Interactive Theorem Proving (ITP) Course
Part XIII

Thomas Tuerk (tuerk@kth.se)

v

F,

FKTHS

Academic Year 2016/17, Period 4

version fal3ae6 of Mon May 29 12:37:43 2017

Part XIII

Rewriting

ahy

N ik
EKTHY

VETENSKAP
&9 OCH KONST %%

T

Rewriting in HOL

@ simplification via rewriting was already a strength of Edinburgh LCF
@ it was further improved for Cambridge LCF
@ HOL inherited this powerful rewriter

@ equational reasoning is still the main workhorse
@ there are many different equational reasoning tools in HOL
> Rewrite library
inherited from Cambridge LCF
you have seen it in the form of REWRITE_TAC
» computeLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL
» simpLib — Simplification
sophisticated rewrite engine, HOL's main workhorse
not discussed in this lecture, yet

198 /250

Semantic Foundations

@ we have seen primitive inference rules for equality before

lFs=t
AFu=v lFs=t
types fit x not free in T
COMB ABS
FrUAF s(u) =t(v) MEAx.s=Ax. t
lFs=t REFL
AFt= _
277" TRANS Ft=t
FTUAFs=u

@ these rules allow us to replace any subterm with an equal one

@ this is the core of rewriting

199 /250

Conversions

@ in HOL, equality reasoning is implemented by conversions

@ a conversion is a SML function of type term -> thm

@ given a term t, a conversion
» produces a theorem of the form |- t
> raises an UNCHANGED exception or
» fails, i.e. raises an HOL_ERR exception

Example
> BETA_CONV ““(\x. SUC x) y*°¢
val it = |- (\x. SUC x) y = SUC y

> BETA_CONV ‘SUC y*°
Exception-HOL_ERR ... raised

> REPEATC BETA_CONV ‘¢SUC y*°¢
Exception- UNCHANGED raised

t°’

200 /250

Conversionals

@ similar to tactics and tacticals there are conversionals for conversions

@ conversionals allow building conversions from simpler ones
@ there are many of them
» THENC
ORELSEC
REPEATC
TRY_CONV
RAND_CONV
RATOR_CONV
ABS_CONV

vV VY vy VY VY VY

201 /250

Depth Conversionals

o for rewriting depth-conversionals are important

@ a depth-conversional applies a conversion to all subterms
@ there are many different ones
» ONCE_DEPTH_CONV c — top down, applies c once at highest possible
positions in distinct subterms
» TOP_SWEEP_CONV ¢ — top down, like ONCE_DEPTH_CONV, but continues
processing rewritten terms
» TOP_DEPTH_CONV ¢ — top down, like TOP_SWEEP_CONV, but try
top-level again after change
» DEPTH_CONV c — bottom up, recurse over subterms, then apply c
repeatedly at top-level
» REDEPTH_CONV ¢ — bottom up, like DEPTH_CONV, but revisits subterms

202 /250

REWR_CONV

@ it remains to rewrite terms at top-level

@ this is achieved by REWR_CONV
@ given a term t and a theorem |- t1 = t2, REWR_.CONV t thm
» searches an instantiation of term and type variables such that t1
becomes a-equivalent to t
» fails, if no instantiation is found
» otherwise, instantiate the theorem and get |- t1’ = t2°
> return theorem |- t = t2’

Example

term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)
found type instantiation: [““:’a‘‘ [-> ¢‘:num‘‘]

found term instantiation: [‘‘x:num‘‘¢ |[-> “€1¢¢; “‘xs¢ |-> ““[2;3]“¢]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

@ the tricky part is finding the instantiation

@ this problem is called the (term) matching problem

203 /250

Term Matching

@ given term t_org and a term t_goal try to find

> type substitution ty_s
> term substitution tm_s

@ such that subst tm_s (inst ty.s t_org)

a

t_goal

@ this can be easily implemented by a recursive search

t_org

tl_org t2_org
tl_org t2_org
\x. t_org x
\x. t_org x
const

const

var

t_goal

tl_goal t2_goal
otherwise

\y. t_goal y
otherwise

same const
otherwise
anything

action

recurse

fail

match types of x, y and recurse
fail

match types

fail

try to bind var,

take care of existing bindings

204 / 250

Examples Term Matching

t_org t_goal substs

LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a — num, x — 1, xs — [2;3]
[1:’a list [1:’b list ’a — ’b

0 0 empty substitution

b/\T (P (x:’a) ==> Q) /\T b — Px==>0Q

b /\b Px /\Px b — P x

b /\b Px/\Py fail

'x:num. P x /\ Q x ly:num. P y /\ Q’ ¥y P —-P,Q —- Q

!x:num. P x /\ Q x ly. @Q=yv) /\ANQ ¥y P— (3=2),Q0 - @

'x:num. P x /\ Q x ly. (y=2) NQ vy fail

@ it is often very annoying that the last match fails

@ it prevents us for example rewriting !'y. (2 = y) /\ Q y to
(ly. (2=y)) /\ (ly. Q v
e Can we do better? Yes, with higher order (term) matching.

