Interactive Theorem Proving (ITP) Course Part XIII

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version fa13ae6 of Mon May 29 12:37:43 2017

Part XIII

Rewriting

Rewriting in HOL

- KTH
- Semantic Foundations

- simplification via rewriting was already a strength of Edinburgh LCF
- it was further improved for Cambridge LCF
- HOL inherited this powerful rewriter
- equational reasoning is still the main workhorse
- there are many different equational reasoning tools in HOL
 - ► Rewrite library inherited from Cambridge LCF you have seen it in the form of REWRITE_TAC
 - ► computeLib fast evaluation build for speed, optimised for ground terms seen in the form of EVAL
 - simpLib Simplification sophisticated rewrite engine, HOL's main workhorse not discussed in this lecture, yet
 - ▶ ...

• we have seen primitive inference rules for equality before

$$\Gamma \vdash s = t
\Delta \vdash u = v
\underline{types \ fit}
\Gamma \cup \Delta \vdash s(u) = t(v)$$
COMB
$$\frac{x \ not \ free \ in \ \Gamma}{\Gamma \vdash \lambda x. \ s = \lambda x. \ t}$$
ABS
$$\frac{\Gamma \vdash s = t}{\Delta \vdash t = u}$$

$$\frac{\Delta \vdash t = u}{\Gamma \vdash \lambda \vdash s = u}$$
TRANS
$$\frac{\Gamma \vdash s = t}{\Gamma \vdash \lambda x. \ s = u}$$

- these rules allow us to replace any subterm with an equal one
- this is the core of rewriting

Conversions

Conversionals

- in HOL, equality reasoning is implemented by conversions
- a conversion is a SML function of type term -> thm
- given a term t, a conversion
 - ▶ produces a theorem of the form |- t = t'
 - ▶ raises an UNCHANGED exception or
 - ► fails, i. e. raises an HOL_ERR exception

```
Example
```

```
> BETA_CONV ''(\x. SUC x) y''
val it = |- (\x. SUC x) y = SUC y

> BETA_CONV ''SUC y''
Exception-HOL_ERR ... raised

> REPEATC BETA_CONV ''SUC y''
Exception- UNCHANGED raised
```

- similar to tactics and tacticals there are conversionals for conversions
- conversionals allow building conversions from simpler ones
- there are many of them
 - ► THENC
 - ► ORELSEC
 - ► REPEATC
 - ► TRY_CONV
 - ► RAND_CONV
 - ► RATOR_CONV
 - ► ABS_CONV
 - ▶ ...

200 / 250

201 / 250

Depth Conversionals

REWR_CONV

- for rewriting depth-conversionals are important
- a depth-conversional applies a conversion to all subterms
- there are many different ones
 - ► ONCE_DEPTH_CONV c top down, applies c once at highest possible positions in distinct subterms
 - ► TOP_SWEEP_CONV c top down, like ONCE_DEPTH_CONV, but continues processing rewritten terms
 - ► TOP_DEPTH_CONV c top down, like TOP_SWEEP_CONV, but try top-level again after change
 - ► DEPTH_CONV c bottom up, recurse over subterms, then apply c repeatedly at top-level
 - ▶ REDEPTH_CONV c bottom up, like DEPTH_CONV, but revisits subterms

- this is achieved by DEUD CONV
- this is achieved by REWR_CONV
- given a term t and a theorem |- t1 = t2, REWR_CONV t thm
 - ightharpoonup searches an instantiation of term and type variables such that t1 becomes lpha-equivalent to t
 - ► fails, if no instantiation is found

it remains to rewrite terms at top-level

- ▶ otherwise, instantiate the theorem and get |- t1' = t2'
- ► return theorem |- t = t2'

Example

```
term LENGTH [1;2;3], theorem |- LENGTH ((x:'a)::xs) = SUC (LENGTH xs) found type instantiation: ['':'a'' |-> '':num''] found term instantiation: [''x:num'' |-> ''1''; ''xs'' |-> ''[2;3]''] returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])
```

