Interactive Theorem Proving (ITP) Course
Part XIII

Thomas Tuerk (tuerk@kth.se)

by

S,
FKTHY

$ verewscae &

38 OCH KONST

Nl

Academic Year 2016/17, Period 4

version fal3ae6 of Mon May 29 12:37:43 2017

Rewriting in HOL ffﬁ‘%
=
o simplification via rewriting was already a strength of Edinburgh LCF

©

it was further improved for Cambridge LCF

o HOL inherited this powerful rewriter

©

equational reasoning is still the main workhorse

©

there are many different equational reasoning tools in HOL
» Rewrite library
inherited from Cambridge LCF
you have seen it in the form of REWNRITE_TAC
» computelLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL
» simpLib — Simplification
sophisticated rewrite engine, HOL's main workhorse
not discussed in this lecture, yet

198 /250

Part XII|

Rewriting

by

Sy,
$KTHE

VETENSKAP
&9 OCH KONST o%

) 9

TR

Semantic Foundations

o we have seen primitive inference rules for equality before

Fs=t
AFu=v Ns=t
types fit x not free in T
COMB
FrNUAFE s(u) =t(v) MEAx.s=Ax. t
M-s=t REFL
AFt=u _
— TRANS Ft=t
TUAFs=u

o these rules allow us to replace any subterm with an equal one

o this is the core of rewriting

{xuy

ey

ABS

199 /250

Conversions {;%;?
o in HOL, equality reasoning is implemented by conversions
o a conversion is a SML function of type term -> thm
o given a term t, a conversion
» produces a theorem of the form |- t = t’
> raises an UNCHANGED exception or
» fails, i.e. raises an HOL_ERR exception
Example
> BETA_CONV ‘‘(\x. SUC x) y‘¢
val it = |- (\x. SUC x) y = SUC y
> BETA_CONV ‘‘SUC y*¢
Exception-HOL_ERR ... raised
> REPEATC BETA_CONV ‘‘SUC y*°
Exception- UNCHANGED raised
200 /250
Depth Conversionals g,%%s%

o for rewriting depth-conversionals are important

o a depth-conversional applies a conversion to all subterms

o there are many different ones

| 4

ONCE_DEPTH_CONV ¢ — top down, applies ¢ once at highest possible
positions in distinct subterms

TOP_SWEEP_CONV ¢ — top down, like ONCE_DEPTH_CONV, but continues
processing rewritten terms

TOP_DEPTH_CONV ¢ — top down, like TOP_SWEEP_CONV, but try
top-level again after change

DEPTH_CONV ¢ — bottom up, recurse over subterms, then apply c
repeatedly at top-level

REDEPTH_CONV ¢ — bottom up, like DEPTH_CONV, but revisits subterms

Conversionals

o similar to tactics and tacticals there are conversionals for conversions

o conversionals allow building conversions from simpler ones
o there are many of them
» THENC
ORELSEC
REPEATC
TRY_CONV
RAND_CONV
RATOR_CONV
ABS_CONV

vV VY VY VY VY VvYYyY

REWR_CONV

o it remains to rewrite terms at top-level
o this is achieved by REWR_CONV

o given a term t and a theorem |- t1 = t2, REWR_CONV t thm

» searches an instantiation of term and type variables such that t1
becomes a-equivalent to t
» fails, if no instantiation is found

» otherwise, instantiate the theorem and get |- t1’ = t2’
» return theorem |- t = t2’
Example
term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)
found type instantiation: [“¢:’a‘‘ |-> ‘‘:num‘‘]
found term instantiation: [‘‘x:num‘‘¢ |[-> ¢“1¢¢; “‘xs‘‘ |-> <¢[2;3]°‘]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

o the tricky part is finding the instantiation
o this problem is called the (term) matching problem