205 /250

Higher Order Term Matching

@ term matching searches for substitutions such that t_org becomes
a-equivalent to t_goal

@ higher order term matching searches for substitutions such that
t_org becomes t_subst such that the Sn-normalform of t_subst is
a-equivalent equivalent to Sn-normalform of t_goal, i.e.
higher order term matching is aware of the semantics of \

B-reduction (Ax. f) y = fly/x]
n-conversion (Ax. f x) = f where x is not free in f

o the HOL implementation expects t_org to be a higher-order
pattern

» t_org is S-reduced
» if X is a variable that should be instantiated, then all arguments should
be distinct variables

o for other forms of t_org, HOL's implementation might fail
@ higher order matching is used by HO_REWR_CONV

206 /250

Examples Higher Order Term Matching

t_org t_goal substs

'x:inum. Px /N Qx ly. (y=2) NQ ¥y P—> (\y.y=2),Q0 - Q
'x. Px /\ Q x 'x. Px/\Qx /\Zx Q> \x. Q@ x/\Zx

x. Px /\ Q 'x. Px /\ Q x fails

'x. P (x, x) x. Q@ x fails

'x. P (x, x) 'x. FST (x,x) = SND (x,x) P — \xx. FST xx = SND xx

Don’t worry, it might look complicated, but
in practice it is easy to get a feeling for higher order matching.

207 / 250

Rewrite Library

the rewrite library combines REWR_CONV with depth conversions

there are many different conversions, rules and tactics

at they core, they all work very similarly
» given a list of theorems, a set of rewrite theorems is derived
* split conjunctions
* remove outermost universal quantification
* introduce equations by adding = T (or = F) if needed
» REWR_CONV is applied to all the resulting rewrite theorems
» a depth-conversion is used with resulting conversion

for performance reasons an efficient indexing structure is used

by default implicit rewrites are added

208 / 250

Rewrite Library Il

REWRITE_CONV
REWRITE_RULE
REWRITE_TAC
ASM_REWRITE_TAC
ONCE_REWRITE_TAC
PURE_REWRITE_TAC
PURE_ONCE_REWRITE_TAC

209 /250

Ho Rewrite Library

@ similar to Rewrite lib, but uses higher order matching

@ internally uses HO_REWR_CONV
@ similar conversions, rules and tactics as Rewrite lib

vV VY VY VY VY VY VvYY

Ho_Rewrite
Ho_Rewrite
Ho_Rewrite
Ho_Rewrite

Ho_Rewrite.
.PURE_REWRITE_TAC
.PURE_ONCE_REWRITE_TAC

Ho_Rewrite
Ho_Rewrite

.REWRITE_CONV
.REWRITE_RULE
.REWRITE_TAC
.ASM_REWRITE_TAC

ONCE_REWRITE_TAC

210 /250

Examples Rewrite and Ho Rewrite Library

> REWRITE_CONV [LENGTH] °‘LENGTH [1;2] ¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE_REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]°°
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE_CONV [] ‘A /\ A /\ ~A°¢
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] ‘€A /\ A /\ ~A¢¢
val it = |- A /AN A /\ ~A <=> A /\F

> REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A¢¢
val it = |- A /\ A /\ ~A<=>F

> REWRITE_CONV [FORALL_AND_THM] ‘“!x. P x /\ Q@ x /\ R x“°¢
Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q@ x /\ R x*¢
val it = |- 'x. Px /\Qx /\Rx <= (!'x. Px)/\ (!x. Qx) /\ (!x. R x)

211 /250

Summary Rewrite and Ho Rewrite Library

@ the Rewrite and Ho_Rewrite library provide powerful infrastructure
for term rewriting

@ thanks to clever implementations they are reasonably efficient
@ basics are easily explained

