
 1

DT2215 ADVANCED INDIVIDUAL COURSE IN MUSICAL COMMUNICATION

KTH, Royal Institute of Technology

Detection of musical cues in conducting hand movements
for control of music reproduction

Nino Prekratić

ninop@kth.se

1. ABSTRACT

The aim of this project was to develop a
motion detection system which can be
used for real time control of sound
synthesis or sound reproduction
parameters, inspired by the traditional role
of the conductor in a choir or an orchestra.
The system should enable the user to
integrate an emotional expression with the
reproduced music with ease. By tracking
the user’s hand movements, the system
detects and calculates the amount of the
movement, its velocity and the change in
acceleration. These calculated cues are
mapped to the dynamics, tempo and
articulation of the sound-generating part of
the system. Several different methods for
calculating the three mentioned sound
parameters were utilized and tested. It was
shown that it is not trivial to detect hand
movements and interpret them in a
musical way, as humans can easily do.
Different tested approaches work within
different sets of limitations and the
development of a more robust system
requires further development and
investigations.

2. INTRODUCTION

This project is motivated for the most part
by two research projects. The first one was
shown in Vienna’s Interactive Sound
Museum with the Personal Orchestra [1]
where a user can control a video projection
and audio reproduction of the Vienna
Philharmonic Orchestra in concert. In this
installation, users can set the tempo of the
audio/video reproduction and interactively
control volume and instrumentation of the
reproduced music using only movements
of the handheld infrared baton sensor.

The second work that served a major role
as a guideline for this project was an
investigation by Dahl and Friberg [2] where
they performed two experiments in order
to determine the extent to which
emotional intention could be conveyed
through musicians’ movements. Through
their work, authors concluded that
intentions of happiness, sadness and anger
are well communicated, while fear is not.
They also rated movement cues which
could be considered to correlate to
different emotional intentions. For
example, Anger is primary associated by
jerky movements, Happiness with large
and smooth movements, Sadness with
slow and smooth movements. Lastly, and

 2

most importantly for our project, the
authors pointed out that it is reasonable to
assume that body movements cues could
correspond to the cues contained in the
audio signal. Taking this into consideration,
the amount of movement is related to
dynamics, the velocity of movement is
related to tempo and the jerkiness of
movement is related to articulation.

In order to combine the two mentioned
projects, our goal was to develop a hands-
free system that does not require a physical
handheld sensor and is capable of
manipulating three different musical cues
in order to insert emotional intention and
interpretation into music reproduction.
These musical cues are, as previously
mentioned, dynamics, tempo and
articulation. This interaction should be
achievable in a natural and intuitive
manner, and every user should be able to
understand and start using the system
quickly.

To satisfy the need of hands-free operation
of the system, we used the Microsoft Kinect
[3] motion detection sensor. The data from
Kinect were first gathered and processed in
a Processing 3.0 [4] programming
environment. This processed information
was then transferred to Pure Data [5] visual
programing environment, where it was
scaled and routed to pDM [6] sequencer
with implemented KTH music performance
rules [7]. This sequencer, which is also
realized in Pure Data environment, is thus
controlled by the gestures, and the
manipulated parameters are the sound
level, tempo and overall articulation
performance parameters.

Besides the Personal Orchestra in Vienna
Interactive Sound Museum, there are a few
other examples of systems where users
manipulate sound reproduction using
physical movement. One of the first and

oldest attempts in doing a “conducting”
interface is The Radio Baton [8] interface.
With this system a user is able to control
the reproduction of electronically stored
and played back musical score by using a
mechanical baton in their hand.
Parameters that can be manipulated are
tempo, volume and balance of certain
voices in the score. Another example is the
Home conducting [9] project developed by
using a simple web camera and EyesWeb
[10] software. In this project, the author
developed a system with several
interaction levels which makes it suitable
for different user profiles, from novice and
children to experts. User’s expressive
movements are mapped into semantic
expressive descriptions which are then
mapped to performance rule parameters in
pDM where the electronic score of a
certain musical piece is reproduced.