- the tricky part is finding the instantiation
- this problem is called the (term) matching problem

Term Matching

Examples Term Matching

- given term t_org and a term t_goal try to find
 - ► type substitution ty_s
 - ▶ term substitution tm_s
- such that subst tm_s (inst ty_s t_org) $\stackrel{\alpha}{\equiv}$ t_goal
- this can be easily implemented by a recursive search

t_org	t_{goal}	action
t1_org t2_org	t1_goal t2_goal	recurse
t1_org t2_org	otherwise	fail
\x. t_org x	\y. t_goal y	match types of x , y and recurse
\x. t_org x	otherwise	fail
const	same const	match types
const	otherwise	fail
var	anything	try to bind var,
		take care of existing bindings

t_org	t_goal	substs
LENGTH ((x:'a)::xs)	LENGTH [1;2;3]	'a $ ightarrow$ num, x $ ightarrow$ 1, xs $ ightarrow$ [2;3]
[]:'a list	[]:'b list	'a $ ightarrow$ 'b
0	0	empty substitution
b /\ T	(P (x:'a) ==> Q) /\ T	$b \rightarrow P x ==> Q$
b /\ b	P x /\ P x	$b \rightarrow P x$
b /\ b	P x /\ P y	fail
!x:num. P x /\ Q x	!y:num. P'y /\ Q'y	P $ ightarrow$ P', Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. $(2 = y) / Q' y$	P $ ightarrow$ (\$= 2), Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. $(y = 2) / Q' y$	fail

- it is often very annoying that the last match fails
- it prevents us for example rewriting !y. (2 = y) / Q y to (!y. (2=y)) / (!y. Q y)
- Can we do better? Yes, with higher order (term) matching.

204 / 250

205 / 250

Higher Order Term Matching

- term matching searches for substitutions such that t_{org} becomes α -equivalent to t_{goal}
- higher order term matching searches for substitutions such that t_org becomes t_subst such that the $\beta\eta$ -normalform of t_subst is α -equivalent equivalent to $\beta\eta$ -normalform of t_goal, i.e.

higher order term matching is aware of the semantics of λ

```
β-reduction (λx. f) y = f[y/x] η-conversion (λx. f x) = f where x is not free in f
```

- the HOL implementation expects t_org to be a higher-order pattern
 - t_org is β-reduced
 - ► if X is a variable that should be instantiated, then all arguments should be distinct variables
- for other forms of t_org, HOL's implementation might fail
- higher order matching is used by HO_REWR_CONV

Examples Higher Order Term Matching

t_org	t_goal	substs
!x:num. P x /\ Q x	!y. (y = 2) /\ Q' y	$P \rightarrow (y. y = 2), Q \rightarrow Q'$
!x. P x /\ Q x	!x. P x /\ Q x /\ Z x	Q \rightarrow \x. Q x /\ Z x
!x. P x /\ Q	!x. P x /\ Q x	fails
!x. P (x, x)	!x. Q x	fails
!x. P (x, x)	!x. FST $(x,x) = SND(x,x)$	P \rightarrow \xx. FST xx = SND xx

Don't worry, it might look complicated, but in practice it is easy to get a feeling for higher order matching.

Rewrite Library

Rewrite Library II

- the rewrite library combines REWR_CONV with depth conversions
- there are many different conversions, rules and tactics
- at they core, they all work very similarly
 - ▶ given a list of theorems, a set of rewrite theorems is derived
 - **★** split conjunctions
 - ★ remove outermost universal quantification
 - ★ introduce equations by adding = T (or = F) if needed
 - ► REWR_CONV is applied to all the resulting rewrite theorems
 - ► a depth-conversion is used with resulting conversion
- for performance reasons an efficient indexing structure is used
- by default implicit rewrites are added

- REWRITE_CONV
- REWRITE_RULE
- REWRITE_TAC
- ASM_REWRITE_TAC
- ONCE_REWRITE_TAC
- PURE_REWRITE_TAC
- PURE_ONCE_REWRITE_TAC
- ...