@ however, efficient usage needs some experience

212 /250

Term Rewriting Systems

to use rewriting efficiently, one needs to understand about term
rewriting systems

this is a large topic
one can easily give whole course just about term rewriting systems

however, in practise you quickly get a feeling
important points in practise

> ensure termination of your rewrites
» make sure they work nicely together

213 /250

Term Rewriting Systems — Termination

Theory
@ choose well-founded order <

o for each rewrite theorem |- t1 = t2 ensure t2 < t1

Practice
o informally define for yourself what simpler means
@ ensure each rewrite makes terms simpler

@ good heuristics

subterms are simpler than whole term
use an order on functions

214 /250

Termination — Subterm examples

@ a proper subterm is always simpler
» !1. APPEND [] 1 =1
'In. n+0=n
1. REVERSE (REVERSE 1) =1
1t1 t2. if T then t1 else t2 <=> ti
In. nx 0=20

vV vyVvYy

@ the right hand side should not use extra vars, throwing parts away is
usually simpler
» Ix xs. (SNOC x xs = []) = F
» Ix xs. LENGTH (x::xs) = SUC (LENGTH xs)
» 'n x xs. DROP (SUC n) (x::xs) = DROP n xs

215 /250

Termination — use simpler terms

it is useful to consider some functions simple and other complicated
replace complicated ones with simple ones
never do it in the opposite direction

clear examples

» |- 'mn. MEM m (COUNT_LIST n) <=> (m < n)
» |- !1s n. (DROP n 1s = []) <=> (n >= LENGTH 1s)

unclear example
» |- !L. REVERSE L = REV L []

216 /250

Termination — Normalforms

@ some equations can be used in both directions
@ one should decide on one direction

@ this implicitly defined a normalform one wants terms to be in
@ examples

» |- 'f 1. MAP £ (REVERSE 1) = REVERSE (MAP f 1)
» |- 111 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

217 /250

Termination — Problematic rewrite rules

@ some equations immediately lead to non-termination, e. g.
» |- mn. m+n=n+m
» |- !m. m=m+ 0

o slightly more subtle are rules like
» |- !'n. fact n = if (n = 0) then 1 else n * fact(n-1)

@ often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

» [-mnp.m+ (n+p)=(m+n) + pand
|- mnp. (m+n) +p=mn+ (n+ p)

218 /250

Rewrites working together

@ rewrite rules should not complete with each other

o if a term ta can be rewritten to tal and ta2 applying different
rewrite rules, then the tal and ta2 should be further rewritten to a
common tb

@ this can often be achieved by adding extra rewrite rules

Example
Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
e Tor
@ EVEN (2 + 2).
To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

v

219 /250

Rewrites working together |l

e 6 o ¢

to design rewrite systems that work well, normalforms are vital
a term is in normalform, if it cannot be rewritten any further

one should have a clear idea what the normalform of common terms
looks like

all rules should work together to establish this normalform
the right-hand-side of each rule should be in normalform
the left-hand-side should not be simplifiable by any other rule

the order in which rules are applied should not influence the final
result

computelLib

@ computeLib is the library behind EVAL

@ it is a rewriting library designed for evaluating ground terms (i.e.
terms without variables) efficiently

@ it uses a call-by-value strategy similar to SML's
@ it uses first order term matching

@ it performs (8 reduction in addition to rewrites

221 /250

compset

@ computeLib uses compsets to store its rewrites

@ a compset stores

» rewrite rules
» extra conversions

@ the extra conversions are guarded by a term pattern for efficiency
@ users can define their own compsets

@ however, computeLib maintains one special compset called
the_compset

@ the_compset is used by EVAL

222 /250

EVAL

EVAL uses the_compset

tools like the Datatype of TFL automatically extend the_compset
this way, EVAL knows about (nearly) all types and functions

one can extended the_compset manually as well

rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

zDefine prevents TFL from automatically extending the _compset

223 /250

simpLib

@ simpLib is a sophisticated rewrite engine
@ it is HOL's main workhorse
@ it provides
> higher order rewriting
» usage of context information
conditional rewriting
arbitrary conversions
support for decision procedures
simple heuristics to avoid non-termination
fancier preprocessing of rewrite theorems

vV VY vy VvV VY

@ it is very powerful, but compared to Rewrite lib sometimes slow

224 /250

Basic Usage |

@ simpLib uses simpsets

@ simpsets are special datatypes storing

> rewrite rules
> conversions
» decision procedures

» congruence rules
>

in addition there are simpset-fragments
simpset-fragments contain similar information as simpsets
fragments can be added to and removed from simpsets

common usage: basic simpset combined with one or more
simpset-fragments, e. g.
» list_ss ++ pairSimps.gen_beta_ss

> std_ss ++ QI_ss
> L.

