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1. ABSTRACT 
 
The aim of this project was to develop a 
motion detection system which can be 
used for real time control of sound 
synthesis or sound reproduction 
parameters, inspired by the traditional role 
of the conductor in a choir or an orchestra. 
The system should enable the user to 
integrate an emotional expression with the 
reproduced music with ease. By tracking 
the user’s hand movements, the system 
detects and calculates the amount of the 
movement, its velocity and the change in 
acceleration. These calculated cues are 
mapped to the dynamics, tempo and 
articulation of the sound-generating part of 
the system. Several different methods for 
calculating the three mentioned sound 
parameters were utilized and tested. It was 
shown that it is not trivial to detect hand 
movements and interpret them in a 
musical way, as humans can easily do. 
Different tested approaches work within 
different sets of limitations and the 
development of a more robust system 
requires further development and 
investigations.   
 
 
 
 

2. INTRODUCTION 
 
This project is motivated for the most part 
by two research projects. The first one was 
shown in Vienna’s Interactive Sound 
Museum with the Personal Orchestra [1] 
where a user can control a video projection 
and audio reproduction of the Vienna 
Philharmonic Orchestra in concert. In this 
installation, users can set the tempo of the 
audio/video reproduction and interactively 
control volume and instrumentation of the 
reproduced music using only movements 
of the handheld infrared baton sensor.  
 
The second work that served a major role 
as a guideline for this project was an 
investigation by Dahl and Friberg [2] where 
they performed two experiments in order 
to determine the extent to which 
emotional intention could be conveyed 
through musicians’ movements. Through 
their work, authors concluded that 
intentions of happiness, sadness and anger 
are well communicated, while fear is not. 
They also rated movement cues which 
could be considered to correlate to 
different emotional intentions. For 
example, Anger is primary associated by 
jerky movements, Happiness with large 
and smooth movements, Sadness with 
slow and smooth movements. Lastly, and 
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most importantly for our project, the 
authors pointed out that it is reasonable to 
assume that body movements cues could 
correspond to the cues contained in the 
audio signal. Taking this into consideration, 
the amount of movement is related to 
dynamics, the velocity of movement is 
related to tempo and the jerkiness of 
movement is related to articulation.  
 
In order to combine the two mentioned 
projects, our goal was to develop a hands- 
free system that does not require a physical 
handheld sensor and is capable of 
manipulating three different musical cues 
in order to insert emotional intention and 
interpretation into music reproduction. 
These musical cues are, as previously 
mentioned, dynamics, tempo and 
articulation. This interaction should be 
achievable in a natural and intuitive 
manner, and every user should be able to 
understand and start using the system 
quickly.  
 
To satisfy the need of hands-free operation 
of the system, we used the Microsoft Kinect 
[3] motion detection sensor. The data from 
Kinect were first gathered and processed in 
a Processing 3.0 [4] programming 
environment. This processed information 
was then transferred to Pure Data [5] visual 
programing environment, where it was 
scaled and routed to pDM [6] sequencer 
with implemented KTH music performance 
rules [7]. This sequencer, which is also 
realized in Pure Data environment, is thus 
controlled by the gestures, and the 
manipulated parameters are the sound 
level, tempo and overall articulation 
performance parameters.   
 
Besides the Personal Orchestra in Vienna 
Interactive Sound Museum, there are a few 
other examples of systems where users 
manipulate sound reproduction using 
physical movement. One of the first and 

oldest attempts in doing a “conducting” 
interface is The Radio Baton [8] interface. 
With this system a user is able to control 
the reproduction of electronically stored 
and played back musical score by using a 
mechanical baton in their hand. 
Parameters that can be manipulated are 
tempo, volume and balance of certain 
voices in the score.   Another example is the 
Home conducting [9] project developed by 
using a simple web camera and EyesWeb 
[10] software.  In this project, the author 
developed a system with several 
interaction levels which makes it suitable 
for different user profiles, from novice and 
children to experts. User’s expressive 
movements are mapped into semantic 
expressive descriptions which are then 
mapped to performance rule parameters in 
pDM where the electronic score of a 
certain musical piece is reproduced.  
 