Ho_Rewrite Library

- similar to Rewrite lib, but uses higher order matching
- internally uses HO_REWR_CONV
- similar conversions, rules and tactics as Rewrite lib
 - ► Ho_Rewrite.REWRITE_CONV
 - ► Ho_Rewrite.REWRITE_RULE
 - ► Ho_Rewrite.REWRITE_TAC
 - ► Ho_Rewrite.ASM_REWRITE_TAC
 - ► Ho_Rewrite.ONCE_REWRITE_TAC
 - ► Ho_Rewrite.PURE_REWRITE_TAC
 - ▶ Ho_Rewrite.PURE_ONCE_REWRITE_TAC
 - ▶ ...

208 / 250

Examples Rewrite and Ho_Rewrite Library

209 / 250

```
> ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])
```

> REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> REWRITE_CONV [] ''A /\ A /\ ~A''
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A'' val it = |- A /\ A /\ ~A <=> A /\ F

> REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A''
val it = |- A /\ A /\ ~A <=> F

> REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x'' Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x''
val it = |-!x. P x /\ Q x /\ R x <=> (!x. P x) /\ (!x. Q x) /\ (!x. R x)

210 / 250 211 / 250

Summary Rewrite and Ho_Rewrite Library

Term Rewriting Systems

- the Rewrite and Ho_Rewrite library provide powerful infrastructure for term rewriting
- thanks to clever implementations they are reasonably efficient
- basics are easily explained
- however, efficient usage needs some experience

- to use rewriting efficiently, one needs to understand about term rewriting systems
- this is a large topic
- one can easily give whole course just about term rewriting systems
- however, in practise you quickly get a feeling
- important points in practise
 - ► ensure termination of your rewrites
 - make sure they work nicely together

212 / 250

213 / 250

Term Rewriting Systems — Termination

Termination — Subterm examples

Theory

- choose well-founded order
 ✓
- \circ for each rewrite theorem |- t1 = t2 ensure t2 \prec t1

Practice

- informally define for yourself what simpler means
- ensure each rewrite makes terms simpler
- good heuristics
 - subterms are simpler than whole term
 - use an order on functions

- a proper subterm is always simpler
 - ► !1. APPEND [] 1 = 1
 - \triangleright !n. n + 0 = n
 - ▶ !1. REVERSE (REVERSE 1) = 1
 - ▶ !t1 t2. if T then t1 else t2 <=> t1
 - \triangleright !n. n * 0 = 0
- the right hand side should not use extra vars, throwing parts away is usually simpler
 - ▶ !x xs. (SNOC x xs = []) = F
 - ▶ !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
 - \blacktriangleright !n x xs. DROP (SUC n) (x::xs) = DROP n xs

214 / 250 215 / 250

Termination — use simpler terms

Termination — Normalforms

- it is useful to consider some functions simple and other complicated
- replace complicated ones with simple ones
- never do it in the opposite direction
- clear examples
 - ▶ |-!m n. MEM m (COUNT_LIST n) <=> (m < n)
 - \blacktriangleright |-!ls n. (DROP n ls = []) <=> (n >= LENGTH ls)
- unclear example
 - ► |- !L. REVERSE L = REV L []

Termination — Problematic rewrite rules

- some equations can be used in both directions
- one should decide on one direction
- this implicitly defined a **normalform** one wants terms to be in
- examples
 - ▶ |- !f 1. MAP f (REVERSE 1) = REVERSE (MAP f 1)
 - ▶ |- !11 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

216 / 250

217 / 250

- some equations immediately lead to non-termination, e.g.
 - \triangleright |-!m n. m + n = n + m
 - \triangleright | !m. m = m + 0
- slightly more subtle are rules like
 - \blacktriangleright |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)
- often combination of multiple rules leads to non-termination this is especially problematic when adding to predefined set of rewrites
 - ► |-!m n p. m + (n + p) = (m + n) + p and |-!m n p. (m + n) + p = m + (n + p)

Rewrites working together

- rewrite rules should not complete with each other
- if a term ta can be rewritten to ta1 and ta2 applying different rewrite rules, then the ta1 and ta2 should be further rewritten to a common tb
- this can often be achieved by adding extra rewrite rules

Example

Assume we have the rewrite rules |-DOUBLE n = n + n and |-EVEN (DOUBLE n) = T.