225 /250

Basic Usage Il

@ a call to the simplifier takes as arguments

>

>

a simpset
a list of rewrite theorems

@ common high-level entry points are

>

>
>
>
>

SIMP_CONV ss thmL — conversion

SIMP RULE ss thmL — rule

SIMP_TAC ss thmL — tactic without considering assumptions
ASM_SIMP TAC ss thmL — tactic using assumptions to simplify goal
FULL_SIMP_TAC ss thmL — tactic simplifying assumptions with each
other and goal with assumptions

REV_FULL_SIMP_TAC ss thmL — similar to FULL_SIMP_TAC but with
reversed order of assumptions

@ there are many derived tools not discussed here

226 /250

Basic Simplifier Examples

> SIMP_CONV bool_ss [LENGTH] ¢‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ‘‘LENGTH [1;2]°‘¢
val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ¢‘LENGTH [1;2]°°
val it = |- LENGTH [1; 2] = 2

227 /250

FULL_SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) (SUC (SUC y0))

0. SUC y1 = y2

1. x1 = SUC xO0

2. yi = SUC yO

3. SUC x1 = x2)
Action

FULL_SIMP_TAC std_ss []

Resulting GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC yO) = y2
1. x1 = SUC x0
2. yi1 = SUC yo
3. SUC x1 = x2

228 /250

REV_FULL _SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC yO) = y2

1. x1 = SUC x0

2. yi = SUC yO

3. SUC x1 = x2)
Action

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack

P x2 y2
0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC (SUC x0) = x2

229 /250

Common simpsets

pure_ss — empty simpset
bool_ss — basic simpset
std_ss — standard simpset
arith_ss — arithmetic simpset

list_ss — list simpset

real _ss — real simpset

230 /250

Common simpset-fragments

many theories and libraries provide their own simpset-fragments
PRED_SET_ss — simplify sets

STRING_ss — simplify strings

QI_ss — extra quantifier instantiations

gen beta ss — [reduction for pairs

ETA_ss — 7 conversion

EQUIV_EXTRACT_ss — extract common part of equivalence

CONJ_ss — use conjunctions for context

231 /250

Build-In Conversions and Decision Procedures

in contrast to Rewrite lib the simplifier can run arbitrary conversions
most useful is probably [reduction
std_ss has support for basic arithmetic and numerals
it also has simple, syntactic conversions for instantiating quantifiers
» Ix. ... /N x=¢)/\ ... => ...
» !Ix. ... \/ ~&x=¢c)\/ ...
» ?x. ... /N x=¢c) /\ ...

besides very useful conversions, there are decision procedures as well

the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE

232 /250

Examples |

> SIMP_CONV std_ss [1 “‘(\x. x + 2) 5¢¢
val it = |- (\x. x +2) 65 =7

> SIMP_CONV std_ss [1 ““!'x. Q x /\ (x =7) ==>P x°¢
val it = |- (Ix. Q x /\ (x=7) ==>P x) <=> (Q 7 =>P 7)¢¢

> SIMP_CONV std_ss [] “‘?x. Q x /\ (x=7) /\ P x“¢
val it = |- (?x. Q x /\ (x=7) /\Px)<=>(Q7 /\PT7)°

> SIMP_CONV std_ss [] “‘x > 7 ==> x > 5¢¢
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] “‘x > 7 ==> x > 5¢¢
val it = |- (x > 7 ==>x >5) <=>T

233 /250

Higher Order Rewriting

o the simplifier supports higher order rewriting
@ this is often very handy

o for example it allows moving quantifiers around easily

Examples

> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x¢°¢
val it = |- (!x. P x /\ Q /\ R x) <=>
('x. Px) /\Q/\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
Gl @ 5 A (G 5 o B8) =5 B g0
val it = |- (!y. Py /\ (7x. y = SUC x) ==> Q y) <=>
'x. P (SUC x) ==> Q (SUC x)

234 /250

Context

a great feature of the simplifier is that it can use context information

by default simple context information is used like
» the precondition of an implication
> the condition of if-then-else
@ one can configure which context to use via congruence rules
» by using CONJ_ss one can easily use context of conjunctions
> warning: using CONJ_ss can be slow
> using other contexts is outside the scope of this lecture
@ using context often simplifies proofs drastically

» using Rewrite lib, often a goal needs to be split and a precondition
moved to the assumptions