There is also an example of a system [11] 
which uses Kinect motion sensor and is able 
to, based on user’s gestures, manipulate 
the tempo of the music playback and the 
dynamics of separate instruments in the 
musical piece. Here, tempo manipulation is 
done in a similar way to the Personal 
Orchestra project, by time stretching 
technique. Lastly, an interesting project 
called Virtual Orchestra [12] including 
Kinect sensor was developed. It is a video 
game that was meant to be played by users 
who do not have any experience with 
conducting and should be easy to learn. It 
enables the player to manipulate the 
tempo, volume, pausing and starting of a 
song represented as a MIDI file. The game 
also gives visual feedback by informing the 
player about the instruments that are 
currently playing, the overall volume and 
the next two measures of notes.   
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3. TOOLS AND IMPLEMENTATION 
 
To be able to establish a hands free 
operation in the project, we have used 
second generation Microsoft Kinect [3] 
motion input sensing device.   
 
In order to store and manipulate the data 
stream from Kinect, the programing 
environment Processing 3 [4] was used. To 
establish communication between Kinect 
and Processing, a library developed for 
Processing environment called KinectPV2 
[12] was used. This library was developed 
in a way that takes advantage of built-in 
functions of an official Microsoft Kinect SDK 
[13], which also has to be installed on the 
system. An additional library called Signal 
Filter [14] was used for filtering of input 
signal. The filtering applies a first order 
low-pass filter with an adaptive cutoff 
frequency. In order to transfer data from 
Processing to the Pure Data, OSC 
communication protocol was used. This 
communication was supported by OscP5 
[15] library developed by Andreas Schlegel.  
 
After filtering the signal and calculating the 
values which represent wanted musical 
cues, the data were sent to Pure Data [5] 
visual programming environment 
developed by Miller Puckette. Pure Data is 
an open source dataflow programming 
language where the functions or “objects” 
are connected or “patched” together in a 
graphical environment which is based on 
the layout control and audio signals 
modular synthesis systems.  
 
The last element in the chain of this 
project’s implementation, which enables 
the real time manipulation of reproduced 
sound, is pDM [6] sequencer with 
implemented ability to manipulate KTH 
Music Performance Rules [7] in real time. 
pDM is developed by Anders Friberg in the 
Pure Data (pd) visual programming 

environment. In order to get pDM running 
under the newest version of pd, it was 
necessary to use some pd libraries from an 
older and unsupported version of pd 
named PD-Extended. The reason for this is 
that pDM was built on that version of pd.  
 
The project was running on a MacBook Pro 
machine with Windows 8.1 installed as a 
secondary boot option for the computer.  
 
 

4. METHOD 
 

4.1 General overview 
 
It was decided that the system is going to 
be controlled by information gathered 
from movement detection of the user’s 
right hand. One of the reasons for this was 
to simplify and speed up the iterative 
nature of prototyping process for the 
project, with a goal of applying the same 
processing and calculation to the other 
hand at a future time and combining the 
influences of both hands. We also wanted 
to accommodate for the users who try to 
control the systems with only one hand.  
 
The first step in the process is the 
extraction of skeleton data from Kinect 
sensor. This data is calculated from the RGB 
image provided by the Kinect, and is 
mapped to a coordinate system defined as 
can be seen in Figure 1.  
 

 
Figure 1. – Coordinate system of Kinect RGB image 
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By doing this, we acquired a visual 
representation of the location of each joint 
in the detected skeleton on the user’s body 
image. The joint locations are represented 
with x, y and z pixel location values in a 3D 
space (Figure 1.), but we have taken into 
account only x and y values. Location data 
used in our calculations are Hand_right 
joint, Elbow_right joint, Shoulder_right 
joint and Spine_middle joint locations, 
which are represented with green circles in 
Figure 2. These values were stored in a 
PVector class of Processing, which is a 
convenient way of storing the x and y 
values of a certain location on screen.   
 

 
 

Figure 2. – Kinect skeleton information and used joint 
locations 

 
The reason for using these values is to 
make the system adaptable to every single 
person who is using it. Human beings can, 
as we know, vary greatly in their 
proportions, so we wanted to enable the 
system to detect certain user dimensions 
and use them to scale its calculations. As it 
can be seen in Figure 3, the main 
dimensions we are interested in are the 
right hand size (blue line – rightHandSize), 
the distance between the right hand joint 
and the spine middle joint (red line - 
centerHand), and the distance between the 
right shoulder joint and the spine middle 
joint (green line – centerShoulder).  
 

