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Part XIII

Rewriting

Rewriting in HOL

simplification via rewriting was already a strength of Edinburgh LCF

it was further improved for Cambridge LCF

HOL inherited this powerful rewriter

equational reasoning is still the main workhorse

there are many different equational reasoning tools in HOL
I Rewrite library

inherited from Cambridge LCF
you have seen it in the form of REWRITE TAC

I computeLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL

I simpLib — Simplification
sophisticated rewrite engine, HOL’s main workhorse
not discussed in this lecture, yet

I . . .
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Semantic Foundations

we have seen primitive inference rules for equality before

Γ ` s = t
∆ ` u = v

types fit

Γ ∪∆ ` s(u) = t(v)
COMB

Γ ` s = t
∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ ` s = t
x not free in Γ

Γ ` λx . s = λx . t
ABS

` t = t
REFL

these rules allow us to replace any subterm with an equal one

this is the core of rewriting
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Conversions

in HOL, equality reasoning is implemented by conversions

a conversion is a SML function of type term -> thm

given a term t, a conversion
I produce a theorem of the form |- t = t’
I raise an UNCHANGED exception
I fail, i. e. raise an HOL ERR exception

Example
> BETA CONV ‘‘(\x. SUC x) y‘‘

val it = |- (\x. SUC x) y = SUC y

> BETA CONV ‘‘SUC y‘‘

Exception-HOL_ERR ... raised

> REPEATC BETA CONV ‘‘SUC y‘‘

Exception- UNCHANGED raised
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Conversionals

similar to tactics and tacticals there are conversionals for conversions

conversionals allow building conversions from simpler ones

there are many of them
I THENC
I ORELSEC
I REPEATC
I TRY CONV
I RAND CONV
I RATOR CONV
I ABS CONV
I . . .
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Depth Conversionals

for rewriting depth-conversionals are important

a depth-conversional applies a conversion to all subterms

there are many different ones
I ONCE DEPTH CONV c — top down, applies c once at highest possible

positions in distinct subterms
I TOP SWEEP CONV c — top down, like ONCE DEPTH CONV, but continues

processing rewritten terms
I TOP DEPTH CONV c — top down, like TOP SWEEP CONV, but try

top-level again after change
I DEPTH CONV c — bottom up, recurse over subterms, then apply c

repeatedly at top-level
I REDEPTH CONV c — bottom up, like DEPTH CONV, but revisits subterms
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REWR CONV

it remains to rewrite terms at top-level

this is achieved by REWR CONV

given a theorem and a term t and a theorem |- t1 = t2,
REWR CONV t thm

I searches an instantiation of term and type variables such that t1
becomes α-equivalent to t

I fails, if no instantiation is found
I otherwise, instantiate the theorem and get |- t1’ = t2’
I return theorem |- t = t2’

Example
term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)

found type instantiation: [‘‘:’a‘‘ |-> ‘‘:num‘‘]

found term instantiation: [‘‘x:num‘‘ |-> ‘‘1‘‘; ‘‘xs‘‘ |-> ‘‘[2;3]‘‘]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

the tricky part is finding the instantiation

this problem is called the (term) matching problem
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Term Matching

given term t org and a term t goal try to find
I type substitution ty s
I term substitution tm s

such that subst tm s (inst ty s t org)
α≡ t goal

this can be easily implemented by a recursive search

t org t goal action
t1 org t2 org t1 goal t2 goal recurse
t1 org t2 org otherwise fail
\x. t org x \y. t goal y match types of x, y and recurse
\x. t org x otherwise fail
const same const match types
const otherwise fail
var anything try to bind var,

take care of existing bindings
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Examples Term Matching

t org t goal substs
LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a → num, x → 1, xs → [2;3]

[]:’a list []:’b list ’a → ’b

0 0 empty substitution

b /\ T (P (x:’a) ==> Q) /\ T b → P x ==> Q

b /\ b P x /\ P x b → P x

b /\ b P x /\ P y fail
!x:num. P x /\ Q x !y:num. P’ y /\ Q’ y P → P’, Q → Q’

!x:num. P x /\ Q x !y. (2 = y) /\ Q’ y P → ($= 2), Q → Q’

!x:num. P x /\ Q x !y. (y = 2) /\ Q’ y fail

it is often very annoying that the last match fails

it prevents us for example rewriting !y. (2 = y) /\ Q y to
(!y. (2=y)) /\ (!y. Q y)