> then ASM_REWRITE_TAC can be used

» with SIMP_TAC there is no need to split the goal

Context Examples

> SIMP_CONV std_ss [] ‘(1 = [1) ==>P 1) /\ Q 1¢¢
val it = |- (1 =1[1) === P 1) /A Q1 <=>
(@=[0[M ==PI[D /\NQ1

> SIMP_CONV arith_ss [] “‘if (¢ /\ x < 5) then (P ¢ /\ x < 6) else Q c“¢
val it = |- (if ¢ /\ x < 5 then P ¢ /\ x < 6 else Q c) <=>
if ¢ /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [J ‘P x /\ (Q x /\ P x ==> 727 x)‘¢
Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [1 ‘P x /\ (Q x /\ P x ==> Z x)¢¢
val it = |-Px /\ (Qx /\Px==>2Z%x)<=Px/\ (Qx =2 %)

236 /250

Conditional Rewriting |

@ perhaps the most powerful feature of the simplifier is that it supports
conditional rewriting

@ this means it allows conditional rewrite theorems of the form
|- cond ==> (t1 = t2)

o if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2’, it
tries to discharge the assumption cond’

o for this, it calls itself recursively on cond’

» all the decision procedures and all context information is used
» conditional rewriting can be used
> to prevent divergence, there is a limit on recursion depth

@ if cond’ = T can be shown, t1’ is rewritten to t2°’

@ otherwise t1’ is not modified

237 /250

Conditional Rewriting Example

@ consider the conditional rewrite theorem
'1 n. LENGTH 1 <= n ==> (DROP n 1 = [])
@ let's assume we want to prove
(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]
@ we can without conditional rewriting
» show |- LENGTH [1;2;3;4] <= 7
» use this to discharge the precondition of the rewrite theorem
> use the resulting theorem to rewrite the goal
@ with conditional rewriting, this is all automated
> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]
““(DROP 7 [1;2;3;4]) ++ [5;6;7]°¢
val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

@ conditional rewriting often shortens proofs considerably

238 /250

Conditional Rewriting Example Il

et

Proof with Rewrite

prove (¢‘(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]1 ¢,
‘DROP 7 [1;2;3;4] = [1° by (
MATCH_MP_TAC DROP_LENGTH_TOO0_LONG >>
REWRITE_TAC[LENGTH] >>
DECIDE_TAC
) >>
ASM_REWRITE_TAC[APPEND])

Proof with Simplifier

prove (‘“(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;71°¢,
ASM_SIMP_TAC list_ss [1)

239 /250

Conditional Rewriting Il

@ conditional rewriting is a very powerful technique

@ decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

@ it provides a powerful search for theorems that apply
@ however, if used naively, it can be slow

@ moreover, to work well, rewrite theorems need to of a special form

240 /250

Conditional Rewriting Pitfalls |

o if the pattern is too general, the simplifier becomes very slow
@ consider the following, trivial but hopefully useful example

Looping example

> val my_thm = prove (‘‘"P ==> (P = F) ‘¢, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ¢‘P1 /\ P2 /\ P3 /\ ... /\ P10¢¢
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised

> time (SIMP_CONV std_ss [1) “‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
Exception- UNCHANGED raised

4

>

v vy VvYy

notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

notice that each backchaining triggers many more backchainings
each has to be aborted to prevent diverging

as a result, the simplifier becomes very slow

incidentally, the conditional rewrite is useless

241 /250

Conditional Rewriting Pitfalls Il

@ good conditional rewrites |- ¢ ==> (1 = r) should mention only
variables in c that appear in 1

@ if c contains extra variables x1 ... =xn, the conditional rewrite
engine has to search instantiations for them

@ this mean that conditional rewriting is trying discharge the
precondition 7x1 ... xn. c

@ the simplifier is usually not able to find such instances

Transitivity

> val P_def = Define ‘P xy = x < y°;
> val my_thm = prove (‘‘!x y z. Px y
> SIMP_CONV arith_ss [my_thm] ‘P 2 3
Exception- UNCHANGED raised

==>Pyz==>Pxz ...)
/\ P 34==>P 24

(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ‘P 2 3 /\ P 3 4 ==>P 2 4¢¢
val it = |- P23 /\ P34 ==>P24<=>T:

242 /250

Conditional Rewriting Pitfalls Il

@ let's look in detail why SIMP_CONV did not make progress above

> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [my_thm] ‘P 2 3 /\ P 3 4 ==>P 2 4°¢

[468000] :
[468000] :

[584000] :
[584000] :
[584000] :

[588000] :
[588000] :
[588000] :
[6592000] :
[596000] :
[608000] :

