Interactive Theorem Proving (ITP) Course
Parts XIII, XIV

Thomas Tuerk (tuerk@kth.se)

by

F
FKTHY

$ verewscar &

3% OCH KONST 3%

s

Academic Year 2016/17, Period 4

version €129362 of Mon May 22 09:50:13 2017

Rewriting in HOL ffﬁ‘%
=
o simplification via rewriting was already a strength of Edinburgh LCF

©

it was further improved for Cambridge LCF

o HOL inherited this powerful rewriter

©

equational reasoning is still the main workhorse

©

there are many different equational reasoning tools in HOL
» Rewrite library
inherited from Cambridge LCF
you have seen it in the form of REWNRITE_TAC
» computelLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL
» simpLib — Simplification
sophisticated rewrite engine, HOL's main workhorse
not discussed in this lecture, yet

198 /250

Part XII|

Rewriting

by

Sy,
$KTHE

VETENSKAP
&9 OCH KONST o%

) 9

TR

Semantic Foundations

o we have seen primitive inference rules for equality before

Fs=t
AFu=v Ns=t
types fit x not free in T
COMB
FrNUAFE s(u) =t(v) MEAx.s=Ax. t
M-s=t REFL
AFt=u _
— TRANS Ft=t
TUAFs=u

o these rules allow us to replace any subterm with an equal one

o this is the core of rewriting

{xuy

ey

ABS

199 /250

Conversions {;%;?
o in HOL, equality reasoning is implemented by conversions
o a conversion is a SML function of type term -> thm
o given a term t, a conversion
» produce a theorem of the form |- t = t’
> raise an UNCHANGED exception
» fail, i.e. raise an HOL_ERR exception
Example
> BETA_CONV ‘‘(\x. SUC x) y‘¢
val it = |- (\x. SUC x) y = SUC y
> BETA_CONV ‘‘SUC y*¢
Exception-HOL_ERR ... raised
> REPEATC BETA_CONV ‘‘SUC y*°
Exception- UNCHANGED raised
200 /250
Depth Conversionals g,%%s%

o for rewriting depth-conversionals are important

o a depth-conversional applies a conversion to all subterms

o there are many different ones

| 4

ONCE_DEPTH_CONV ¢ — top down, applies ¢ once at highest possible
positions in distinct subterms

TOP_SWEEP_CONV ¢ — top down, like ONCE_DEPTH_CONV, but continues
processing rewritten terms

TOP_DEPTH_CONV ¢ — top down, like TOP_SWEEP_CONV, but try
top-level again after change

DEPTH_CONV ¢ — bottom up, recurse over subterms, then apply c
repeatedly at top-level

REDEPTH_CONV ¢ — bottom up, like DEPTH_CONV, but revisits subterms

Conversionals

o similar to tactics and tacticals there are conversionals for conversions

o conversionals allow building conversions from simpler ones
o there are many of them
» THENC
ORELSEC
REPEATC
TRY_CONV
RAND_CONV
RATOR_CONV
ABS_CONV

vV VY VY VY VY VvYYyY

REWR_CONV

o it remains to rewrite terms at top-level

o this is achieved by REWR_CONV

o given a theorem and a term t and a theorem |- t1 = t2,
REWR_CONV t thm
» searches an instantiation of term and type variables such that t1
becomes a-equivalent to t
» fails, if no instantiation is found
» otherwise, instantiate the theorem and get |- t1’> = t2’
> return theorem |- t = t2’

Example

term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)
found type instantiation: [“¢:’a‘‘ |-> “‘:num‘‘]

found term instantiation: [¢‘x:num‘‘¢ [-> €“1¢¢; “‘xs‘‘ |-> ““[2;3]¢‘]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

o the tricky part is finding the instantiation
o this problem is called the (term) matching problem