Term Matching {;%i? Examples Term Matching %;@E

........... L8
o e
o given term t_org and a term t_goal try to find t_org t_goal substs
> type substitution ty_s LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a — num, x — 1, xs — [2;3]
— - [1:’a list [1:°b list ’a — ’b
» term substitution tm_s 0 0 empty substitution
(&2) P -
o such that subst tm_s (inst ty.s t_org) = t_goal bAT (P (x:’a) ==> Q) /AT Db —Px==>Q
b /\b Px /\Px b — P x
o this can be easily implemented by a recursive search b /\'b Px/\Py fail
'x:num. P x /\ Q x lyinum. P’y /\ Q’ y P—-P,Q - Q
. 'x:num. P x /\ Q x ly. Q=yv) /ANQ ¥y P— ($=2),Q0 - Q
t-org t-goal action 'x:num. P x /\ Q x ly. (3 =2 /\NQ y fail
tlorg t2.org tl_goal t2_goal recurse
tl org t2_org otherwise fail o) .
\x. t.org x \y. t.goal y match types of x, y and recurse o it is often very annoying that the last match fails
\x. t_org x otherwise fail o it prevents us for example rewriting 'y. (2 = y) /\ Q y to
const same c_onst m_atch types (!y. (2=y)) /\ (!y. Q y)
const otherwise fail N . . .
var anything try to bind var, o Can we do better? Yes, with higher order (term) matching.

take care of existing bindings

Higher Order Term Matching g,??}% Examples Higher Order Term Matching f,?%}a%
' barid

. N St
o term matching searches for substitutions such that t_org becomes N
a-equivalent to t_goal

o higher order term matching searches for substitutions such that

t_org becomes t_subst such that the Sn-normalform of t_subst is t_org t_goal substs
_ . . - . 'xtnum. Px /A Qx l!y. (y=2) NQ ¥y P—> (\y.y=2),0 > Q
a; equivalent equivalent to .677 rjormalform of t_goal, |.fe. x. Px/AQax I PxAQxNZx Qo \x 0x A Zx
higher order term matching is aware of the semantics of A 'x. Px /\ Q 'x. Px /\ Q x fails
x. P (x, x) 'x. Q x fails
,B—reduction ()\X f) y = f[y/X] 'x. P (x, x) 'x. FST (x,x) = SND (x,x) P — \xx. FST xx = SND xx

n-conversion (Ax. f x) = f where x is not free in f Don’t worry, it might look complicated, but

o the HOL implementation expects t_org to be a higher-order in practice it is easy to get a feeling for higher order matching.

pattern
» t_org is [-reduced
» if X is a variable that should be instantiated, then all arguments should
be distinct variables
o for other forms of t_org, HOL's implementation might fail

o higher order matching is used by HO_REWR_CONV

Rewrite Library

©

©

there are many different conversions, rules and tactics

©

at they core, they all work very similarly

» given a list of theorems, a set of rewrite theorems is derived

* split conjunctions
* remove outermost universal quantification
* introduce equations by adding = T (or = F) if needed

» REWR_CONV is applied to all the resulting rewrite theorems

» a depth-conversion is used with resulting conversion

©

©

by default implicit rewrites are added

Ho Rewrite Library

o similar to Rewrite lib, but uses higher order matching

o internally uses HO_REWR_CONV
o similar conversions, rules and tactics as Rewrite lib

Ho_Rewrite.REWRITE_CONV
Ho_Rewrite.REWRITE_RULE

Ho_ Rewrite.REWRITE_TAC
Ho_Rewrite.ASM_REWRITE_TAC
Ho_Rewrite.ONCE_REWRITE_TAC
Ho_Rewrite.PURE_REWRITE_TAC
Ho_Rewrite.PURE_ONCE_REWRITE_TAC

vV Y Y VY VY VY VvYY

the rewrite library combines REWR_CONV with depth conversions

for performance reasons an efficient indexing structure is used

Rewrite Library Il

o REWRITE_CONV

o REWRITE_RULE

o REWRITE_TAC

o ASM_REWRITE_TAC

o ONCE_REWRITE_TAC

o PURE_REWRITE_TAC

o PURE_ONCE_REWRITE_TAC

Examples Rewrite and Ho Rewrite Library

> REWRITE_CONV [LENGTH] °‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE_REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]¢¢
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE.CONV [1 ‘A /\ A /\ ~A‘¢
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A‘¢
val it = |- A /\ A /\ ~A<=> A /\F

> REWRITE_CONV [NOT_AND] ‘‘A /\ A /\ ~A¢¢
val it = |- A /\ A /\ ~A <=>F

> REWRITE_CONV [FORALL_AND_THM] ‘“!x. P x /\ Q@ x /\ R x*°¢
Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q@ x /\ R x“°¢
val it = |- 'x. Px /\ Qx /\ R x <=> ('x. Px) /\ (!x. Q x) /\ ('x. R x)