[640000] :

more context: |- !x y z. Pxy==>Pyz==>Pxz
New rewrite: |- (?y. Pxy /NPy z) ==> (P xz <=>T)

more context: [.] |[-P 23 /\P 34

New rewrite: [.] [-P 23 <=>T

New rewrite: [.] |- P 34 <=>T

rewriting P 2 4 with |- (?y. Pxy /APy z) ==> (Px 2z <=>T)
trying to solve: ?7y. P2y /\ Py 4

rewriting P 2 y with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
trying to solve: ?y’. P2y’ /\ Py’ y

looping - cut
looping - stack limit reached

couldn’t solve: ?y. P2y /\ Py 4

Exception- UNCHANGED raised

243 /250

Conditional vs. Unconditional Rewrite Rules

@ conditional rewrite rules are often much more powerful
@ however, Rewrite lib does not support them

@ for this reason there are often two versions of rewrite theorems

drop example
@ DROP_LENGTH.NIL is a useful rewrite rule:
|- !'1. DROP (LENGTH 1) 1 = []
@ in proofs, one needs to be careful though to preserve exactly this form
one should not (partly) evaluate LENGTH 1 or modify 1 somehow

@ with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does

not need to be as careful
|- 11 n. LENGTH 1 <= n ==> (DROP n 1 = [])

the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

v

244 /250

Special Rewrite Forms

@ some theorems given in the list of rewrites to the simplifier are used
for special purposes
@ there are marked functions that mark these theorems

» Once : thm -> thm use given theorem at most once

» Ntimes : thm -> int -> thm use given theorem at most the given
number of times

» AC : thm -> thm -> thm use given associativity and commutativity
theorems for AC rewriting

» Cong : thm -> thm use given theorem as a congruence rule

@ these special forms are easy ways to add this information to a simpset

@ it can be directly set in a simpset as well

245 /250

Example Once

> SIMP_CONV pure_ss [Once ADD_COMM] ‘‘a + b = c + d¢¢
val it = |- (a+b=c+d) <=> (b+a=c+d)

> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ‘‘a + b = c + d¢¢

val it = |- (a+b=c +d) <=> (a+b=c+ d)
> SIMP_CONV pure_ss [ADD_COMM] ‘‘a + b =c + d¢
Exception- UNCHANGED raised

> ONCE_REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d°¢
val it = |- (a+b=c+d) <=> (b+a=4d+c)

> REWRITE_CONV [ADD_COMM] ‘‘a + b =c + d¢¢
. diverges ...

246 /250

Stateful Simpset

@ the simpset srw_ss() is maintained by the system

> it is automatically extended by new type-definitions
> theories can extend it via export_rewrites
> libs can augment it via augment_srw_ss

@ the stateful simpset contains many rewrites

@ it is very powerful and easy to use

Example

> SIMP_CONV (srw_ss()) [] ‘‘case [] of [] => (2 + 4)¢¢
val it = |- (case [J of [] => 2 + 4 | v::vl => ARB) = 6

247 /250

Discussion on Stateful Simpset

the stateful simpset is very powerful and easy to use
however, results are hard to predict

proofs using it unwisely are hard to maintain
the stateful simpset can expand too much

> bigger, harder to read proof states
> high level arguments become hard to see

whether to use the stateful simpset depends on personal proof style
| advise at the beginning to not use srw_ss

once you got a good intuition on how the simplifier works, make your
own choice

248 / 250

Adding Own Conversions ‘
Q?&@zw&
@ it is complicated to add arbitrary decision procedures to a simpset

@ however, adding simple conversions is straightforward

@ a conversion is described by a stdconvdata record
type stdconvdata = {

name: string, (* name for debugging *)
pats: term list, (* list of patterns, when to try conv *)
conv: conv (* the conversion *)

}

@ use std_conv_ss to create simpset-fragement

Example

val WORD_ADD_ss =
simpLib.std_conv_ss
{conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [‘‘words$word_add (w:’a word) y‘‘l}

249 /250

Summary Simplifier

@ the simplifier is HOL's main workhorse for automation
@ it is very powerful

@ conditional rewriting very powerful
> here only simple examples were presented
> experiment with it to get a feeling
@ many advanced features not discussed here at all

> using congruence rules
> writing own decision procedures
> rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in
control when using it. Otherwise your proofs easily become lengthy,
convoluted and hard to maintain.

250 /250

	Rewriting
	Rewrite Library
	Term Rewriting Systems
	computeLib
	simpLib