With these the term EVEN (DOUBLE 2) can be rewritten to

- T or
- EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T. Adding an extra rewrite rule |-| EVEN (n + n) = T achieves this.

218 / 250 219 / 250

Rewrites working together II

computeLib

- to design rewrite systems that work well, normalforms are vital
- a term is in **normalform**, if it cannot be rewritten any further
- one should have a clear idea what the normalform of common terms looks like
- all rules should work together to establish this normalform
- the right-hand-side of each rule should be in normalform
- the left-hand-side should not be simplifiable by any other rule
- the order in which rules are applied should not influence the final result

- computeLib is the library behind EVAL
- it is a rewriting library designed for evaluating ground terms (i. e. terms without variables) efficiently
- it uses a call-by-value strategy similar to SML's
- it uses first order term matching
- ullet it performs eta reduction in addition to rewrites

220 / 250

221 / 250

compset

EVAL

- computeLib uses compsets to store its rewrites
- a compset stores
 - ► rewrite rules
 - extra conversions
- the extra conversions are guarded by a term pattern for efficiency
- users can define their own compsets
- however, computeLib maintains one special compset called the_compset
- the_compset is used by EVAL

- EVAL uses the_compset
- tools like the Datatype of TFL automatically extend the_compset
- this way, EVAL knows about (nearly) all types and functions
- one can extended the_compset manually as well
- rewrites exported by Define are good for ground terms but may lead to non-termination for non-ground terms
- \bullet zDefine prevents TFL from automatically extending the $_\texttt{compset}$

222 / 250 223 / 250

simpLib

Basic Usage I

- simpLib is a sophisticated rewrite engine
- it is HOL's main workhorse
- it provides
 - ► higher order rewriting
 - ► usage of context information
 - ► conditional rewriting
 - ► arbitrary conversions
 - support for decision procedures
 - ▶ simple heuristics to avoid non-termination
 - fancier preprocessing of rewrite theorems
 - **▶** ...
- it is very powerful, but compared to Rewrite lib sometimes slow

- simpLib uses simpsets
- simpsets are special datatypes storing
 - ► rewrite rules
 - conversions
 - ► decision procedures
 - ► congruence rules
 - ▶ ...
- in addition there are simpset-fragments
- simpset-fragments contain similar information as simpsets
- fragments can be added to and removed from simpsets
- common usage: basic simpset combined with one or more simpset-fragments, e.g.
 - ▶ list_ss ++ pairSimps.gen_beta_ss
 - ▶ std_ss ++ QI_ss
 - ▶ ...

224 / 250

225 / 250

Basic Usage II

Basic Simplifier Examples

- a call to the simplifier takes as arguments
 - ▶ a simpset
 - ► a list of rewrite theorems
- common high-level entry points are
 - ► SIMP_CONV ss thmL conversion
 - ► SIMP_RULE ss thmL rule
 - ► SIMP_TAC ss thmL tactic without considering assumptions
 - ► ASM_SIMP_TAC ss thmL tactic using assumptions to simplify goal
 - ► FULL_SIMP_TAC ss thmL tactic simplifying assumptions with each other and goal with assumptions
 - ► REV_FULL_SIMP_TAC ss thmL similar to FULL_SIMP_TAC but with reversed order of assumptions
- there are many derived tools not discussed here

> SIMP_CONV bool_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> SIMP_CONV std_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2
> SIMP_CONV list_ss [] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2

FULL_SIMP_TAC Example

REV_FULL_SIMP_TAC Example

Current GoalStack

P (SUC (SUC x0)) (SUC (SUC y0))