209 /250

Summary Rewrite and Ho_Rewrite Library {@}

o the Rewrite and Ho_Rewrite library provide powerful infrastructure
for term rewriting

o thanks to clever implementations they are reasonably efficient
o basics are easily explained

o however, efficient usage needs some experience

Term Rewriting Systems — Termination £

Theory
o choose well-founded order <

o for each rewrite theorem |- t1 = t2 ensure t2 < ti1

Practice
o informally define for yourself what simpler means
o ensure each rewrite makes terms simpler
o good heuristics

subterms are simpler than whole term
use an order on functions

Term Rewriting Systems {i%}
o to use rewriting efficiently, one needs to understand about term
rewriting systems
o this is a large topic
o one can easily give whole course just about term rewriting systems
o however, in practise you quickly get a feeling
o important points in practise
» ensure termination of your rewrites
» make sure they work nicely together
213 /250
Termination — Subterm examples f,ﬁ%«%
Ly

o a proper subterm is always simpler
» !1. APPEND [] 1 =1
'n. n+0=n
1. REVERSE (REVERSE 1) =1
't1 t2. if T then tl else t2 <=> ti
In. n*x 0=20

vVvyyVvyy

o the right hand side should not use extra vars, throwing parts away is
usually simpler

(SNOC x xs = []1) = F

» !x xs. LENGTH (x::xs) = SUC (LENGTH xs)

» In x xs. DROP (SUC n) (x::xs) = DROP n xs

» Ix xs.

Termination — use simpler terms

o it is useful to consider some functions simple and other complicated
o replace complicated ones with simple ones
o never do it in the opposite direction

o clear examples

» |- 'mn. MEM m (COUNT_LIST n) <=> (m < n)
» |- '1s n. (DROP n 1s = []) <=> (n >= LENGTH 1s)

o unclear example
» |- !L. REVERSE L = REV L []

216 / 250

P

Termination — Problematic rewrite rules

o some equations immediately lead to non-termination, e. g.
» |- 'mn. m+n=mn+m
» |- 'm. m=m+ 0

o slightly more subtle are rules like
» |- In. fact n = if (n = 0) then 1 else n * fact(n-1)

o often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

(m + n) + pand
m+ (n + p)

» |- mnp. m+ (n+ p)
[- 'mnp. (m+n) +p

N
=
=)
N
o
S

Termination — Normalforms

o some equations can be used in both directions

one should decide on one direction

©

©

this implicitly defined a normalform one wants terms to be in

©

examples

» |- If 1. MAP f (REVERSE 1) = REVERSE (MAP f 1)
» |- 111 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

Rewrites working together

o rewrite rules should not complete with each other

o if a term ta can be rewritten to tal and ta2 applying different
rewrite rules, then the tal and ta2 should be further rewritten to a
common tb

o this can often be achieved by adding extra rewrite rules

Example
Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
o Tor
o EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

219 /250

Rewrites working together I {;%;? computeLib %;%;}
B B
o to design rewrite systems that work well, normalforms are vital
o a term is in normalform, if it cannot be rewritten any further o computelLib is the library behind EVAL
o one should have a clear idea what the normalform of common terms o it is a rewriting library designed for evaluating ground terms (i.e.
looks like terms without variables) efficiently
o all rules should work together to establish this normalform o it uses a call-by-value strategy similar to SML's
o the right-hand-side of each rule should be in normalform o it uses first order term matching
o the left-hand-side should not be simplifiable by any other rule o it performs 3 reduction in addition to rewrites
o the order in which rules are applied should not influence the final
result
220 /250 221 /250
o b
compset feny EVAL firmy
oy Ry

o computeLib uses compsets to store its rewrites
0 a compset stores

» rewrite rules
» extra conversions

o the extra conversions are guarded by a term pattern for efficiency
o users can define their own compsets

o however, computeLib maintains one special compset called
the_compset

o the_compset is used by EVAL

o EVAL uses the_compset

o tools like the Datatype of TFL automatically extend the_compset
o this way, EVAL knows about (nearly) all types and functions

o one can extended the_compset manually as well

o rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

o zDefine prevents TFL from automatically extending the_compset

simpLib {KTH}
B
o simpLib is a sophisticated rewrite engine
o it is HOL’s main workhorse
o it provides
» higher order rewriting
» usage of context information
» conditional rewriting
» arbitrary conversions
» support for decision procedures
» simple heuristics to avoid non-termination
» fancier preprocessing of rewrite theorems
>
o it is very powerful, but compared to Rewrite lib sometimes slow
224 /250
Basic Usage Il g,%%s%
S

o a call to the simplifier takes as arguments

>

>

a simpset
a list of rewrite theorems

o common high-level entry points are

>

vVvYy vy

SIMP_CONV ss thmL — conversion

SIMP RULE ss thmL — rule

SIMP_TAC ss thmL — tactic without considering assumptions
ASM_SIMP_TAC ss thmL — tactic using assumptions to simplify goal
FULL_SIMP_TAC ss thmL — tactic simplifying assumptions with each
other and goal with assumptions

