T\mathbf{p}} \left(\mathsf{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}^T \right)$$

- for i = k, k 1, ..., 1
 - 1. The gradient of J w.r.t. bias vector \mathbf{b}_i

$$\frac{\partial J}{\partial \mathbf{b}} = \mathbf{g}$$

2. Gradient of J w.r.t. weight matrix W_i

$$\frac{\partial J}{\partial W} = \mathbf{g}^T \mathbf{x}^{(i-1)T} + 2\lambda W_i$$

3. Propagate the gradient vector \mathbf{g} to the previous layer (if i > 1)

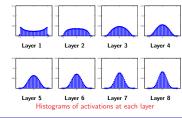
$$\begin{split} \mathbf{g} &= \mathbf{g} W_i \\ \mathbf{g} &= \mathbf{g} \; \mathsf{diag}(\mathsf{tanh}'(\mathbf{s}^{(i)})) \end{split}$$

Change the initialization to Xavier initialization

Change the initialization to Xavier initialization

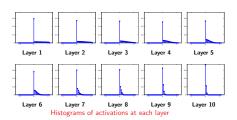
- Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each laver.
- Initialize weights with Xavier initialization: W_{i Im} ~ N(w; 0, 1/√500).
- Generate random input data (N(0, 1²)) with d = 500.

- · Initialize a 10-layer network with 500 nodes at each layer.
- Use a tanh activation function at each layer.
- Initialize weights with Xavier initialization: W_{i,lm} ∼ N(w; 0, 1/√500).
- Generate random input data (N(0,1²)) with d = 500.



Xavier initialization doesn't work for Rel u activation

- Initialize a 10-layer network with 500 nodes at each layer.
- Use a ReLu activation function at each laver.
- Initialize weights with Xavier initialization: W_{i,lm} ∼ N(w; 0, 1/√500).
- Generate random input data (N(0, 1²)) with d = 500.



Proper Initialization an active area of research

- . Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010
- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al. 2013
- Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
- . Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
- · Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015
- All you need is a good init. Mishkin and Matas. 2015

Batch Normalization

Want unit Gaussian activations at each layer?

Just make them unit Guassian!

Idea introduced in:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, S. Ioffe, C. Szegedy, arXiv 2015.

- Consider activations at some layer for a batch: $\mathbf{s}_1^{(j)}, \mathbf{s}_2^{(j)} \dots, \mathbf{s}_n^{(j)}$
- To make each dimension unit gaussian, apply:

$$\hat{\mathbf{s}}_i^{(j)} = \mathsf{diag}(\sigma_1, \dots, \sigma_m)^{-1} \left(\mathbf{s}_i^{(j)} - \boldsymbol{\mu} \right)$$

where

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{s}_{i}^{(j)}, \quad \sigma_{p}^{2} = \frac{1}{n} \sum_{i=1}^{n} (s_{i}^{(j)}, p - \mu_{p})^{2}$$

Batch Normalization

Batch Normalization: Scale & shift range

- Usually apply normalization after the fully connected layer before non-linearity.
- Therefore for a k-layer network have

for
$$(\mathbf{x}^{(i-1)}, y) \in \mathcal{D} \leftarrow \mathsf{Apply}$$
 ith linear transformation to batch
$$\mathbf{s}^{(i)} = W_i \mathbf{x}^{(i-1)} + \mathbf{b}_i$$

Lessening the effect of initialization: Batch normalization

end

Compute batch mean and variances of ith layer:

$$\mu = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}(i) \in \mathcal{D}} \mathbf{s}^{(i)}, \quad \sigma_j^2 = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x}(i) \in \mathcal{D}} \left(s_j^{(i)} - \mu_j \right)^2 \text{ for } j = 1, \dots, m_i$$

for $(\mathbf{s}^{(i)}, y) \in \mathcal{D} \leftarrow$ Apply BN and activation function

$$\begin{split} \hat{\mathbf{s}}^{(i)} &= \mathsf{BatchNormalise}(\mathbf{s}^{(i)}, \pmb{\mu}, \sigma_1, \dots, \sigma_{m_i}) \\ \mathbf{x}^{(i)} &= \max\left(0, \hat{\mathbf{s}}^{(i)}\right) \end{split}$$

end

end
 Apply final linear transformation: s^(k) = W_kx^(k-1) + b_k

Can also allow the network to squash and shift the range

$$\hat{\mathbf{s}}^{(i)} = \gamma^{(i)}\hat{\mathbf{s}}^{(i)} + \beta^{(i)}$$

of the $\hat{\mathbf{s}}^{(i)}$'s at each layer.