- 0. SUC y1 = y2
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Action

FULL_SIMP_TAC std_ss []

Resulting GoalStack

P (SUC (SUC x0)) y2

- 0. SUC (SUC y0) = y2
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Current GoalStack

P (SUC (SUC x0)) y2

- 0. SUC (SUC y0) = y2
- 1. x1 = SUC x0
- 1. X1 50C X
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Action

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack

P x2 y2

- -----
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC (SUC x0) = x2

0. SUC (SUC y0) = y2

228 / 250

229 / 250

Common simpsets

Common simpset-fragments

- pure_ss empty simpset
- bool_ss basic simpset
- std_ss standard simpset
- arith_ss arithmetic simpset
- list_ss list simpset
- real_ss real simpset

- many theories and libraries provide their own simpset-fragments
- PRED_SET_ss simplify sets
- STRING_ss simplify strings
- QI_ss extra quantifier instantiations
- gen_beta_ss β reduction for pairs
- $\bullet \ {\tt ETA_ss} \eta \ {\tt conversion} \\$
- EQUIV_EXTRACT_ss extract common part of equivalence
- CONJ_ss use conjunctions for context
-

230 / 250 231 / 250

Examples I

- in contrast to Rewrite lib the simplifier can run arbitrary conversions
- ullet most useful is probably eta reduction
- std_ss has support for basic arithmetic and numerals
- it also has simple, syntactic conversions for instantiating quantifiers

```
► !x. ... /\ (x = c) /\ ... ==> ...

► !x. ... \/ ~(x = c) \/ ...

► ?x. ... /\ (x = c) /\ ...
```

- besides very useful conversions, there are decision procedures as well
- the most frequently used one is probably the arithmetic decision procedure you already know from DECIDE

```
> SIMP_CONV std_ss [] '('(x. x + 2) 5''
val it = |- (\x. x + 2) 5 = 7

> SIMP_CONV std_ss [] ''!x. Q x /\ (x = 7) ==> P x''
val it = |- (!x. Q x /\ (x = 7) ==> P x) <=> (Q 7 ==> P 7)''

> SIMP_CONV std_ss [] ''?x. Q x /\ (x = 7) /\ P x''
val it = |- (?x. Q x /\ (x = 7) /\ P x) <=> (Q 7 /\ P 7)''

> SIMP_CONV std_ss [] ''x > 7 ==> x > 5''
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] ''x > 7 ==> x > 5''
val it = |- (x > 7 ==> x > 5) <=> T
```

233 / 250

KTH S

232 / 250

Context

Higher Order Rewriting

- the simplifier supports higher order rewriting
- this is often very handy
- for example it allows moving quantifiers around easily

- a great feature of the simplifier is that it can use context information
- by default simple context information is used like
 - ► the precondition of an implication
 - ▶ the condition of if-then-else
- one can configure which context to use via congruence rules
 - ► by using CONJ_ss one can easily use context of conjunctions
 - ► warning: using CONJ_ss can be slow
 - ▶ using other contexts is outside the scope of this lecture
- using context often simplifies proofs drastically
 - using Rewrite lib, often a goal needs to be split and a precondition moved to the assumptions
 - ▶ then ASM_REWRITE_TAC can be used
 - ▶ with SIMP_TAC there is no need to split the goal

234 / 250 235 / 250

Context Examples

Conditional Rewriting I

- perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
- this means it allows conditional rewrite theorems of the form
 |- cond ==> (t1 = t2)
- if the simplifier finds a term t1' it can rewrite via t1 = t2 to t2', it tries to discharge the assumption cond'
- for this, it calls itself recursively on cond'
 - ▶ all the decision procedures and all context information is used
 - ► conditional rewriting can be used
 - ▶ to prevent divergence, there is a limit on recursion depth
- if cond' = T can be shown, t1' is rewritten to t2'
- otherwise t1' is not modified