Can we do better? Yes, with higher order (term) matching.
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Higher Order Term Matching

term matching searches for substitutions such that t org becomes
α-equivalent to t goal

higher order term matching searches for substitutions such that
t org becomes t subst such that the βη-normalform of t subst is
α-equivalent equivalent to βη-normalform of t goal, i. e.
higher order term matching is aware of the semantics of λ

β-reduction (λx . f ) y = f [y/x ]
η-conversion (λx . f x) = f where x is not free in f

the HOL implementation expects t org to be a higher-order
pattern

I t org is β-reduced
I if X is a variable that should be instantiated, then all arguments should

be distinct variables

for other forms of t org, HOL’s implementation might fail

higher order matching is used by HO REWR CONV
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Examples Higher Order Term Matching

t org t goal substs
!x:num. P x /\ Q x !y. (y = 2) /\ Q’ y P → (\y. y = 2), Q → Q’

!x. P x /\ Q x !x. P x /\ Q x /\ Z x Q → \x. Q x /\ Z x

!x. P x /\ Q !x. P x /\ Q x fails
!x. P (x, x) !x. Q x fails
!x. P (x, x) !x. FST (x,x) = SND (x,x) P → \xx. FST xx = SND xx

Don’t worry, it might look complicated, but
in practice it is easy to get a feeling for higher order matching.
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Rewrite Library

the rewrite library combines REWR CONV with depth conversions

there are many different conversions, rules and tactics

at they core, they all work very similarly
I given a list of theorems, a set of rewrite theorems is derived

F split conjunctions
F remove outermost universal quantification
F introduce equations by adding = T (or = F) if needed

I REWR CONV is applied to all the resulting rewrite theorems
I a depth-conversion is used with resulting conversion

for performance reasons an efficient indexing structure is used

by default implicit rewrites are added
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Rewrite Library II

REWRITE CONV

REWRITE RULE

REWRITE TAC

ASM REWRITE TAC

ONCE REWRITE TAC

PURE REWRITE TAC

PURE ONCE REWRITE TAC

. . .
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Ho Rewrite Library

similar to Rewrite lib, but uses higher order matching

internally uses HO REWR CONV

similar conversions, rules and tactics as Rewrite lib
I Ho Rewrite.REWRITE CONV
I Ho Rewrite.REWRITE RULE
I Ho Rewrite.REWRITE TAC
I Ho Rewrite.ASM REWRITE TAC
I Ho Rewrite.ONCE REWRITE TAC
I Ho Rewrite.PURE REWRITE TAC
I Ho Rewrite.PURE ONCE REWRITE TAC
I . . .
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Examples Rewrite and Ho Rewrite Library

> REWRITE CONV [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE REWRITE CONV [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> ONCE REWRITE CONV [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE CONV [] ‘‘A /\ A /\ ~A‘‘
Exception- UNCHANGED raised

> PURE REWRITE CONV [NOT AND] ‘‘A /\ A /\ ~A‘‘
val it = |- A /\ A /\ ~A <=> A /\ F

> REWRITE CONV [NOT AND] ‘‘A /\ A /\ ~A‘‘
val it = |- A /\ A /\ ~A <=> F

> REWRITE CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q x /\ R x‘‘

Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q x /\ R x‘‘

val it = |- !x. P x /\ Q x /\ R x <=> (!x. P x) /\ (!x. Q x) /\ (!x. R x)
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Summary Rewrite and Ho Rewrite Library

the Rewrite and Ho Rewrite library provide powerful infrastructure
for term rewriting

thanks to clever implementations they are reasonably efficient

basics are easily explained

however, efficient usage needs some experience
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Term Rewriting Systems

to use rewriting efficiently, one needs to understand about term
rewriting systems

this is a large topic

one can easily give whole course just about term rewriting systems

however, in practise you quickly get a feeling

important points in practise
I ensure termination of your rewrites
I make sure they work nicely together
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Term Rewriting Systems — Termination

Theory

choose well-founded order ≺
for each rewrite theorem |- t1 = t2 ensure t2 ≺ t1

Practice

informally define for yourself what simpler means

ensure each rewrite makes terms simpler

good heuristics
I subterms are simpler than whole term
I use an order on functions
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Termination — Subterm examples

a proper subterm is always simpler
I !l. APPEND [] l = l
I !n. n + 0 = n
I !l. REVERSE (REVERSE l) = l
I !t1 t2. if T then t1 else t2 <=> t1
I !n. n * 0 = 0

the right hand side should not use extra vars, throwing parts away is
usually simpler