 
 

Figure 3. – Joints used for calculations and distances 
between them 

 

By knowing the dimensions of the 
rightHandSize and centerHand, we know 
the maximal possible value of 
centerShoulder. This information is 
important for system calibration and 
calculation of the dynamic cue value, which 
will be explained in more details in the 
following sections. The velocity and 
jerkiness parameters do not need to be 
calibrated and scaled based on the user 
dimensions.  
 
In order for the system to start functioning, 
the user right hand joint has to be 
detected. After that, the data representing 
the aforementioned joints is filtered and 
used to calculate many different values, 
such as maximum hand magnitude, current 
hand magnitude and spine shoulder joints 
distance. Also, the values of right hand 
velocity and jerkiness are calculated.  
 
After these calculations are performed, the 
resulting data is used in different 
functionalities that enable the system to 
work and manipulate the selected audio 
cues. In order to achieve proper system 
operation, besides the current values of 
this data, it is crucial to know the previous 
ones, so their values have to be stored. For 
example, the difference in joint positions 
between two subsequent frames is needed 
to calculate velocity.  
 
The resulting values of all of the 
implemented functionalities are routed to 
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their desired location in the pDM 
sequencer and are used for manipulation 
of targeted cues, i.e., dynamics, tempo and 
articulation. This routing is realized in a 
flexible way, so that the user can easily test 
all implemented methods. Also, many of 
the raw and calculated data are visualized 
so the process of development and 
troubleshooting is simplified. Details on the 
implementation of all of the mentioned 
functionalities are going to be explained in 
the rest of the text and can also be 
explored in the project code attached to 
this report. The Processing code is 
contained in file Kinect_calculations.pde 
and the pd patch is contained in the 
Kinect_routing.pd file. The code is 
commented in order to additionally 
describe all of the functionalities.      
 
4.2 Calibration 
 
In order to enable the scalability of the 
system with a goal of retaining proper 
functionalities regardless of user’s 
dimensions, the system has to be 
calibrated. The calibration process is 
performed constantly while system is 
working. This is necessary in order to 
achieve proper functionality even for a 
single user, since the dimensions of 
interest change with user’s distance or 
rotation in relation to the Kinect sensor. 
Also, some measures are taken in order to 
avoid unrealistic information calculated 
from Kinect data which is generated by 
errors in joint location detection that 
happen from time to time. For example, 
this is evident when user’s hand is located 
in front of his/her body. 
 
As mentioned before, the key measures 
used for the calibration process are the 
right hand size and the distance between 
the right hand shoulder joint and the spine 
middle joint. These dimensions are 
calculated from the joint location values 

gathered from the Kinect image. Since 
these joint locations are represented as x 
and y values in a two-dimensional 
coordinate system, the distances between 
them can be calculated as Euclidean 
distances between two points in two 
dimensions: 
 
a = (x1, y1), b = (x2, y2) 

(1) 

𝑑𝑖𝑠𝑡(𝑎, 𝑏) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2    
 
This is easily implemented in the 
Processing environment as all the joint 
location values are stored as a PVector 
class objects. If we think of them as vectors 
whose origin is at location (0,0) and end 
points at the value stored in PVector, when 
we subtract two vectors, we will get the 
vector between the two joint locations. 
This is done with sub() function 
implemented in PVector class. The 
magnitude of this vector, calculated with 
mag() function of PVector class, will give us 
the wanted distance between two points 
(as defined with equation (1)).  
 
Scalability is important only for calculation 
of dynamic cue of the system.  It is achieved 
by comparing the current distance 
between Hand_right and Spine_center 
joints (red line in Figure 3) with the 
reference value of total right hand size, 
where total right hand size represents 
maximal sound level in pDM. This 
reference value is defined as a sum of 
magnitudes of the right hand size vector 
(the blue line in Figure 3) and the vector 
between Shoulder_right and Spine_center 
joints (the green line in Figure 3). 
 