There is also an example of a system [11]
which uses Kinect motion sensor and is able
to, based on user’s gestures, manipulate
the tempo of the music playback and the
dynamics of separate instruments in the
musical piece. Here, tempo manipulation is
done in a similar way to the Personal
Orchestra project, by time stretching
technique. Lastly, an interesting project
called Virtual Orchestra [12] including
Kinect sensor was developed. It is a video
game that was meant to be played by users
who do not have any experience with
conducting and should be easy to learn. It
enables the player to manipulate the
tempo, volume, pausing and starting of a
song represented as a MIDI file. The game
also gives visual feedback by informing the
player about the instruments that are
currently playing, the overall volume and
the next two measures of notes.

 3

3. TOOLS AND IMPLEMENTATION

To be able to establish a hands free
operation in the project, we have used
second generation Microsoft Kinect [3]
motion input sensing device.

In order to store and manipulate the data
stream from Kinect, the programing
environment Processing 3 [4] was used. To
establish communication between Kinect
and Processing, a library developed for
Processing environment called KinectPV2
[12] was used. This library was developed
in a way that takes advantage of built-in
functions of an official Microsoft Kinect SDK
[13], which also has to be installed on the
system. An additional library called Signal
Filter [14] was used for filtering of input
signal. The filtering applies a first order
low-pass filter with an adaptive cutoff
frequency. In order to transfer data from
Processing to the Pure Data, OSC
communication protocol was used. This
communication was supported by OscP5
[15] library developed by Andreas Schlegel.

After filtering the signal and calculating the
values which represent wanted musical
cues, the data were sent to Pure Data [5]
visual programming environment
developed by Miller Puckette. Pure Data is
an open source dataflow programming
language where the functions or “objects”
are connected or “patched” together in a
graphical environment which is based on
the layout control and audio signals
modular synthesis systems.

The last element in the chain of this
project’s implementation, which enables
the real time manipulation of reproduced
sound, is pDM [6] sequencer with
implemented ability to manipulate KTH
Music Performance Rules [7] in real time.
pDM is developed by Anders Friberg in the
Pure Data (pd) visual programming

environment. In order to get pDM running
under the newest version of pd, it was
necessary to use some pd libraries from an
older and unsupported version of pd
named PD-Extended. The reason for this is
that pDM was built on that version of pd.

The project was running on a MacBook Pro
machine with Windows 8.1 installed as a
secondary boot option for the computer.

4. METHOD

4.1 General overview

It was decided that the system is going to
be controlled by information gathered
from movement detection of the user’s
right hand. One of the reasons for this was
to simplify and speed up the iterative
nature of prototyping process for the
project, with a goal of applying the same
processing and calculation to the other
hand at a future time and combining the
influences of both hands. We also wanted
to accommodate for the users who try to
control the systems with only one hand.

The first step in the process is the
extraction of skeleton data from Kinect
sensor. This data is calculated from the RGB
image provided by the Kinect, and is
mapped to a coordinate system defined as
can be seen in Figure 1.

Figure 1. – Coordinate system of Kinect RGB image

 4

By doing this, we acquired a visual
representation of the location of each joint
in the detected skeleton on the user’s body
image. The joint locations are represented
with x, y and z pixel location values in a 3D
space (Figure 1.), but we have taken into
account only x and y values. Location data
used in our calculations are Hand_right
joint, Elbow_right joint, Shoulder_right
joint and Spine_middle joint locations,
which are represented with green circles in
Figure 2. These values were stored in a
PVector class of Processing, which is a
convenient way of storing the x and y
values of a certain location on screen.