I !x xs. (SNOC x xs = []) = T
I !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
I !n x xs. DROP (SUC n) (x::xs) = DROP n xs
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Termination — use simpler terms

it is useful to consider some functions simple and other complicated

replace complicated ones with simple ones

never do it in the opposite direction

clear examples
I |- !m n. MEM m (COUNT LIST n) <=> (m < n)
I |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)

unclear examples
I |- !L. REVERSE L = REV L []
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Termination — Normalforms

some equations can be used in both directions

one should decide on one direction

this implicitly defined a normalform one wants terms to be in

examples
I |- !f l. MAP f (REVERSE l) = REVERSE (MAP f l)
I |- !l1 l2 l3. l1 ++ (l2 ++ l3) = l1 ++ l2 ++ l3
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Termination — Problematic rewrite rules

some equations immediately lead to non-termination, e. g.
I |- !m n. m + n = n + m
I |- !m. m = m + 0

slightly more subtle are rules like
I |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)

often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

I |- !m n p. m + (n + p) = (m + n) + p and
|- !m n p. (m + n) + p = m + (n + p)
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Rewrites working together

rewrite rules should not complete with each other

if a term ta can be rewritten to ta1 and ta2 applying different
rewrite rules, then the ta1 and ta2 should be further rewritten to a
common tb

this can often be achieved by adding extra rewrite rules

Example

Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to

T or

EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.
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Rewrites working together II

to design rewrite systems that work well, normalforms are vital

a term is in normalform, if it cannot be rewritten any further

one should have a clear idea what the normalform of common terms
looks like

all rules should work together to establish this normalform

the right-hand-side of each rule should be in normalform

the left-hand-side should not be simplifiable by any other rule

the order in which rules are applied should not influence the final
result
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computeLib

computeLib is the library behind EVAL

it is a rewriting library designed for evaluating ground terms (i. e.
terms without variables) efficiently

it uses a call-by-value strategy similar to SML’s

it uses first order term matching

it performs β reduction in addition to rewrites
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compset

computeLib uses compsets to store its rewrites

a compset stores
I rewrite rules
I extra conversions

the extra conversions are guarded by a term pattern for efficiency

users can define their own compsets

however, computeLib maintains one special compset called
the compset

the compset is used by EVAL
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EVAL

EVAL uses the compset

tools like the Datatype of TFL automatically extend the compset

this way, EVAL knows about (nearly) all types and functions

one can extended the compset manually as well

rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

zDefine prevents TFL from automatically extending the compset
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simpLib

simpLib is a sophisticated rewrite engine

it is HOL’s main workhorse

it provides
I higher order rewriting
I usage of context information
I conditional rewriting
I arbitrary conversions
I support for decision procedures
I simple heuristics to avoid non-termination
I fancier preprocessing of rewrite theorems
I . . .

it is very powerful, but compared to Rewrite lib sometimes slow
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Basic Usage I

simpLib uses simpsets

simpsets are special datatypes storing
I rewrite rules
I conversions
I decision procedures
I congruence rules
I . . .

in addition there are simpset-fragments

simpset-fragments contain similar information as simpsets

fragments can be added to and removed from simpsets

most important simpset is std ss
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Basic Usage II

a call to the simplifier takes as arguments
I a simpset
I a list of rewrite theorems

common high-level entry points are
I SIMP CONV ss thmL — conversion
I SIMP RULE ss thmL — rule
I SIMP TAC ss thmL — tactic without considering assumptions
I ASM SIMP TAC ss thmL — tactic using assumptions to simplify goal
I FULL SIMP TAC ss thmL — tactic simplifying assumptions with each

other and goal with assumptions
I REV FULL SIMP TAC ss thmL — similar to FULL SIMP TAC but with

reversed order of assumptions

there are many derived tools not discussed here
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Basic Simplifier Examples

> SIMP_CONV bool_ss [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = 2
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Common simpsets

pure ss — empty simpset

bool ss — basic simpset

std ss — standard simpset

arith ss — arithmetic simpset

list ss — list simpset

real ss — real simpset
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Common simpset-fragments

many theories and libraries provide their own simpset-fragments

PRED SET ss — simplify sets

STRING ss — simplify strings

QI ss — extra quantifier instantiations

gen beta ss — β reduction for pairs

ETA ss — η conversion

EQUIV EXTRACT ss — extract common part of equivalence

CONJ ss — use conjunctions for context

. . .
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Build-In Conversions and Decision Procedures

in contrast to Rewrite lib the simplifier can run arbitrary conversions

most useful is probably β reduction

std ss has support for basic arithmetic and numerals

it also has simple, syntactic conversions for instantiating quantifiers
I !x. ... /\ (x = c) /\ ... ==> ...
I !x. ... \/ ~(x = c) \/ ...
I ?x. ... /\ (x = c) /\ ...