The distance between Hand_right and 
Spine_center joints, representing the 
current sound level is calculated as: 
 

 centerHand = dist (Hand_right, 
Spine_center) 
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In order to calculate the right hand size, 
distances between different joints have to 
be calculated and summed. These 
distances are: 
 

 rightForearm = dist (Hand_right, 
Elbow_right) 

 rightUpperArm = dist 
(Shoulder_right, Elbow_Right) 

 
These values are needed to calculate the 
right hand size: 
 

 rightHandSize = rightForearm + 
rightUpperArm 
 

Next, to calculate the total right hand size, 
we have to calculate the distance between 
Shoulder_right and Spine_center joints: 
 

 centerShoulder = dist 
(Shoulder_right, Spine_center) 

 
Finally, the total hand size (main reference 
value) is calculated as: 
 

 totalRightHandSize = rightHandSize 
+ centerShoulder 

 
One more calibration principle is 
implemented in this project, very similar to 
the process explained here, with the 
difference of using alternative joint 
location data. This will be explained in the 
next section. 
 
4.3 Dynamics 
 
The parameter used to manipulate the 
dynamic cue (sound level) in the pDM is 
calculated in three different ways. All of 
these methods are based on the current 
hand distance scaled according to the 
reference hand size value in order to 
determine current volume.  
 

The first two methods (denoted as Vol_1 
and Vol_2 in pd patch) use a different 
calibration method compared to the one 
described in the previous section. Unlike 
the method from Section 4.2, calibration in 
the Vol_1 and Vol_2 methods uses only the 
rightHandSize value for the reference.  
 
The measure for calculating the current 
volume, that is scaled according to the 
reference rightHandSize, is the distance 
between Hand_right and Shoulder_right 
joints (magRight in Processing code). This 
value is stored and used every time the 
current hand position reaches the maximal 
position on the x axis in the current hand 
move cycle. A hand move cycle can be 
divided into two phases looking at the 
horizontal, x axis of the system. One phase 
encompasses the user movement of the 
hand away from the body (movement 
towards OUT, increasing x values) and the 
other phase encompasses the movement 
of the hand towards the body (movement 
towards IN, decreasing x values). That gives 
us two extreme positions on the x axis for 
the hand movement trajectory, one 
minimum (MIN) and one maximum (MAX) 
in every cycle. In the first approach for 
dynamic cue calculation (Vol_1), we are 
concerned only with the MAX position. This 
approach works well within certain 
limitations, but suffers from several issues. 
One drawback is that the reference 
position from where the current hand 
distance is calculated is located on the right 
shoulder. Therefore, it is difficult to detect 
small values of the current hand size and, 
consequently, produce small volume 
values. Also, the calculations are triggered 
in the MAX position of the hand only on the 
x axis, which makes it impossible for the 
user to control the volume by moving 
his/her hand up and down instead of left to 
right.     
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The second calculation method (Vol_2 in 
pd patch) uses a different logic, whose goal 
is to eliminate the problem of having only 
one axis. Here, we do not take into account 
the extremes of hand movement cycle on 
the x axis, but we monitor the current hand 
size value. We again measure it as the 
distance between Hand_right joint and 
Shoulder_right joint (magRight). After this 
value has been increasing for a certain 
number of frames (minimum 15) and when 
it has been detected that the value started 
to decrease, we conclude that a maximum 
position of the current hand size in a given 
movement direction has been reached. 
The value that has been detected in the 
frame immediately before the detection of 
decline is then sent for calculation of the 
dynamic cue. This method eliminates the 
restriction of using only one axis, but does 
not provide a reliable mechanism. It 
produces a lot of unexpected output which 
does not correspond to user input or 
intention.  
 
The third and final method (Vol_3) for 
calculating the dynamic cue is based on the 
calibration method and reference value 
explained in Section 4.2. It requires a more 
complex reference measurement, but this 
reference has less variations in its value 
than the one in previous methods, because 
the distance between the shoulder and the 
spine joint is more constant than others. 
Also, we calculate the reference only when 
the hand position on x axis is 50 pixels away 
from the Spine_center joint x position and 
the current hand move cycle is in the 
expanding phase. This helps to avoid 
calculations in positions for which the data 
from Kinect is not reliable (when the hand 
is overlapping with the body). A maximal 
value of the current hand size 
(centerHand), which is scaled in relation to 
the reference value (totalRightHandSize) in 
order to calculate the dynamic cue, is being 
detected at a given hand cycle movement. 