Term Matching {;%i? Examples Term Matching %;@E

........... L8
o e
o given term t_org and a term t_goal try to find t_org t_goal substs
> type substitution ty_s LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a — num, x — 1, xs — [2;3]
— - [1:’a list [1:°b list ’a — ’b
» term substitution tm_s 0 0 empty substitution
(&2) P -
o such that subst tm_s (inst ty.s t_org) = t_goal bAT (P (x:’a) ==> Q) /AT Db —Px==>Q
b /\b Px /\Px b — P x
o this can be easily implemented by a recursive search b /\'b Px/\Py fail
'x:num. P x /\ Q x lyinum. P’y /\ Q’ y P—-P,Q - Q
. 'x:num. P x /\ Q x ly. Q=yv) /ANQ ¥y P— ($=2),Q0 - Q
t-org t-goal action 'x:num. P x /\ Q x ly. (3 =2 /\NQ y fail
tlorg t2.org tl_goal t2_goal recurse
tl org t2_org otherwise fail o) .
\x. t.org x \y. t.goal y match types of x, y and recurse o it is often very annoying that the last match fails
\x. t_org x otherwise fail o it prevents us for example rewriting 'y. (2 = y) /\ Q y to
const same c_onst m_atch types (!y. (2=y)) /\ (!y. Q y)
const otherwise fail N . . .
var anything try to bind var, o Can we do better? Yes, with higher order (term) matching.

take care of existing bindings

Higher Order Term Matching g,??}% Examples Higher Order Term Matching f,?%}a%
' barid

. N St
o term matching searches for substitutions such that t_org becomes N
a-equivalent to t_goal

o higher order term matching searches for substitutions such that

t_org becomes t_subst such that the Sn-normalform of t_subst is t_org t_goal substs
_ . . - . 'xtnum. Px /A Qx l!y. (y=2) NQ ¥y P—> (\y.y=2),0 > Q
a; equivalent equivalent to .677 rjormalform of t_goal, |.fe. x. Px/AQax I PxAQxNZx Qo \x 0x A Zx
higher order term matching is aware of the semantics of A 'x. Px /\ Q 'x. Px /\ Q x fails
x. P (x, x) 'x. Q x fails
,B—reduction ()\X f) y = f[y/X] 'x. P (x, x) 'x. FST (x,x) = SND (x,x) P — \xx. FST xx = SND xx

n-conversion (Ax. f x) = f where x is not free in f Don’t worry, it might look complicated, but

o the HOL implementation expects t_org to be a higher-order in practice it is easy to get a feeling for higher order matching.

pattern
» t_org is [-reduced
» if X is a variable that should be instantiated, then all arguments should
be distinct variables
o for other forms of t_org, HOL's implementation might fail

o higher order matching is used by HO_REWR_CONV

Rewrite Library

©

©

©

©

©

the rewrite library combines REWR_CONV with depth conversions
there are many different conversions, rules and tactics
at they core, they all work very similarly

» given a list of theorems, a set of rewrite theorems is derived
* split conjunctions
* remove outermost universal quantification
* introduce equations by adding = T (or = F) if needed

» REWR_CONV is applied to all the resulting rewrite theorems

» a depth-conversion is used with resulting conversion

for performance reasons an efficient indexing structure is used

by default implicit rewrites are added

Ho Rewrite Library

o similar to Rewrite lib, but uses higher order matching

o internally uses HO_REWR_CONV
o similar conversions, rules and tactics as Rewrite lib

Ho_Rewrite.REWRITE_CONV
Ho_Rewrite.REWRITE_RULE

Ho_ Rewrite.REWRITE_TAC
Ho_Rewrite.ASM_REWRITE_TAC
Ho_Rewrite.ONCE_REWRITE_TAC
Ho_Rewrite.PURE_REWRITE_TAC
Ho_Rewrite.PURE_ONCE_REWRITE_TAC

vV Y Y VY VY VY VvYY

Rewrite Library Il

o REWRITE_CONV

o REWRITE_RULE

o REWRITE_TAC

o ASM_REWRITE_TAC

o ONCE_REWRITE_TAC

o PURE_REWRITE_TAC

o PURE_ONCE_REWRITE_TAC

Examples Rewrite and Ho Rewrite Library

> REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE_REWRITE.CONV [LENGTH] °‘LENGTH [1;2]°°
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> ONCE_REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]°¢
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE.CONV [1 ‘A /\ A /\ ~A‘¢
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A¢¢
val it = |- A /N A /\ ~A<=> A /\F

> REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A¢¢
val it = |- A /\ A /\ ~A<=>F

> REWRITE_CONV [FORALL_AND_THM] ‘“!x. P x /\ Q x /\ R x‘¢
Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q x /\ R x¢¢
val it = |- !'x. Px /A Qx /A Rx <=> (!x. Px) /\ ('x. Q x) /\ (!x. R x)