Figure 2. – Kinect skeleton information and used joint
locations

The reason for using these values is to
make the system adaptable to every single
person who is using it. Human beings can,
as we know, vary greatly in their
proportions, so we wanted to enable the
system to detect certain user dimensions
and use them to scale its calculations. As it
can be seen in Figure 3, the main
dimensions we are interested in are the
right hand size (blue line – rightHandSize),
the distance between the right hand joint
and the spine middle joint (red line -
centerHand), and the distance between the
right shoulder joint and the spine middle
joint (green line – centerShoulder).

Figure 3. – Joints used for calculations and distances
between them

By knowing the dimensions of the
rightHandSize and centerHand, we know
the maximal possible value of
centerShoulder. This information is
important for system calibration and
calculation of the dynamic cue value, which
will be explained in more details in the
following sections. The velocity and
jerkiness parameters do not need to be
calibrated and scaled based on the user
dimensions.

In order for the system to start functioning,
the user right hand joint has to be
detected. After that, the data representing
the aforementioned joints is filtered and
used to calculate many different values,
such as maximum hand magnitude, current
hand magnitude and spine shoulder joints
distance. Also, the values of right hand
velocity and jerkiness are calculated.

After these calculations are performed, the
resulting data is used in different
functionalities that enable the system to
work and manipulate the selected audio
cues. In order to achieve proper system
operation, besides the current values of
this data, it is crucial to know the previous
ones, so their values have to be stored. For
example, the difference in joint positions
between two subsequent frames is needed
to calculate velocity.

The resulting values of all of the
implemented functionalities are routed to

 5

their desired location in the pDM
sequencer and are used for manipulation
of targeted cues, i.e., dynamics, tempo and
articulation. This routing is realized in a
flexible way, so that the user can easily test
all implemented methods. Also, many of
the raw and calculated data are visualized
so the process of development and
troubleshooting is simplified. Details on the
implementation of all of the mentioned
functionalities are going to be explained in
the rest of the text and can also be
explored in the project code attached to
this report. The Processing code is
contained in file Kinect_calculations.pde
and the pd patch is contained in the
Kinect_routing.pd file. The code is
commented in order to additionally
describe all of the functionalities.

4.2 Calibration

In order to enable the scalability of the
system with a goal of retaining proper
functionalities regardless of user’s
dimensions, the system has to be
calibrated. The calibration process is
performed constantly while system is
working. This is necessary in order to
achieve proper functionality even for a
single user, since the dimensions of
interest change with user’s distance or
rotation in relation to the Kinect sensor.
Also, some measures are taken in order to
avoid unrealistic information calculated
from Kinect data which is generated by
errors in joint location detection that
happen from time to time. For example,
this is evident when user’s hand is located
in front of his/her body.

As mentioned before, the key measures
used for the calibration process are the
right hand size and the distance between
the right hand shoulder joint and the spine
middle joint. These dimensions are
calculated from the joint location values

gathered from the Kinect image. Since
these joint locations are represented as x
and y values in a two-dimensional
coordinate system, the distances between
them can be calculated as Euclidean
distances between two points in two
dimensions:

a = (x1, y1), b = (x2, y2)

(1)

𝑑𝑖𝑠𝑡(𝑎, 𝑏) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

This is easily implemented in the
Processing environment as all the joint
location values are stored as a PVector
class objects. If we think of them as vectors
whose origin is at location (0,0) and end
points at the value stored in PVector, when
we subtract two vectors, we will get the
vector between the two joint locations.
This is done with sub() function
implemented in PVector class. The
magnitude of this vector, calculated with
mag() function of PVector class, will give us
the wanted distance between two points
(as defined with equation (1)).

Scalability is important only for calculation
of dynamic cue of the system. It is achieved
by comparing the current distance
between Hand_right and Spine_center
joints (red line in Figure 3) with the
reference value of total right hand size,
where total right hand size represents
maximal sound level in pDM. This
reference value is defined as a sum of
magnitudes of the right hand size vector
(the blue line in Figure 3) and the vector
between Shoulder_right and Spine_center
joints (the green line in Figure 3).