In this approach, the hand cycle does not 
depend on the x axis position, but only on 
the current hand size (the maximal 
centerHand values are detected). This 
method is the most reliable one because of 
its many implemented security measures 
where we avoid to do calculations when 
the data is not useful. Also, the choice of 
taking the Spine_middle joint as a 
reference for calculating the current hand 
size makes this method more intuitive for 
users, and achieves a wider dynamic range 
more easily.  
 
All of these approaches for calculation of 
the dynamic cue have another level of 
filtering implemented before routing the 
data to the pDM sequencer in order to 
achieve a smoother control of the sound 
level parameter. This filter is implemented 
in pd environment by using the line object. 
Also, if there is no new information about 
the volume (no new data is calculated), the 
last value that has arrived to pDM is kept, 
but is decreased by 0.1 every 100 ms.      
 
4.4 Tempo 
 
The tempo cue is mapped to the velocity 
value that was calculated from Kinect data 
for the right hand joint in four different 
ways. In a two dimensional space we were 
working in, the velocity of a certain joint is 
calculated as: 
 

𝑣𝑖 =  √(�̇�𝑖)2 + (𝑦�̇�)2        (2) 
 
where �̇�𝑖 and 𝑦�̇� are the first derivatives of 
the position coordinates. Considering that 
we work in a discrete domain, we can look 
at the first derivation as the distance 
between the current and the previous 
position of the hand. This is easily 
calculated in Processing using two objects 
of PVector class with stored current and 
previous location data and calculating the 
distance between them.    
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The first method (VelMax in pd patch) is 
based on hand movement phases in a 
movement cycle observed only on x axis of 
the coordinate system. As we have already 
mentioned, there are two movement 
phases for every single cycle, i.e., the 
movements towards IN and towards OUT, 
with their respected extreme positions, 
MIN and MAX. In both IN and OUT phases, 
the maximal velocity value in a phase is 
detected and used. Theoretically, one 
value per phase should be routed to pDM, 
but because of the way the code was 
written, few different values per phase are 
sent. Each sent value represents the 
maximum element in each cluster of 
velocity values. This is a solid approach 
which gives good result when a user is 
aware of its functioning, but that does not 
make it very intuitive. Also, it does not 
work very well when the path between the 
MIN and the MAX position of the hand 
movement cycle is short and the frequency 
of hand movement between these 
extremes is high. For high frequency hand 
movements with short path, the idea of 
looking at the velocity calculated with 
equation (2) as a representation of the 
tempo is false. This could be explained with 
the hand not being able to achieve high 
enough velocity over such a short path.       
 
To fix the problem of high frequency 
movements, we have developed a second 
approach of calculating tempo information 
(VelMinMax in pd patch). This approach is 
based on detection of MIN and MAX 
extremes observed on x axis of the hand 
movement cycle. The time needed for the 
hand to go from one extreme to another is 
calculated and used as the velocity value 
that is later scaled. This approach works 
well when the detection of the extreme 
position is detected correctly. The problem 
is that MIN and MAX values cannot be 
detected with a 100% accuracy and it often 

happens that this method does not give 
any output because extreme positions 
were not sensed. Also, when user makes 
bigger hand movements, with larger 
distances between MIN and MAX, the 
subjective feedback of the tempo 
parameter is not as good as in the VelMax 
approach.  
 
The third approach for calculating the 
velocity (VelAvg in pd patch) is again based 
on movement phase detection dependent 
on a x axis. In every phase, all of the 
velocity values that are calculated based on 
equation (2) are summed and the number 
of samples is counted. When the hand 
reaches one of the extreme positions, the 
average value is calculated and used for 
control of the tempo parameter in pDM. 
This approach works similarly to the 
VelMax approach, but with a slightly 
different subjective feedback. Updating 
the tempo information only once per cycle 
does not feel natural. Also, the problem 
with high frequency movements and 
unprecise detection of the extreme 
positions is still present. 
 