209 /250

Summary Rewrite and Ho_Rewrite Library {@}

o the Rewrite and Ho_Rewrite library provide powerful infrastructure
for term rewriting

o thanks to clever implementations they are reasonably efficient
o basics are easily explained

o however, efficient usage needs some experience

Term Rewriting Systems — Termination £

Theory
o choose well-founded order <

o for each rewrite theorem |- t1 = t2 ensure t2 < ti1

Practice
o informally define for yourself what simpler means
o ensure each rewrite makes terms simpler
o good heuristics

subterms are simpler than whole term
use an order on functions

Term Rewriting Systems {i%}
o to use rewriting efficiently, one needs to understand about term
rewriting systems
o this is a large topic
o one can easily give whole course just about term rewriting systems
o however, in practise you quickly get a feeling
o important points in practise
» ensure termination of your rewrites
» make sure they work nicely together
213 /250
Termination — Subterm examples f,ﬁ%«%
Ly

o a proper subterm is always simpler
» !1. APPEND [] 1 =1
'n. n+0=n
1. REVERSE (REVERSE 1) =1
't1 t2. if T then tl else t2 <=> ti
In. n*x 0=20

vVvyyVvyy

o the right hand side should not use extra vars, throwing parts away is
usually simpler

(SNOC x xs = []1) =T

» !x xs. LENGTH (x::xs) = SUC (LENGTH xs)

» In x xs. DROP (SUC n) (x::xs) = DROP n xs

» Ix xs.

Termination — use simpler terms

o it is useful to consider some functions simple and other complicated
o replace complicated ones with simple ones
o never do it in the opposite direction

o clear examples

» |- 'mn. MEM m (COUNT_LIST n) <=> (m < n)
» |- '1s n. (DROP n 1s = []) <=> (n >= LENGTH 1s)

o unclear examples
» |- !L. REVERSE L = REV L []

216 / 250

P

Termination — Problematic rewrite rules

o some equations immediately lead to non-termination, e. g.
» |- 'mn. m+n=mn+m
» |- 'm. m=m+ 0

o slightly more subtle are rules like
» |- In. fact n = if (n = 0) then 1 else n * fact(n-1)

o often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

(m + n) + pand
m+ (n + p)

» |- mnp. m+ (n+ p)
[- 'mnp. (m+n) +p

N
=
=)
N
o
S

Termination — Normalforms

o some equations can be used in both directions

one should decide on one direction

©

©

this implicitly defined a normalform one wants terms to be in

©

examples

» |- If 1. MAP f (REVERSE 1) = REVERSE (MAP f 1)
» |- 111 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

Rewrites working together

o rewrite rules should not complete with each other

o if a term ta can be rewritten to tal and ta2 applying different
rewrite rules, then the tal and ta2 should be further rewritten to a
common tb

o this can often be achieved by adding extra rewrite rules

Example
Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
o Tor
o EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

219 /250

Rewrites working together I {;%;? computeLib %;%;}
B B
o to design rewrite systems that work well, normalforms are vital
o a term is in normalform, if it cannot be rewritten any further o computelLib is the library behind EVAL
o one should have a clear idea what the normalform of common terms o it is a rewriting library designed for evaluating ground terms (i.e.
looks like terms without variables) efficiently
o all rules should work together to establish this normalform o it uses a call-by-value strategy similar to SML's
o the right-hand-side of each rule should be in normalform o it uses first order term matching
o the left-hand-side should not be simplifiable by any other rule o it performs 3 reduction in addition to rewrites
o the order in which rules are applied should not influence the final
result
220 /250 221 /250
o b
compset feny EVAL firmy
oy Ry

o computeLib uses compsets to store its rewrites
0 a compset stores

» rewrite rules
» extra conversions

o the extra conversions are guarded by a term pattern for efficiency
o users can define their own compsets

o however, computeLib maintains one special compset called
the_compset

o the_compset is used by EVAL

o EVAL uses the_compset

o tools like the Datatype of TFL automatically extend the_compset
o this way, EVAL knows about (nearly) all types and functions