The distance between Hand_right and
Spine_center joints, representing the
current sound level is calculated as:

 centerHand = dist (Hand_right,
Spine_center)

 6

In order to calculate the right hand size,
distances between different joints have to
be calculated and summed. These
distances are:

 rightForearm = dist (Hand_right,
Elbow_right)

 rightUpperArm = dist
(Shoulder_right, Elbow_Right)

These values are needed to calculate the
right hand size:

 rightHandSize = rightForearm +
rightUpperArm

Next, to calculate the total right hand size,
we have to calculate the distance between
Shoulder_right and Spine_center joints:

 centerShoulder = dist
(Shoulder_right, Spine_center)

Finally, the total hand size (main reference
value) is calculated as:

 totalRightHandSize = rightHandSize
+ centerShoulder

One more calibration principle is
implemented in this project, very similar to
the process explained here, with the
difference of using alternative joint
location data. This will be explained in the
next section.

4.3 Dynamics

The parameter used to manipulate the
dynamic cue (sound level) in the pDM is
calculated in three different ways. All of
these methods are based on the current
hand distance scaled according to the
reference hand size value in order to
determine current volume.

The first two methods (denoted as Vol_1
and Vol_2 in pd patch) use a different
calibration method compared to the one
described in the previous section. Unlike
the method from Section 4.2, calibration in
the Vol_1 and Vol_2 methods uses only the
rightHandSize value for the reference.

The measure for calculating the current
volume, that is scaled according to the
reference rightHandSize, is the distance
between Hand_right and Shoulder_right
joints (magRight in Processing code). This
value is stored and used every time the
current hand position reaches the maximal
position on the x axis in the current hand
move cycle. A hand move cycle can be
divided into two phases looking at the
horizontal, x axis of the system. One phase
encompasses the user movement of the
hand away from the body (movement
towards OUT, increasing x values) and the
other phase encompasses the movement
of the hand towards the body (movement
towards IN, decreasing x values). That gives
us two extreme positions on the x axis for
the hand movement trajectory, one
minimum (MIN) and one maximum (MAX)
in every cycle. In the first approach for
dynamic cue calculation (Vol_1), we are
concerned only with the MAX position. This
approach works well within certain
limitations, but suffers from several issues.
One drawback is that the reference
position from where the current hand
distance is calculated is located on the right
shoulder. Therefore, it is difficult to detect
small values of the current hand size and,
consequently, produce small volume
values. Also, the calculations are triggered
in the MAX position of the hand only on the
x axis, which makes it impossible for the
user to control the volume by moving
his/her hand up and down instead of left to
right.

 7

The second calculation method (Vol_2 in
pd patch) uses a different logic, whose goal
is to eliminate the problem of having only
one axis. Here, we do not take into account
the extremes of hand movement cycle on
the x axis, but we monitor the current hand
size value. We again measure it as the
distance between Hand_right joint and
Shoulder_right joint (magRight). After this
value has been increasing for a certain
number of frames (minimum 15) and when
it has been detected that the value started
to decrease, we conclude that a maximum
position of the current hand size in a given
movement direction has been reached.
The value that has been detected in the
frame immediately before the detection of
decline is then sent for calculation of the
dynamic cue. This method eliminates the
restriction of using only one axis, but does
not provide a reliable mechanism. It
produces a lot of unexpected output which
does not correspond to user input or
intention.

The third and final method (Vol_3) for
calculating the dynamic cue is based on the
calibration method and reference value
explained in Section 4.2. It requires a more
complex reference measurement, but this
reference has less variations in its value
than the one in previous methods, because
the distance between the shoulder and the
spine joint is more constant than others.
Also, we calculate the reference only when
the hand position on x axis is 50 pixels away
from the Spine_center joint x position and
the current hand move cycle is in the
expanding phase. This helps to avoid
calculations in positions for which the data
from Kinect is not reliable (when the hand
is overlapping with the body). A maximal
value of the current hand size
(centerHand), which is scaled in relation to
the reference value (totalRightHandSize) in
order to calculate the dynamic cue, is being
detected at a given hand cycle movement.