The fourth and last approach (VelRaw in pd 
patch) for calculating the tempo parameter 
is the simplest and most straightforward 
one. The raw data that has been calculated 
based on equation (2) is being filtered once 
more with a first order Butterworth filter in 
order to further reduce the signal 
fluctuations, and routed to pDM if it is 
greater than 0 and below a certain extreme 
value. This method gives the best 
subjective feedback when using the system 
and it is not limited to the hand movement 
cycle constrains. However, the problem of 
high frequency hand movements is still 
present. 
 
All four methods for calculating the tempo 
parameter have similar filtering 
implemented in pd as the dynamic 
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parameters before they are mapped to 
pDM (by using line object in pd). The only 
difference in the filtering is that when the 
tempo parameter values go from a lower to 
a higher level, the smoothening is not as 
strong as when the values decrease. Also, 
there is no value reductions if no new 
information has been received.   
  
4.5 Articulation 
 
The articulation cue can be controlled in 
four ways according to the input signal of 
the right hand joint. All methods are based 
on calculation of jerkiness of the input 
signal (right hand joint position). Jerkiness 
can be defined as a change of the 
acceleration of the signal. From 
mathematical point of view, it can be 
presented as a third derivation of a hand 
joint position. This calculation is again 
easily achieved in the Processing 
environment by using the PVector object 
class and by calculating velocity, 
acceleration and then jerkiness from hand 
position data. Overall, it is questionable 
whether this way of calculation really 
represents the articulation cue as required 
for our system. As with the velocity 
parameter calculated in a similar way, it is 
true only under certain conditions (mainly 
with longer hand movement cycles).  
 
The first approach for calculating jerkiness 
(Jerk_1 in pd patch) is similar to the first 
approach for velocity calculations 
(VelMax). In every phase of the hand 
movement (towards OUT or IN), the 
maximal value is selected from raw 
calculated jerkiness data. These values can 
vary greatly, so we presumed it needed 
some initial scaling. This scaling was 
implemented in a function (jerkinessFunc 
of Processing code), which forms 
categories for input signal and returns the 
value of the category to which the input 
corresponds. This approach, similar to the 

VelMax approach, does not give a very 
intuitive feedback to the user. Even 
though, similar to VelMax calculations, we 
do not get only one maximal value per 
movement phase, infrequent refreshment 
of data is not suitable for real time usage of 
the system. 
 
In the second approach (Jerk_2 in pd 
patch), raw calculated jerkiness data is 
routed to pDM. Constant update of 
calculated values that are sent to pDM are 
beneficial to the subjective feedback when 
using the system. But some unpredicted 
values come up frequently, interrupt the 
system and misrepresent the user’s intent. 
These values occur when the user moves 
his hand in a way that values calculated in 
this manner do not represent the 
articulation cue.      
 
The third method (Jerk_3 in pd patch) is 
very similar to the first one, with a 
difference of not performing 
categorization before routing the 
information to pDM. This method has not 
shown beneficial and it does not represent 
any improvement compared to Jerk_1 
approach.  
 
The final method (Jerk_4 in pd patch) is an 
alternative way of implementing the Jerk_3 
approach. The dependence on the hand 
movement cycle is avoided and peak values 
of jerkiness are detected. This method 
constantly looks for the largest value in the 
signal flow (calculated jerkiness). It 
replaces the maximal value of the 
calculated signal with the current one while 
the signal level is rising, but when the 
current value falls below 30% of the 
current maximal value, this maximal value 
is then sent to PD. There are also some 
limitations that the raw signal has to satisfy 
in order to avoid very low level noisy signal 
and extreme peaks that are calculated 
every now and then. This approach gives a 
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small upgrade to the third approach, but it 
still does not represent user’s articulation 
intents. The data refresh rate is larger than 
in the Jerk_1 and Jerk_3 methods, but of 
course smaller than the Jerk_2. It can be 
considered as the best of all considered 
methods because the constant update can 
be undesirable when calculating jerkiness 
in order to avoid using the undesirable data 
from the raw information.     
 