- Can learn the $\gamma^{(i)}$'s and $\beta^{(i)}$'s and add them as parameters of the network.
- · To keep things simple this added complexity is often omitted.

Benefits of Batch Normalization

Batch Normalization at Test Time

- · Improves gradient flow through the network.
- · Reduces the strong dependence on initialization.
- ⇒ learn deeper networks more reliably.
- · Allows higher learning rates.
- · Acts as a form of regularization.

If training a deep network, you should use Batch Normalization.

Back-Prop for a Batch Normalization laver.

- At test time do not have a batch.
- Instead fixed empirical mean and variances of activations at each level are used.
- These quantities estimated during training (with running averages).

Computational Graph for a BN layer

. Compute the mean and variance for the scores in the batch:

$$\mu_b = \frac{1}{n} \sum_{i=1}^{n} \mathbf{s}_i, \quad v_{b,j} = \frac{1}{n} \sum_{i=1}^{n} (s_{i,j} - \mu_{b,j})^2$$

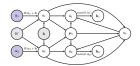
where $\mathbf{v}_b = (v_{b,1}, v_{b,2}, \dots, v_{b,m})^T$. (n=2 in the figure.) Define $V_b = \operatorname{diag}\left(\mathbf{v}_b + \epsilon\right)$

Apply batch normalization function to each score vector:

$$\hat{s}_i = V_b^{-\frac{1}{2}} (s_i - \mu_b)$$

Gradient Computations for a BN layer

Gradient Computations for a BN layer



- Want to compute $\frac{\partial J}{\partial \mathbf{s}_i}$ for each \mathbf{s}_i in the batch.
- The children of node s_i are $\{\hat{s}_i, \mathbf{v}_b, \boldsymbol{\mu}_b\}$ thus

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

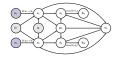
Let's look at the individual gradients and Jacobians.

$$\frac{\partial J}{\partial \mathbf{s}_i} = \qquad \quad \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \qquad \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

assume arready computed

Gradient Computations for a BN layer

Gradient Computations for a BN layer



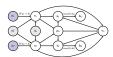
$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{b}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

• The equation relating $\hat{\mathbf{s}}_i$ to \mathbf{v}_b (remember $V_b = \mathsf{diag}(\mathbf{v}_b + \epsilon)$)

$$\hat{s}_i = V_b^{-\frac{1}{2}} (s_i - \mu_b)$$

Therefore

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} = V_b^{-\frac{1}{2}}$$



$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{b}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- The children of node \mathbf{v}_b are $\{\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_n\}$
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^{n} \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b}$$

Gradient Computations for a BN layer

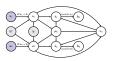
Gradient Computations for a BN layer

$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{\mu}_{b}} \frac{\partial \mathbf{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- The children of node v_b are {\$1,...,\$n}
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^n \quad \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b}$$

Gradient Computations for a BN layer

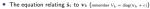


$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{b}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{b}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- The children of node v_b are {\$i₁,...,\$_n}
- Therefore

$$\frac{\partial J}{\partial \mathbf{v}_b} = \sum_{i=1}^{n} \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \quad \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b} \\ \uparrow \\ \text{compute now}$$

Gradient Computations for a BN layer



$$\hat{\mathbf{s}}_{i} = V_{i}^{-\frac{1}{2}} (\mathbf{s}_{i} - \boldsymbol{\mu}_{i})$$

. The local Jacobian we want to compute

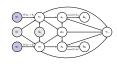
$$\frac{\partial \dot{\mathbf{s}}_i}{\partial \mathbf{v}_b} = \begin{pmatrix} \frac{\partial \dot{s}_{i,1}}{\partial v_{b,1}} & \cdots & \frac{\partial \dot{s}_{i,1}}{\partial v_{b,m}} \\ \vdots & \vdots & \vdots \\ \frac{\partial \dot{s}_{i,m}}{\partial s_{i,m}} & \cdots & \frac{\partial \dot{s}_{i,m}}{\partial s_{i,m}} \end{pmatrix}$$