In this approach, the hand cycle does not
depend on the x axis position, but only on
the current hand size (the maximal
centerHand values are detected). This
method is the most reliable one because of
its many implemented security measures
where we avoid to do calculations when
the data is not useful. Also, the choice of
taking the Spine_middle joint as a
reference for calculating the current hand
size makes this method more intuitive for
users, and achieves a wider dynamic range
more easily.

All of these approaches for calculation of
the dynamic cue have another level of
filtering implemented before routing the
data to the pDM sequencer in order to
achieve a smoother control of the sound
level parameter. This filter is implemented
in pd environment by using the line object.
Also, if there is no new information about
the volume (no new data is calculated), the
last value that has arrived to pDM is kept,
but is decreased by 0.1 every 100 ms.

4.4 Tempo

The tempo cue is mapped to the velocity
value that was calculated from Kinect data
for the right hand joint in four different
ways. In a two dimensional space we were
working in, the velocity of a certain joint is
calculated as:

𝑣𝑖 = √(�̇�𝑖)2 + (𝑦�̇�)2 (2)

where �̇�𝑖 and 𝑦�̇� are the first derivatives of
the position coordinates. Considering that
we work in a discrete domain, we can look
at the first derivation as the distance
between the current and the previous
position of the hand. This is easily
calculated in Processing using two objects
of PVector class with stored current and
previous location data and calculating the
distance between them.

 8

The first method (VelMax in pd patch) is
based on hand movement phases in a
movement cycle observed only on x axis of
the coordinate system. As we have already
mentioned, there are two movement
phases for every single cycle, i.e., the
movements towards IN and towards OUT,
with their respected extreme positions,
MIN and MAX. In both IN and OUT phases,
the maximal velocity value in a phase is
detected and used. Theoretically, one
value per phase should be routed to pDM,
but because of the way the code was
written, few different values per phase are
sent. Each sent value represents the
maximum element in each cluster of
velocity values. This is a solid approach
which gives good result when a user is
aware of its functioning, but that does not
make it very intuitive. Also, it does not
work very well when the path between the
MIN and the MAX position of the hand
movement cycle is short and the frequency
of hand movement between these
extremes is high. For high frequency hand
movements with short path, the idea of
looking at the velocity calculated with
equation (2) as a representation of the
tempo is false. This could be explained with
the hand not being able to achieve high
enough velocity over such a short path.

To fix the problem of high frequency
movements, we have developed a second
approach of calculating tempo information
(VelMinMax in pd patch). This approach is
based on detection of MIN and MAX
extremes observed on x axis of the hand
movement cycle. The time needed for the
hand to go from one extreme to another is
calculated and used as the velocity value
that is later scaled. This approach works
well when the detection of the extreme
position is detected correctly. The problem
is that MIN and MAX values cannot be
detected with a 100% accuracy and it often

happens that this method does not give
any output because extreme positions
were not sensed. Also, when user makes
bigger hand movements, with larger
distances between MIN and MAX, the
subjective feedback of the tempo
parameter is not as good as in the VelMax
approach.

The third approach for calculating the
velocity (VelAvg in pd patch) is again based
on movement phase detection dependent
on a x axis. In every phase, all of the
velocity values that are calculated based on
equation (2) are summed and the number
of samples is counted. When the hand
reaches one of the extreme positions, the
average value is calculated and used for
control of the tempo parameter in pDM.
This approach works similarly to the
VelMax approach, but with a slightly
different subjective feedback. Updating
the tempo information only once per cycle
does not feel natural. Also, the problem
with high frequency movements and
unprecise detection of the extreme
positions is still present.

