
ITP Exercise 6
due Friday 2nd June

1 Exercise 5

Please finish question 1.3 and 1.4 from exercise 5. You might find the simplifier helpful.

2 Final Project

We have 3 more weeks to go on the lecture. For the last 3 weeks, I would like to set a small
project to solve for everyone. There will be a default project (see below). However, if you want
you can also propose your own project. This has to be approved by me, before you can start
working on it. It should satisfy the following requirements:

• You should build a formal model of some description. This description can e. g. be a natural
language text or some computer program.

• You should test your model against the description / implementation.

• You should prove some interesting properties.

• It should be do-able in a reasonable amount of time (ideally 3 weeks). You have to either
convince me that it is doable in 3 weeks or worth both your and my additional time.

Please read the default project proposal below. Either decide to do this project or think of an
alternative final project. In any case, discuss your choice with me. Whoever has not discussed
a final project with me by June 2nd will be forced to do the default project.

1



3 Default Project - Regular Expressions in HOL

There is a fun paper on regular expressions: A Play on Regular Expressions by Sebastian Fischer,
Frank Huch and Thomas Wilke published as a functional pearl at ICFP 2010 (http://www-ps.
informatik.uni-kiel.de/~sebf/pub/regexp-play.html). In this paper an implementation
of marked regular expressions in Haskell is described. The task is to formalise the simple parts
of this work in HOL, verify the correctness of the implementation and export trustworthy code
into an SML library.

You should develop this project such that (in theory) it could be added to the examples
directory of HOL. Therefore, I want you to create a git-repository for your project and give me
access to it. You should create one or more HOL-theories that can be compiled by Holmake.
There will be multiple SML files as well. These should compile decently and have a signature.
Please provide a selftest for your development. Write decent documentation. There should be a
(very short) README as well as sufficient comments in the code.

3.1 Basic Regular Expression Semantics

Read Act 1, Scene 1. Implement the Reg datatype in HOL. Like later in the paper, replace
the type Char with a free type variable ’a. The intention is to define regular expressions on
lists of type ’a. Define a function language of : ’a Reg -> (’a list) set that returns the
language accepted by a regular expression. The definition of language of should be as clean
and simple as possible. It does not need to be executable.

3.2 Executable Semantics

Now define the function accept in HOL. While doing so replace the type String with ’a list

to match the changes to Reg. You will need to implement the auxiliary functions parts and
split. Test your definitions and apply formal sanity checks.

3.3 Code Extraction and Conformance Testing

Familiarise yourself with EmitML. Use it to extract your datatype Reg and the function accept

to ML. Test accept against the regular expression implementation in regexpMatch.sml that
comes with HOL.
EmitML has not been discussed in the lecture and is not well documented. Part of this challenge

is to find information for yourself about HOL libraries and learn from examples and source code.

3.4 Correctness Proof

Prove that accept and language of agree with each other, i. e. prove the statement !r w.

accept r w <=> w IN (language of r).

3.5 Marked Regular Expressions

Continue reading the paper. Act 1, Scene 2 is interesting, but we are here not interested in
weights. Instead focus in Act 2, Scene 1. Implement a datatype for marked regular expressions
called MReg. Use first the simple version with caching the values of empty and final. Provide a
function MARK REG : ’a Reg -> ’a MReg that turns a regular expression into a marked expres-
sion without any marks set. Implement a function acceptM : ’a Reg -> ’a list -> bool

following the idea of the accept function in the paper.

2

http://www-ps.informatik.uni-kiel.de/~sebf/pub/regexp-play.html
http://www-ps.informatik.uni-kiel.de/~sebf/pub/regexp-play.html


Test your definitions and perform formal sanity checks.

3.6 Correctness Proof Marked Regular Expressions

Show that acceptM is correct, i. e. show !r w. acceptM r w <=> w IN (language of r).

3.7 Cached Marked Regular Expressions

Now let’s also implement the caching of empty and final. Call the resulting mutually recursive
datatypes CMReg and CMRe. Write a function CACHE REG : ’a MReg -> ’a CMReg that turns a
marked regular expression into a cached marked one with valid caches. Implement a function
acceptCM : ’a Reg -> ’a list -> bool that is similar to acceptM, but more efficient due to
using the caches.

Test your definitions and perform formal sanity checks. As part of formal sanity, define a well-
formedness predicate for cached marked regular expressions stating that the cached values for
empty and final are correct. Moreover, define the inverse function UNCACHE REG : ’a CMReg

-> ’a MReg of CACHE REG and show that these functions are really inverses.

3.8 Correctness Proof Caches

Show that acceptCM is correct, i. e. show !r w. acceptCM r w <=> w IN (language of r).

3.9 SML Library

Use EmitML to extract your code to SML. Provide an interface for regular expressions on strings.
The interface should contain a type for regular expression on strings similar to char Reg.
It should provide a function match that checks whether such a regular expression matches
a given string. Build 4 instances of this interface, one with the regular expression library
regexpMatch.sml and ones for accept, acceptM and acceptCM. Write some simple tests and
run them against all these instantiations (e. g. via a functor). Perform some simple performance
measurements.

3


	Exercise 5
	Final Project
	Default Project - Regular Expressions in HOL
	Basic Regular Expression Semantics
	Executable Semantics
	Code Extraction and Conformance Testing
	Correctness Proof
	Marked Regular Expressions
	Correctness Proof Marked Regular Expressions
	Cached Marked Regular Expressions
	Correctness Proof Caches
	SML Library