Computing the derivative for each individual element:

$$\frac{\partial \hat{s}_{i,j}}{\partial v_{b,k}} = \begin{cases} -\frac{1}{2}(v_{b,k} + \epsilon)^{-\frac{3}{2}}(s_{i,k} - \mu_{b,k}) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

In matrix form

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{v}_b} = -\frac{1}{2}V_b^{-\frac{3}{2}} \text{diag} \left(\mathbf{s}_i - \boldsymbol{\mu}_b\right)$$



$$\frac{\partial J}{\partial \mathbf{s}_{i}} = \frac{\partial J}{\partial \hat{\mathbf{s}}_{i}} \frac{\partial \hat{\mathbf{s}}_{i}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \mathbf{v}_{i}} \frac{\partial \mathbf{v}_{b}}{\partial \mathbf{s}_{i}} + \frac{\partial J}{\partial \boldsymbol{\mu}_{i}} \frac{\partial \boldsymbol{\mu}_{b}}{\partial \mathbf{s}_{i}}$$

- Next $\frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} = \frac{2}{n} \operatorname{diag} (\mathbf{s}_i \boldsymbol{\mu}_b)$.
 - $v_{b,j} = \frac{1}{n} \sum_{i=1}^{n} (s_{l,j} \mu_{b,j})^2$

and

$$\frac{\partial v_{b,j}}{\partial s_{i,k}} = \begin{cases} \frac{2}{n} (s_{i,j} - \mu_{b,j}) & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

Gradient Computations for a BN layer

Gradient Computations for a BN layer

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

- The children of node μ_b are {ŝ₁,...,ŝ_n, v_b}.
- Therefore

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

Gradient Computations for a BN layer

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \underbrace{\frac{\partial J}{\partial \mathbf{v}_b}}_{\text{already calculated}} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

• The equation relating $\hat{\mathbf{s}}_i$ to $\boldsymbol{\mu}_b$ (remember $V_b = \operatorname{diag}(\mathbf{v}_b + \epsilon)$)

$$\hat{\mathbf{s}}_i = V_b^{-\frac{1}{2}} (\mathbf{s}_i - \mu_b)$$

. The local Jacobian we want to compute

$$\frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} = -V_b^{-\frac{1}{2}}$$

Gradient Computations for a BN layer

$$\frac{\partial J}{\partial \boldsymbol{\mu}_b} = \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \boldsymbol{\mu}_b} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \boldsymbol{\mu}_b}$$

- Next $\frac{\partial \mathbf{v}_b}{\partial \mu_b} = 0$. As

$$v_{b,j} = \frac{1}{n} \sum_{i=1}^{n} (s_{i,j} - \mu_{b,j})^2$$

and

$$\frac{\partial v_{b,j}}{\partial \mu_{b,k}} = \begin{cases} -\frac{2}{n} \sum_{i=1}^{n} \left(s_{i,j} - \mu_{b,j}\right) = 0 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

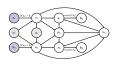
$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} \frac{\partial \hat{\mathbf{s}}_i}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \mathbf{v}_b} \frac{\partial \mathbf{v}_b}{\partial \mathbf{s}_i} + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i}$$

• The equation relating μ_b to \mathbf{s}_l 's is

$$\mu_b = \frac{1}{n} \sum_{l=1}^{n} \mathbf{s}_l$$

Therefore

$$\frac{\partial \boldsymbol{\mu}_b}{\partial \mathbf{s}_i} = \frac{1}{n} I_m$$



$$\frac{\partial J}{\partial \mathbf{v}_b} = -\frac{1}{2} \sum_{i=1}^n \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{3}{2}} \mathrm{diag}(\mathbf{s}_i - \boldsymbol{\mu}_b)$$

$$\frac{\partial J}{\partial \mu_b} = -\sum_{i=1}^{n} \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{1}{2}}$$

$$\frac{\partial J}{\partial \mathbf{s}_i} = \frac{\partial J}{\partial \hat{\mathbf{s}}_i} V_b^{-\frac{1}{2}} + \frac{2}{n} \frac{\partial J}{\partial \mathbf{v}_b} \mathrm{diag} \left(\mathbf{s}_i - \boldsymbol{\mu}_b \right) + \frac{\partial J}{\partial \boldsymbol{\mu}_b} \frac{1}{n}$$