The fourth and last approach (VelRaw in pd
patch) for calculating the tempo parameter
is the simplest and most straightforward
one. The raw data that has been calculated
based on equation (2) is being filtered once
more with a first order Butterworth filter in
order to further reduce the signal
fluctuations, and routed to pDM if it is
greater than 0 and below a certain extreme
value. This method gives the best
subjective feedback when using the system
and it is not limited to the hand movement
cycle constrains. However, the problem of
high frequency hand movements is still
present.

All four methods for calculating the tempo
parameter have similar filtering
implemented in pd as the dynamic

 9

parameters before they are mapped to
pDM (by using line object in pd). The only
difference in the filtering is that when the
tempo parameter values go from a lower to
a higher level, the smoothening is not as
strong as when the values decrease. Also,
there is no value reductions if no new
information has been received.

4.5 Articulation

The articulation cue can be controlled in
four ways according to the input signal of
the right hand joint. All methods are based
on calculation of jerkiness of the input
signal (right hand joint position). Jerkiness
can be defined as a change of the
acceleration of the signal. From
mathematical point of view, it can be
presented as a third derivation of a hand
joint position. This calculation is again
easily achieved in the Processing
environment by using the PVector object
class and by calculating velocity,
acceleration and then jerkiness from hand
position data. Overall, it is questionable
whether this way of calculation really
represents the articulation cue as required
for our system. As with the velocity
parameter calculated in a similar way, it is
true only under certain conditions (mainly
with longer hand movement cycles).

The first approach for calculating jerkiness
(Jerk_1 in pd patch) is similar to the first
approach for velocity calculations
(VelMax). In every phase of the hand
movement (towards OUT or IN), the
maximal value is selected from raw
calculated jerkiness data. These values can
vary greatly, so we presumed it needed
some initial scaling. This scaling was
implemented in a function (jerkinessFunc
of Processing code), which forms
categories for input signal and returns the
value of the category to which the input
corresponds. This approach, similar to the

VelMax approach, does not give a very
intuitive feedback to the user. Even
though, similar to VelMax calculations, we
do not get only one maximal value per
movement phase, infrequent refreshment
of data is not suitable for real time usage of
the system.

In the second approach (Jerk_2 in pd
patch), raw calculated jerkiness data is
routed to pDM. Constant update of
calculated values that are sent to pDM are
beneficial to the subjective feedback when
using the system. But some unpredicted
values come up frequently, interrupt the
system and misrepresent the user’s intent.
These values occur when the user moves
his hand in a way that values calculated in
this manner do not represent the
articulation cue.

The third method (Jerk_3 in pd patch) is
very similar to the first one, with a
difference of not performing
categorization before routing the
information to pDM. This method has not
shown beneficial and it does not represent
any improvement compared to Jerk_1
approach.

The final method (Jerk_4 in pd patch) is an
alternative way of implementing the Jerk_3
approach. The dependence on the hand
movement cycle is avoided and peak values
of jerkiness are detected. This method
constantly looks for the largest value in the
signal flow (calculated jerkiness). It
replaces the maximal value of the
calculated signal with the current one while
the signal level is rising, but when the
current value falls below 30% of the
current maximal value, this maximal value
is then sent to PD. There are also some
limitations that the raw signal has to satisfy
in order to avoid very low level noisy signal
and extreme peaks that are calculated
every now and then. This approach gives a

 10

small upgrade to the third approach, but it
still does not represent user’s articulation
intents. The data refresh rate is larger than
in the Jerk_1 and Jerk_3 methods, but of
course smaller than the Jerk_2. It can be
considered as the best of all considered
methods because the constant update can
be undesirable when calculating jerkiness
in order to avoid using the undesirable data
from the raw information.