o one can extended the_compset manually as well

o rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

o zDefine prevents TFL from automatically extending the_compset

simpLib {KT};}
B
o simpLib is a sophisticated rewrite engine
o it is HOL’s main workhorse
o it provides
» higher order rewriting
» usage of context information
» conditional rewriting
» arbitrary conversions
» support for decision procedures
» simple heuristics to avoid non-termination
» fancier preprocessing of rewrite theorems
>
o it is very powerful, but compared to Rewrite lib sometimes slow
224 /250
Basic Usage Il g,%%s%
S

o a call to the simplifier takes as arguments

>

>

a simpset
a list of rewrite theorems

o common high-level entry points are

>

vVvYy vy

SIMP_CONV ss thmL — conversion

SIMP RULE ss thmL — rule

SIMP_TAC ss thmL — tactic without considering assumptions
ASM_SIMP_TAC ss thmL — tactic using assumptions to simplify goal
FULL_SIMP_TAC ss thmL — tactic simplifying assumptions with each
other and goal with assumptions

REV_FULL_SIMP_TAC ss thmL — similar to FULL_SIMP_TAC but with
reversed order of assumptions

o there are many derived tools not discussed here

Basic Usage |

o simpLib uses simpsets

o simpsets are special datatypes storing

o in addition there are simpset-fragments
o simpset-fragments contain similar information as simpsets

o fragments can be added to and removed from simpsets

>
>
>
>
>

rewrite rules
conversions
decision procedures
congruence rules

@ most important simpset is std_ss

Basic Simplifier Examples

> SIMP_CONV

val it

> SIMP_CONV

val it

> SIMP_CONV

val it

bool_ss [LENGTH] ‘‘LENGTH [1;2]°¢¢
LENGTH [1; 2] = SUC (SUC 0)

std_ss [LENGTH] ‘‘LENGTH [1;2]°¢°
LENGTH [1; 2] = 2

list_ss [] ¢‘LENGTH [1;2] ‘¢
LENGTH [1; 2] = 2

Common simpsets {;%;? Common simpset-fragments {i%}
st st
o many theories and libraries provide their own simpset-fragments
o pure_ss — empty simpset o PRED_SET_ss — simplify sets
o bool_ss — basic simpset © STRING.ss — simplify strings
o std_ss — standard simpset o QI_ss — extra quantifier instantiations
o arith_ss — arithmetic simpset © gen_beta_ss — / reduction for pairs
0 list_ss — list simpset © ETA_ss — 1) conversion
o real_ss — real simpset o EQUIV_EXTRACT_ss — extract common part of equivalence
o CONJ_ss — use conjunctions for context
Q
228 /250 229 /250
Build-In Conversions and Decision Procedures fx%% Examples | f,%;%
et St
o in contrast to Rewrite lib the simplifier can run arbitrary conversions > SIMP_CONV std_ss [1 ‘‘(\x. x + 2) 5¢¢
o most useful is probably 3 reduction val it = |- (x. x +2) 5 =7
o std_ss has support for basic arithmetic and numerals > SIMP_CONV std_ss [] ‘“!x. Q x /\ (x = 7) ==> P x*¢
o it also has simple, syntactic conversions for instantiating quantifiers veL e = Im G QA= e P > @7 e P
»ix. ... /N (x=2¢) /\ ... ==> ... > SIMP_CONV std_ss [1 ““?x. Q x /\ (x = 7) /\ P x*°
sz, .\ ~(x=2) \/ ... val it = |- (7. Qx /\ (x =7) /AP x) <=> Q7 /\P 7
e S AN ¢ O AN > SIMP_CONV std_ss [] ‘‘x > 7 ==> x > 5¢¢

o besides very useful conversions, there are decision procedures as well Exception~ UNCHANGED raised

o the most frequently used one is probably the arithmetic decision > SIMP_CONV arith_ss [] “‘x > 7 ==>x > 5%
val it = |- (x > 7 ==> x > 5) <=> T
procedure you already know from DECIDE

Higher Order Rewriting {ﬁ}
o
o the simplifier supports higher order rewriting
o this is often very handy
o for example it allows moving quantifiers around easily
Examples
> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x‘¢
val it = |- (!x. P x /\ Q /\ R x) <=>
('x. Px) /\Q/\ (!x. R x)
> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
““b9. (P y /\ (?x. y = SUC x)) ==> Q y“¢
val it = |- (ly. Py /\ (?x. y = SUC x) ==> Q y) <=>
'x. P (8UC x) ==> Q (SUC x)
232 /250
Context Examples gﬁ%’}%