besides very useful conversions, there are decision procedures as well

the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE
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Examples I

> SIMP_CONV std_ss [] ‘‘(\x. x + 2) 5‘‘

val it = |- (\x. x + 2) 5 = 7

> SIMP_CONV std_ss [] ‘‘!x. Q x /\ (x = 7) ==> P x‘‘

val it = |- (!x. Q x /\ (x = 7) ==> P x) <=> (Q 7 ==> P 7)‘‘

> SIMP_CONV std_ss [] ‘‘?x. Q x /\ (x = 7) /\ P x‘‘

val it = |- (?x. Q x /\ (x = 7) /\ P x) <=> (Q 7 /\ P 7)‘‘

> SIMP_CONV std_ss [] ‘‘x > 7 ==> x > 5‘‘

Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] ‘‘x > 7 ==> x > 5‘‘

val it = |- (x > 7 ==> x > 5) <=> T
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Higher Order Rewriting

the simplifier supports higher order rewriting

this is often very handy

for example it allows moving quantifiers around easily

Examples
> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x‘‘

val it = |- (!x. P x /\ Q /\ R x) <=>

(!x. P x) /\ Q /\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]

‘‘!y. (P y /\ (?x. y = SUC x)) ==> Q y‘‘

val it = |- (!y. P y /\ (?x. y = SUC x) ==> Q y) <=>

!x. P (SUC x) ==> Q (SUC x)
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Context

a great feature of the simplifier is that it can use context information

by default simple context information is used like
I the precondition of an implication
I the condition of if-then-else

one can configure which context to use via congruence rules
I by using CONJ ss one can easily use context of conjunctions
I warning: using CONJ ss can be slow
I using other contexts is outside the scope of this lecture

using context often simplifies proofs drastically
I using Rewrite lib, often a goal needs to be split and a precondition

moved to the assumptions
I then ASM REWRITE TAC can be used
I with SIMP TAC there is no need to split the goal
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Context Examples

> SIMP_CONV std_ss [] ‘‘((l = []) ==> P l) /\ Q l‘‘

val it = |- ((l = []) ==> P l) /\ Q l <=>

((l = []) ==> P []) /\ Q l

> SIMP_CONV arith_ss [] ‘‘if (c /\ x < 5) then (P c /\ x < 6) else Q c‘‘

val it = |- (if c /\ x < 5 then P c /\ x < 6 else Q c) <=>

if c /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [] ‘‘P x /\ (Q x /\ P x ==> Z x)‘‘

Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ‘‘P x /\ (Q x /\ P x ==> Z x)‘‘

val it = |- P x /\ (Q x /\ P x ==> Z x) <=> P x /\ (Q x ==> Z x)
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Conditional Rewriting I

perhaps the most powerful feature of the simplifier is that it supports
conditional rewriting

this means it allows conditional rewrite theorem of the form
|- cond ==> (t1 = t2)

if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2’, it
tries to discharge the assumption cond’

for this, it calls itself recursively on cond’
I all the decision procedures and all context information is used
I conditional rewriting can be used
I to prevent divergence, there is a limit on recursion depth

if cond’ = T can be shown, t1’ is rewritten to t2’

otherwise t1’ is not modified
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Conditional Rewriting II

conditional rewriting is a very powerful technique

decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

it provides a powerful search for theorems that apply

however, if used naively, it can be slow

moreover, to work well, rewrite theorems need to of a special form
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Conditional Rewriting Example

consider the conditional rewrite theorem
!l n. LENGTH l <= n ==> (DROP n l = [])

let’s assume we want to prove
(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]

we can without conditional rewriting
I show |- LENGTH [1;2;3;4] <= 7
I use this to discharge the precondition of the rewrite theorem
I use the resulting theorem to rewrite the goal

with conditional rewriting, this is all automated

> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]

‘‘(DROP 7 [1;2;3;4]) ++ [5;6;7]‘‘

val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

conditional rewriting often shortens proofs considerably
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Conditional Rewriting Pitfalls I

if the pattern is too general, the simplifier becomes very slow

consider the following, trivial but hopefully useful example

Looping example
> val my_thm = prove (‘‘~P ==> (P = F)‘‘, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ‘‘P1 /\ P2 /\ P3 /\ ... /\ P10‘‘

runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.

Exception- UNCHANGED raised

> time (SIMP_CONV std_ss []) ‘‘P1 /\ P2 /\ P3 /\ ... /\ P10‘‘

runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.