We have also tested an alternative
approach for calculating the third
derivation of a signal in a discrete domain.
This method is called Finite Differences
Method [16]. The calculations were
performed according to the following
equation:

𝑓(𝑥) ≈
𝑓(𝑥)−3∗𝑓(𝑥−1)+3∗𝑓(𝑥−2)−𝑓(𝑥−3)

ℎ3 (3)

where f(x) is the current sample value, f(x-
1) is the previous sample values, fs(x-2) is
the one before that and so on. h is the
distance between the samples and we can
presume it is 1 in our case. This calculation
has given us the same results as calculation
done with the built-in class functions of the
Processing environment.

Articulation calculations are subject to the
same filtering in pd as the tempo
calculations before they are mapped to the
parameters in pDM.

5. DISCUSSION

This project has demonstrated that it is not
trivial to develop a system which can be
controlled only by movement detection.
Not only that there are a lot of technical
challenges and limitations of the
equipment that was used, but there are
also challenges of conceptualization and
understanding of how to correctly

interpret user movement and map it to
musical cues of interest.

As we can see in the example of dynamic
control, no matter how we defined the
calculation principle, there are always
some limitations inherent to the solution.
For example, when we calculated the
current hand size by measuring the
distance between the hand and shoulder
joints, we have limited ourselves in an
unnatural way. If the user does not know
exactly how the system works, it is not easy
to achieve the desired results, and
sometimes the task is even frustrating. In
this case, the system is improved by
switching to middle spine joint as the
reference from where the current hand
distance is calculated. This position enables
more intuitive operation, but the limitation
of having a fixed reference point is still
present and reduces the flexibility of a
system. For example, if the user makes
circular movements around this point, the
distance value does not change and the
volume of reproduced music stays the
same even though the user’s intention may
be different.

Similarly, we needed to make two different
approaches for calculation of the tempo
cue in order to make the system work
properly and provide useful data for two
different operation modes. Still, these two
methods do not work side by side and
cannot provide one uniform solution for
the tempo cue calculation problem. This is
a severe limitation.

The articulation cue has shown to be the
most problematic one to understand,
detect and calculate. Looking at the
mathematical idea behind it, it seems
straightforward, but our implementation
has shown otherwise. There could be many
reasons for it, including noise that is
enhanced by doing the third derivation,

 11

taking a wrong approach in interpretation
of the data, dealing with extreme values
resulting from bad detection and so on.

Overall, more work needs to be done, both
on the side of conceptualization and on the
side of implementation, in order to develop
a more robust system. The first and crucial
thing is how to understand our movements
and how to interpret them by using a
computer. It has been shown in our
experience that we cannot rely solely on
the mathematical interpretations and
definitions.

6. FUTURE WORK

As already concluded, a lot more work on
different aspects of the project is needed in
order to develop a more robust and precise
system. Besides the big conceptual work,
many small steps can be made in order to
improve the current implementation.

First of all, the code should be rewritten in
a way that is more readable, modular,
reusable, with a concise naming
conventions and so on. For example, the
method of implementing OSC
communication should be done in a more
elegant way, without so much repetition in
the code. The whole program was written
in a manner of developing new ideas and
testing which work and which don’t, so it
comes out as unorganized.

Second, start and stop functionality of the
system has to be improved. User should be
able to start and stop the system with
his/her movements. At the moment, this
functionality is mapped to hand detection,
which doesn’t work perfectly.

Third, a function should be implemented to
make the system aware of which exact user
is controlling the system. The reason for

this is when another person comes in front
of the Kinect sensor, the system should be
aware of who the user which controls it is
and how to switch between these users if
wanted. Now the system just crashes when
this happens.
Forth, the second hand functionality
should be implemented and a method for
combining the contributions of both hands
should be developed.

Next, the two different methods for
assessing the tempo cue should be merged
into one. When the hand is in the high
frequency movement mode, the system
should detect that and work in this mode
(VelMinMax). When user is doing a more
typical movement, the last developed
method (VelRaw) should be used.