We have also tested an alternative 
approach for calculating the third 
derivation of a signal in a discrete domain. 
This method is called Finite Differences 
Method [16]. The calculations were 
performed according to the following 
equation: 
 

𝑓(𝑥) ≈
𝑓(𝑥)−3∗𝑓(𝑥−1)+3∗𝑓(𝑥−2)−𝑓(𝑥−3)

ℎ3          (3) 

     
where f(x) is the current sample value, f(x-
1) is the previous sample values, fs(x-2) is 
the one before that and so on. h is the 
distance between the samples and we can 
presume it is 1 in our case. This calculation 
has given us the same results as calculation 
done with the built-in class functions of the 
Processing environment.  
 
Articulation calculations are subject to the 
same filtering in pd as the tempo 
calculations before they are mapped to the 
parameters in pDM.   
 
 

5. DISCUSSION 
 

This project has demonstrated that it is not 
trivial to develop a system which can be 
controlled only by movement detection. 
Not only that there are a lot of technical 
challenges and limitations of the 
equipment that was used, but there are 
also challenges of conceptualization and 
understanding of how to correctly 

interpret user movement and map it to 
musical cues of interest.  
 
As we can see in the example of dynamic 
control, no matter how we defined the 
calculation principle, there are always 
some limitations inherent to the solution. 
For example, when we calculated the 
current hand size by measuring the 
distance between the hand and shoulder 
joints, we have limited ourselves in an 
unnatural way. If the user does not know 
exactly how the system works, it is not easy 
to achieve the desired results, and 
sometimes the task is even frustrating. In 
this case, the system is improved by 
switching to middle spine joint as the 
reference from where the current hand 
distance is calculated. This position enables 
more intuitive operation, but the limitation 
of having a fixed reference point is still 
present and reduces the flexibility of a 
system. For example, if the user makes 
circular movements around this point, the 
distance value does not change and the 
volume of reproduced music stays the 
same even though the user’s intention may 
be different.  
 
Similarly, we needed to make two different 
approaches for calculation of the tempo 
cue in order to make the system work 
properly and provide useful data for two 
different operation modes. Still, these two 
methods do not work side by side and 
cannot provide one uniform solution for 
the tempo cue calculation problem. This is 
a severe limitation.   
 
The articulation cue has shown to be the 
most problematic one to understand, 
detect and calculate. Looking at the 
mathematical idea behind it, it seems 
straightforward, but our implementation 
has shown otherwise. There could be many 
reasons for it, including noise that is 
enhanced by doing the third derivation, 
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taking a wrong approach in interpretation 
of the data, dealing with extreme values 
resulting from bad detection and so on.  
 
Overall, more work needs to be done, both 
on the side of conceptualization and on the 
side of implementation, in order to develop 
a more robust system. The first and crucial 
thing is how to understand our movements 
and how to interpret them by using a 
computer. It has been shown in our 
experience that we cannot rely solely on 
the mathematical interpretations and 
definitions.  
 
 

6. FUTURE WORK 
 

As already concluded, a lot more work on 
different aspects of the project is needed in 
order to develop a more robust and precise 
system. Besides the big conceptual work, 
many small steps can be made in order to 
improve the current implementation.  
 
First of all, the code should be rewritten in 
a way that is more readable, modular, 
reusable, with a concise naming 
conventions and so on. For example, the 
method of implementing OSC 
communication should be done in a more 
elegant way, without so much repetition in 
the code. The whole program was written 
in a manner of developing new ideas and 
testing which work and which don’t, so it 
comes out as unorganized.  
 
Second, start and stop functionality of the 
system has to be improved. User should be 
able to start and stop the system with 
his/her movements. At the moment, this 
functionality is mapped to hand detection, 
which doesn’t work perfectly. 
 
Third, a function should be implemented to 
make the system aware of which exact user 
is controlling the system. The reason for 

this is when another person comes in front 
of the Kinect sensor, the system should be 
aware of who the user which controls it is 
and how to switch between these users if 
wanted. Now the system just crashes when 
this happens. 
Forth, the second hand functionality 
should be implemented and a method for 
combining the contributions of both hands 
should be developed.  
 
Next, the two different methods for 
assessing the tempo cue should be merged 
into one. When the hand is in the high 
frequency movement mode, the system 
should detect that and work in this mode 
(VelMinMax). When user is doing a more 
typical movement, the last developed 
method (VelRaw) should be used.   
 