236 / 250

237 / 250

Conditional Rewriting Example

Conditional Rewriting Example II


```
o consider the conditional rewrite theorem
!l n. LENGTH 1 <= n ==> (DROP n 1 = [])
```

• let's assume we want to prove (DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]

- we can without conditional rewriting
 - ▶ show |- LENGTH [1;2;3;4] <= 7
 - ▶ use this to discharge the precondition of the rewrite theorem
 - ▶ use the resulting theorem to rewrite the goal
- with conditional rewriting, this is all automated

conditional rewriting often shortens proofs considerably

Proof with Rewrite
prove (''(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'',
'DROP 7 [1;2;3;4] = []' by (
 MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
 REWRITE_TAC[LENGTH] >>
 DECIDE_TAC
) >>
ASM REWRITE TAC[APPEND])

```
Proof with Simplifier

prove ('('DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'',

ASM_SIMP_TAC list_ss [])
```

238 / 250 239 / 250

Conditional Rewriting II

Conditional Rewriting Pitfalls I

- conditional rewriting is a very powerful technique
- decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
- it provides a powerful search for theorems that apply
- however, if used naively, it can be slow
- moreover, to work well, rewrite theorems need to of a special form

Looping example

```
> val my_thm = prove (''P ==> (P = F)'', PROVE_TAC[])
> time (SIMP CONV std ss [mv thm]) "P1 /\ P2 /\ P3 /\ ... /\ P10"
runtime: 0.84000s,
                     gctime: 0.02400s,
                                           systime: 0.02400s.
Exception- UNCHANGED raised
> time (SIMP_CONV std_ss []) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.00000s, gctime: 0.00000s,
                                           systime: 0.00000s.
Exception- UNCHANGED raised
```

• if the pattern is too general, the simplifier becomes very slow • consider the following, trivial but hopefully useful example

- notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
- ▶ notice that each backchaining triggers many more backchainings
- each has to be aborted to prevent diverging
- ▶ as a result, the simplifier becomes very slow
- ▶ incidentally, the conditional rewrite is useless

240 / 250

241 / 250

Conditional Rewriting Pitfalls II

- good conditional rewrites |-c| = > (1 = r) should mention only variables in c that appear in 1
- if c contains extra variables x1 ... xn, the conditional rewrite engine has to search instantiations for them
- this mean that conditional rewriting is trying discharge the precondition ?x1 ... xn. c
- the simplifier is usually not able to find such instances

Transitivity

```
> val P_def = Define 'P x y = x < y';</pre>
> val my_thm = prove (''!x y z. P x y ==> P y z ==> P x z'', ...)
> SIMP_CONV arith_ss [my_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
Exception- UNCHANGED raised
(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ''P 2 3 /\ P 3 4 ==> P 2 4''
val it = |-P23/P34 ==> P24 <=> T:
```

Conditional Rewriting Pitfalls III

• let's look in detail why SIMP_CONV did not make progress above

```
> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [mv_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
           more context: |- !x y z. P x y ==> P y z ==> P x z
           New rewrite: |-(?y. P x y / P y z) ==> (P x z <=> T)
[584000]:
            more context: [.] |- P 2 3 /\ P 3 4
[584000]:
            New rewrite: [.] |- P 2 3 <=> T
            New rewrite: [.] |- P 3 4 <=> T
[584000]:
[588000]:
            rewriting P 2 4 with |-(?y. P x y / P y z) ==> (P x z <=> T)
[588000]:
            trying to solve: ?y. P 2 y /\ P y 4
            rewriting P 2 y with |-(?y. P x y / P y z) ==> (P x z <=> T)
[588000]:
[592000]:
            trying to solve: ?y'. P 2 y' /\ P y' y
[596000]:
            looping - cut
[608000]:
           looping - stack limit reached
. . .
            couldn't solve: ?y. P 2 y /\ P y 4
Exception- UNCHANGED raised
```