=[]) ==>P1) /\ Q1
1 /AQL<=>
I /NQ1

> SIMP_CONV std_ss [] ‘(1
val it = |- (1 [>
@ =10

=> P
=> P
> SIMP_CONV arith_ss [] “‘if (¢ /\ x < 5) then (P ¢ /\ x < 6) else Q c*¢

val it = |- (if ¢ /\ x < 5 then P ¢c /\ x < 6 else Q c) <=>
if ¢ /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [1 ‘P x /\ (Q x /\ P x ==>17Z x)¢¢
Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [1 ‘P x /\ (@ x /\ P x ==> Z x) ‘¢
val it = [-Px /\ (@ x /\Px==>2Zx) <=>Px/\ (Qx==>2Zx)

Context

©

©

Conditional Rewriting |

a great feature of the simplifier is that it can use context information

by default simple context information is used like
» the precondition of an implication
» the condition of if-then-else
one can configure which context to use via congruence rules
» by using CONJ_ss one can easily use context of conjunctions
» warning: using CONJ_ss can be slow
» using other contexts is outside the scope of this lecture
using context often simplifies proofs drastically
» using Rewrite lib, often a goal needs to be split and a precondition
moved to the assumptions
» then ASM_REWRITE_TAC can be used
» with SIMP_TAC there is no need to split the goal

perhaps the most powerful feature of the simplifier is that it supports

conditional rewriting

this means it allows conditional rewrite theorem of the form

|- cond ==> (t1 = t2)

if the simplifier finds a term t1° it can rewrite via t1 = t2 to t2’
tries to discharge the assumption cond’

for this, it calls itself recursively on cond’

» all the decision procedures and all context information is used
» conditional rewriting can be used
» to prevent divergence, there is a limit on recursion depth

if cond’ = T can be shown, t1’ is rewritten to t2°

otherwise t1’ is not modified

, it

Conditional Rewriting Il

o conditional rewriting is a very powerful technique

o decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

o it provides a powerful search for theorems that apply

o however, if used naively, it can be slow

o moreover, to work well, rewrite theorems need to of a special form

Conditional Rewriting Pitfalls |

o if the pattern is too general, the simplifier becomes very slow

o consider the following, trivial but hopefully useful example

Looping example

> val my_thm = prove (‘‘"P ==> (P = F)‘‘, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ¢‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.84000s,
Exception- UNCHANGED raised

> time (SIMP_CONV std_ss []) “‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime:
Exception- UNCHANGED raised

gctime: 0.02400s, systime: 0.02400s.

0.00000s, gctime: 0.00000s, systime: 0.00000s.

>

vvyVvVvyy

notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

notice that each backchaining triggers many more backchainings
each has to be aborted to prevent diverging

as a result, the simplifier becomes very slow

incidentally, the conditional rewrite is useless

Conditional Rewriting Example

consider the conditional rewrite theorem
11 n. LENGTH 1 <= n ==> (DROP n 1 = [])

let's assume we want to prove

(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]

we can without conditional rewriting
» show |- LENGTH [1;2;3;4] <=7
» use this to discharge the precondition of the rewrite theorem
» use the resulting theorem to rewrite the goal

with conditional rewriting, this is all automated

> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]
““(DROP 7 [1;2;3;4]) ++ [5;6;7]1“¢

val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]
o conditional rewriting often shortens proofs considerably
237 /250
Conditional Rewriting Pitfalls || gﬁ,%%}%
o good conditional rewrites |- ¢ ==> (1 = r) should mention only

Qo

variables in ¢ that appear in 1

if ¢ contains extra variables x1 xn, the conditional rewrite
engine has to search instantiations for them

this mean that conditional rewriting is trying discharge the

precondition 7x1 Xn. c

the simplifier is usually not able to find such instances

Transitivity

> val P_def = Define
> val my_thm = prove
> SIMP_CONV arith_ss
Exception- UNCHANGED

‘Pxy=x
(““1x y z.
[my_thm] ¢
raised

<y
Pxy==>Pyz==>Pxz“, ...)
P23 /\P34==>P 24

(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ‘P 2 3 /\ P 3 4 ==>P 2 4¢¢

val it =

|I-P23/\P34==>P24c<=>T:

239 /250

Conditional vs. Unconditional Rewrite Rules

o conditional rewrite rules are often much more powerful
o however, Rewrite lib does not support them

o for this reason there are often two versions of rewrite theorems

drop example
o DROP_LENGTH.NIL is a useful rewrite rule:
|- '1. DROP (LENGTH 1) 1 = []
o in proofs, one needs to be careful though to preserve exactly this form
one should not (partly) evaluate LENGTH 1 or modify 1 somehow

o with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does
not need to be as careful
|- '1 n. LENGTH 1 <= n ==> (DROP n 1 = [])
the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

Relations gﬁi%“

o a relation is a function from some arguments to bool
o the following example types are all types of relations:
» : ’a -> ’a -> bool
> ’a => ’b -> bool
» : ’a ->"’b -> ’c -> ’d -> bool
» : (Ca# b # ’c) -> bool
» : bool
» : ’a -> bool
o relations are closely related to sets
»Rabc<=>(a, b, c) IN {(a, b, c) | Rabc}
» (a, b, c) INS<=> (\abec. (a, b, c) INS) abc

242 /250

Part XIV

Advanced Definition Principles

by

Sy,
$KTHE

VETENSKAP
&% OCH KONST 26

) 9

& %X%m

Relations I

o relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R : ’a -> ’a —>
bool can be defined as the least relation RTC R that satisfies the
following rules:

Rxy
RTC R x y

RTC R x y RTCR y z
RTC R x z

RTC R x x

o if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

o least fixpoints give rise to inductive relations

o greatest fixpoints give rise to coinductive relations

243 /250

(Co)inductive Relations in HOL

©

relations

o given a set of rules Hol_(co)reln defines (co)inductive relations

3 theorems are returned and stored in current theory

©

(Co) IndDefLib provides infrastructure for defining (co)inductive

» a rules theorem — it states that the defined constant satisfies the rules
» a cases theorem — this is an equational form of the rules showing that

the defined relation is indeed a fixpoint
» a (co)induction theorem

©

Example: Transitive Reflexive Closure Il

val RTC_REL_ind = |- !'R RTC_REL’.
(('x y. R x y ==> RTC_REL’ x y) /\ ('x. RTC_REL’ x x) /\
('x y z. RTC_REL’ x y /\ RTC_REL’ x z ==> RTC_REL’ x z)) ==>
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- 'R RTC_REL’.
(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R x z /\
RTC_REL’ x z ==
RTC_REL’ x z) ==>

('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

additionally a strong (co)induction theorem is stored in current theory

244 /250

.

&

Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ¢
('xy. Rxy ==> RTC_REL R x y) /\
(Ix. RTC_REL R x x) /\
(!x y z. RTC_LREL R x y /\ RTC_REL R x z ==> RTC_REL R x z)°¢

val RTC_REL_rules = |- !R.
('x y. R xy ==>RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
('x y z. RTC_LREL R x y /\ RTC_REL R x z ==> RTC_REL R x z)

val RTC_REL_cases = |
RTC_REL R a0 al <=>
(R a0 a1 \/ (al =

Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
¢(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))¢;

val EVEN_REL_cases =
|- 'a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
|- EVEN_REL O /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.
('a0.
EVEN_REL’ a0 ==>
(a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL’ n)
('a0. EVEN_REL’ a0 ==> EVEN_REL a0)

]
Il
\

o notice that in this example there is exactly one fixpoint

o therefore for these rule, the induction and coinductive relation coincide

Example: Dummy Relations {i‘@jg 77

\%

val (DF_rules, DF_ind, DF_cases) = Hol_reln
‘(!n. DF (n+1) ==> (DF n))*

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
‘(!'n. DT (n+1) ==> (DT n))*

val DT_coind =
|- 'DT’. ('a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !'a0. DT’ a0 ==> DT a0

val DF_ind =
|- 'DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

val DT_cases = |- !'a0. DT a0 <=> DT (a0 + 1):
val DF_cases |- 'a0. DF a0 <=> DF (a0 + 1):

o notice that for both DT and DF we used essentially a non-derminating

recursion
o DT is always true, i.e. |- 'n. DT n
o DF is always false, i.e. |- !n. ~(DF n)

249 /250

77