Exception- UNCHANGED raised

I notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

I notice that each backchaining triggers many more backchainings
I each has to be aborted to prevent diverging
I as a result, the simplifier becomes very slow
I incidentally, the conditional rewrite is useless
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Conditional Rewriting Pitfalls II

good conditional rewrites |- c ==> (l = r) should mention only
variables in c that appear in l

if c contains extra variables x1 ... xn, the conditional rewrite
engine has to search instantiations for them

this mean that conditional rewriting is trying discharge the
precondition ?x1 ... xn. c

the simplifier is usually not able to find such instances

Transitivity
> val P_def = Define ‘P x y = x < y‘;

> val my_thm = prove (‘‘!x y z. P x y ==> P y z ==> P x z‘‘, ...)

> SIMP_CONV arith_ss [my_thm] ‘‘P 2 3 /\ P 3 4 ==> P 2 4‘‘

Exception- UNCHANGED raised

(* However transitivity of < build in via decision procedure *)

> SIMP_CONV arith_ss [P_def] ‘‘P 2 3 /\ P 3 4 ==> P 2 4‘‘

val it = |- P 2 3 /\ P 3 4 ==> P 2 4 <=> T:
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Conditional vs. Unconditional Rewrite Rules

conditional rewrite rules are often much more powerful

however, Rewrite lib does not support them

for this reason there are often two versions of rewrite theorems

drop example

DROP LENGTH NIL is a useful rewrite rule:
|- !l. DROP (LENGTH l) l = []

in proofs, one needs to be careful though to preserve exactly this form
I one should not (partly) evaluate LENGTH l or modify l somehow

with the conditional rewrite rule DROP LENGTH TOO LONG one does
not need to be as careful
|- !l n. LENGTH l <= n ==> (DROP n l = [])

I the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures
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Part XIV

Advanced Definition Principles

Relations

a relation is a function from some arguments to bool

the following example types are all types of relations:
I : ’a -> ’a -> bool
I : ’a -> ’b -> bool
I : ’a -> ’b -> ’c -> ’d -> bool
I : (’a # ’b # ’c) -> bool
I : bool
I : ’a -> bool

relations are closely related to sets
I R a b c <=> (a, b, c) IN {(a, b, c) | R a b c}
I (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c
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Relations II

relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R : ’a -> ’a ->

bool can be defined as the least relation RTC R that satisfies the
following rules:

R x y

RTC R x y RTC R x x

RTC R x y RTC R y z

RTC R x z

if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

least fixpoints give rise to inductive relations

greatest fixpoints give rise to coinductive relations

243 / 250



(Co)inductive Relations in HOL

(Co)IndDefLib provides infrastructure for defining (co)inductive
relations

given a set of rules Hol (co)reln defines (co)inductive relations

3 theorems are returned and stored in current theory
I a rules theorem — it states that the defined constant satisfies the rules
I a cases theorem — this is an equational form of the rules showing that

the defined relation is indeed a fixpoint
I a (co)induction theorem

additionally a strong (co)induction theorem is stored in current theory
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Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ‘

(!x y. R x y ==> RTC_REL R x y) /\

(!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)‘

val RTC_REL_rules = |- !R.

(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 a1.

RTC_REL R a0 a1 <=>

(R a0 a1 \/ (a1 = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R a0 a1)
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Example: Transitive Reflexive Closure II

val RTC_REL_ind = |- !R RTC_REL’.

((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z. RTC_REL’ x y /\ RTC_REL’ x z ==> RTC_REL’ x z)) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"

val RTC_REL_strongind = |- !R RTC_REL’.

(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R x z /\

RTC_REL’ x z ==>

RTC_REL’ x z) ==>

( !a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)
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Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln

‘(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))‘;

val EVEN_REL_cases =

|- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =

|- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(!a0.

EVEN_REL’ a0 ==>

(a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL’ n) ==>

(!a0. EVEN_REL’ a0 ==> EVEN_REL a0)

notice that in this example there is exactly one fixpoint

therefore for these rule, the induction and coinductive relation coincide
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Example: Dummy Relations

> val (DF_rules, DF_ind, DF_cases) = Hol_reln

‘(!n. DF (n+1) ==> (DF n))‘

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln

‘(!n. DT (n+1) ==> (DT n))‘

val DT_coind =

|- !DT’. (!a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’ a0 ==> DT a0

val DF_ind =

|- !DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1):

val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):

notice that for both DT and DF we used essentially a non-derminating
recursion

DT is always true, i. e. |- !n. DT n

DF is always false, i. e. |- !n. ~(DF n)
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