242 / 250 243 / 250

Conditional vs. Unconditional Rewrite Rules

Special Rewrite Forms

- conditional rewrite rules are often much more powerful
- however, Rewrite lib does not support them
- for this reason there are often two versions of rewrite theorems

drop example

- DROP_LENGTH_NIL is a useful rewrite rule:
 - |-!1. DROP (LENGTH 1) 1 = []
- in proofs, one needs to be careful though to preserve exactly this form
 - ▶ one should not (partly) evaluate LENGTH 1 or modify 1 somehow
- with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does not need to be as careful
 - $|-!1 \text{ n. LENGTH } 1 \le n ==> (DROP \text{ n } 1 = [])$
 - ▶ the simplifier can use simplify the precondition using information about LENGTH and even arithmetic decision procedures

- some theorems given in the list of rewrites to the simplifier are used for special purposes
- there are marked functions that mark these theorems
 - ▶ Once : thm -> thm use given theorem at most once
 - ► Ntimes : thm -> int -> thm use given theorem at most the given number of times
 - ► AC : thm -> thm use given associativity and commutativity theorems for AC rewriting
 - ▶ Cong : thm -> thm use given theorem as a congruence rule
- these special forms are easy ways to add this information to a simpset
- it can be directly set in a simpset as well

244 / 250

245 / 250

Example Once

Stateful Simpset

- > SIMP_CONV pure_ss [Once ADD_COMM] ''a + b = c + d''
 val it = |- (a + b = c + d) <=> (b + a = c + d)
- > SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ''a + b = c + d''
 val it = |- (a + b = c + d) <=> (a + b = c + d)
- > SIMP_CONV pure_ss [ADD_COMM] ''a + b = c + d''
 Exception- UNCHANGED raised
- > ONCE_REWRITE_CONV [ADD_COMM] ''a + b = c + d'' val it = |-(a + b = c + d)| <=> (b + a = d + c)
- > REWRITE_CONV [ADD_COMM] ''a + b = c + d''
 ... diverges ...

- the simpset srw_ss() is maintained by the system
 - ▶ it is automatically extended by new type-definitions
 - ► theories can extend it via export_rewrites
 - ► libs can augment it via augment_srw_ss
- the stateful simpset contains many rewrites
- it is very powerful and easy to use

Example

```
> SIMP_CONV (srw_ss()) [] ''case [] of [] => (2 + 4)''
val it = |- (case [] of [] => 2 + 4 | v::v1 => ARB) = 6
```

246 / 250 247 / 250

Discussion on Stateful Simpset

Adding Own Conversions

- the stateful simpset is very powerful and easy to use
- however, results are hard to predict
- proofs using it unwisely are hard to maintain
- the stateful simpset can expand too much
 - ▶ bigger, harder to read proof states
 - ▶ high level arguments become hard to see
- whether to use the stateful simpset depends on personal proof style
- I advise at the beginning to not use srw_ss
- once you got a good intuition on how the simplifier works, make your own choice

• it is complicated to add arbitrary decision procedures to a simpset

- however, adding simple conversions is straightforward
- a conversion is described by a stdconvdata record

```
type stdconvdata = {
  name: string,          (* name for debugging *)
  pats: term list, (* list of patterns, when to try conv *)
  conv: conv          (* the conversion *)
}
```

use std_conv_ss to create simpset-fragement

```
Example
val WORD_ADD_ss =
  simpLib.std_conv_ss
  {conv = CHANGED_CONV WORD_ADD_CANON_CONV,
    name = "WORD_ADD_CANON_CONV",
    pats = [''words$word_add (w:'a word) y'']}
```

248 / 250 249 / 250

Summary Simplifier

- the simplifier is HOL's main workhorse for automation
- it is very powerful
- conditional rewriting very powerful
 - ► here only simple examples were presented
 - ► experiment with it to get a feeling
- many advanced features not discussed here at all
 - ► using congruence rules
 - writing own decision procedures
 - rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in control when using it. Otherwise your proofs easily become lengthy, convoluted and hard to maintain.