Finally, the mapping of calculated values to 
musical cues should be done in a more 
complex and interesting manner, and not 
directly mapped as it is now. The type of 
mapping could be an implementation of 
Fuzzy analyzer of emotional expression in 
music performance and body motion [17]. 
Its functioning depends on the sound level, 
tempo and articulation parameters which 
makes it convenient for our project. The 
output it provides are the cue values for 
emotional expressions of happiness, 
sadness and anger.       
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 12 

 
 
 

 
 
 

7. REFERENCES 
 
[1] Borchers, J., Samminger, W. and 
Mühlhäuser, M. (2002). Personal 
Orchestra: Conducting Audio/Video Music 
Recordings. WEDELMUSIC'02 Proceedings 
of the Second international conference on 
Web delivering of music, Pages 93 – 100. 
 
[2] Dahl, S., Friberg, A. (2007). Visual 
Perception of Expressiveness in Musicians’ 
Body Movements. Music Perception, 
Volume 24, Issue 5, PP. 433 – 454. 
 
[3] Microsoft, (2013). Kinect for Xbox One. 
Online at: http://www.xbox.com/en-
US/xbox-one/accessories/kinect 
 
[4] Processing foundation, (2017). 
Welcome to Processing 3. Online at: 
https://processing.org 
 
[5] Pure Data (2016). Pure data. Online at: 
https://puredata.info 
 
[6] Friberg, A. (2006). pDM: An Expressive 
Sequencer with Real-Time Control of the 
KTH Music-Performance Rules. Computer 
Music Journal. Spring 2006. Vol 30. No. 1. 
Pages: 37-48  
 
[7] Friberg, A., Bresin, R., Sundberg, J. 
(2006). Overview of the KTH Rule System 
for Musical Performance. Advances in 
Cognitive Psychology (2006). Volume 3. 
Issue 2-3. Pages 145-161.  
 
[8] Mathews, M. V. The Conductor 
Program and the Mechanical Baton. In M. 
Mathews & J. Pierce, eds. Current 
Directions in Computer Music Research. 
Cambridge, Mass: The MIT Press, (pp. 263- 
282), 1989.   

[9] Friberg, A. (2005). Home Conducting – 
Control the overall musical expression with 
gesture. Proceedings of the 2005 
International Computer Music Conference, 
San Francisco: International Computer 
Music Association. (pp. 479-482).  

[10] Casa Paganini – INFOMUS. The 
EyesWeb project. Online at: 
http://www.infomus.org/eyesweb_ita.php 

[11] Rosa-Pujazo ́n, A., Barbancho, I., 
Tardo ́n, L. J., Barbancho, A.M.(2013) 
Conducting a Virtual Ensamble With a 
Kinect Device. Proceedings of the Sound 
and Music Computing Conference 2013, 
SMC 2013, Stockholm, Sweden  

[12] Lengeling, S. T. (2016). Kinect V2 
library for Processing. Online at: 
https://github.com/ThomasLengeling/Kine
ctPV2 

 [13] Microsoft, (2014). Kinect for 
Windows SDK 2.0. Online at: 
https://www.microsoft.com/en-
us/download/details.aspx?id=44561 

[14] de Courville, R.  (2015). Signal Filter 
(beta). Online at: 
https://github.com/SableRaf/signalfilter 

 [15] Schlegel, A. (2015). OscP5. Online at: 
https://github.com/sojamo/oscp5 

[16] Wikipedia, (2016). Final differences 
method. Online at: 
https://en.wikipedia.org/wiki/Finite_differ
ence_method 

[17] Friberg, A. (2004). A Fuzzy analyzer of 
emotional expression in music 
performance and body motion. 
Proceedings of Music and Music Science, 
Stockholm, October 28- 30, 2004  

http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/xbox-one/accessories/kinect
https://processing.org/
http://www.infomus.org/eyesweb_ita.php
https://github.com/ThomasLengeling/KinectPV2
https://github.com/ThomasLengeling/KinectPV2
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://github.com/SableRaf/signalfilter
https://github.com/sojamo/oscp5
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method