Finally, the mapping of calculated values to
musical cues should be done in a more
complex and interesting manner, and not
directly mapped as it is now. The type of
mapping could be an implementation of
Fuzzy analyzer of emotional expression in
music performance and body motion [17].
Its functioning depends on the sound level,
tempo and articulation parameters which
makes it convenient for our project. The
output it provides are the cue values for
emotional expressions of happiness,
sadness and anger.

 12

7. REFERENCES

[1] Borchers, J., Samminger, W. and
Mühlhäuser, M. (2002). Personal
Orchestra: Conducting Audio/Video Music
Recordings. WEDELMUSIC'02 Proceedings
of the Second international conference on
Web delivering of music, Pages 93 – 100.

[2] Dahl, S., Friberg, A. (2007). Visual
Perception of Expressiveness in Musicians’
Body Movements. Music Perception,
Volume 24, Issue 5, PP. 433 – 454.

[3] Microsoft, (2013). Kinect for Xbox One.
Online at: http://www.xbox.com/en-
US/xbox-one/accessories/kinect

[4] Processing foundation, (2017).
Welcome to Processing 3. Online at:
https://processing.org

[5] Pure Data (2016). Pure data. Online at:
https://puredata.info

[6] Friberg, A. (2006). pDM: An Expressive
Sequencer with Real-Time Control of the
KTH Music-Performance Rules. Computer
Music Journal. Spring 2006. Vol 30. No. 1.
Pages: 37-48

[7] Friberg, A., Bresin, R., Sundberg, J.
(2006). Overview of the KTH Rule System
for Musical Performance. Advances in
Cognitive Psychology (2006). Volume 3.
Issue 2-3. Pages 145-161.

[8] Mathews, M. V. The Conductor
Program and the Mechanical Baton. In M.
Mathews & J. Pierce, eds. Current
Directions in Computer Music Research.
Cambridge, Mass: The MIT Press, (pp. 263-
282), 1989.  

[9] Friberg, A. (2005). Home Conducting –
Control the overall musical expression with
gesture. Proceedings of the 2005
International Computer Music Conference,
San Francisco: International Computer
Music Association. (pp. 479-482).

[10] Casa Paganini – INFOMUS. The
EyesWeb project. Online at:
http://www.infomus.org/eyesweb_ita.php

[11] Rosa-Pujazo ́n, A., Barbancho, I.,
Tardo ́n, L. J., Barbancho, A.M.(2013)
Conducting a Virtual Ensamble With a
Kinect Device. Proceedings of the Sound
and Music Computing Conference 2013,
SMC 2013, Stockholm, Sweden

[12] Lengeling, S. T. (2016). Kinect V2
library for Processing. Online at:
https://github.com/ThomasLengeling/Kine
ctPV2

 [13] Microsoft, (2014). Kinect for
Windows SDK 2.0. Online at:
https://www.microsoft.com/en-
us/download/details.aspx?id=44561

[14] de Courville, R. (2015). Signal Filter
(beta). Online at:
https://github.com/SableRaf/signalfilter

 [15] Schlegel, A. (2015). OscP5. Online at:
https://github.com/sojamo/oscp5

[16] Wikipedia, (2016). Final differences
method. Online at:
https://en.wikipedia.org/wiki/Finite_differ
ence_method

[17] Friberg, A. (2004). A Fuzzy analyzer of
emotional expression in music
performance and body motion.
Proceedings of Music and Music Science,
Stockholm, October 28- 30, 2004

http://www.xbox.com/en-US/xbox-one/accessories/kinect
http://www.xbox.com/en-US/xbox-one/accessories/kinect
https://processing.org/
http://www.infomus.org/eyesweb_ita.php
https://github.com/ThomasLengeling/KinectPV2
https://github.com/ThomasLengeling/KinectPV2
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://github.com/SableRaf/signalfilter
https://github.com/sojamo/oscp5
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method