REV_FULL_SIMP_TAC ss thmL — similar to FULL_SIMP_TAC but with
reversed order of assumptions

o there are many derived tools not discussed here

Basic Usage |

0 simpLib uses simpsets
o simpsets are special datatypes storing

» rewrite rules

> conversions

» decision procedures
» congruence rules

>

o in addition there are simpset-fragments

o simpset-fragments contain similar information as simpsets

©

fragments can be added to and removed from simpsets
o common usage: basic simpset combined with one or more
simpset-fragments, e. g.

» list_ss ++ pairSimps.gen_beta_ss

» std_ss ++ QI_ss
> .

Basic Simplifier Examples

> SIMP_CONV bool_ss [LENGTH] ‘‘LENGTH [1;2]°°¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ¢‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ‘‘LENGTH [1;2]¢¢
val it = |- LENGTH [1; 2] = 2

FULL_SIMP_TAC Example

Current GoalStack
P (SUC (SUC x0)) (SUC (SUC y0))

REV_FULL_SIMP _TAC Example

Current GoalStack
P (SUC (SUC x0)) y2

0. SUC y1 = y2 0. SUC (SUC yoO) = y2

1. x1 = SUC xO 1. x1 = SUC xO0

2. yi = SUC yO 2. yi = SUC yO

3. SUC x1 = x2) 3. SUC x1 = x2
Action Action

FULL_SIMP_TAC std_ss []

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC yO) = y2
1. x1 = SUC x0
2. y1 = SUC yoO
3. SUC x1 = x2

Resulting GoalStack

P x2 y2
0. SUC (SUC y0O) = y2
1. x1 = SUC x0
2. y1 = SUC yoO
3. SUC (SUC x0) = x2

Common simpsets

0 pure_ss — empty simpset

o bool_ss — basic simpset

o std_ss — standard simpset

o arith_ss — arithmetic simpset
o list_ss — list simpset

o real_ss — real simpset

230 /250

Common simpset-fragments

o many theories and libraries provide their own simpset-fragments
o PRED _SET_ss — simplify sets

o STRING_ss — simplify strings

o QI_ss — extra quantifier instantiations

o gen_ beta_ss — [reduction for pairs

o ETA_ss — 7 conversion

o EQUIV_EXTRACT_ss — extract common part of equivalence

o CONJ_ss — use conjunctions for context

231 /250

Build-In Conversions and Decision Procedures {m‘}.

o in contrast to Rewrite lib the simplifier can run arbitrary conversions
o most useful is probably 8 reduction

o std_ss has support for basic arithmetic and numerals
o it also has simple, syntactic conversions for instantiating quantifiers

»x. ... /N (x=c) /\ L0 =00
» iz, .. N/ ~x=0c) \/ ...
»7x. ... /N (x=2c¢c)/\ ...

o besides very useful conversions, there are decision procedures as well

o the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE

Higher Order Rewriting fenty

o the simplifier supports higher order rewriting
o this is often very handy

o for example it allows moving quantifiers around easily

Examples

> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x*¢
val it = |- ('x. P x /\ Q /\ R x) <=>
('x. Px) /\Q /\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
‘ly. (P y /\ (?x. y = SUC x)) ==>Q y*¢
val it = |- (ly. Py /\ (?x. y = SUC x) ==> Q y) <=>
'x. P (SUC x) ==> Q (SUC x)

Examples | {im“}

> SIMP_CONV std_ss [1 ‘‘(\x. x + 2) 5¢¢
val it = |- (\x. x +2) 5 =7

> SIMP_CONV std_ss [1 ““!x. Q x /\ (x =7) ==>P x“¢
val it = |- ('x. Q x /\ (x =7) ==>P x) <=> (Q 7 ==> P 7)‘¢

> SIMP_CONV std_ss [1 ““?x. Q x /\ (x=7) /\ P x“¢
val it = |- (?x. Q x /\ (x=7) /\Px) <=> Q7 /\PT7)“

> SIMP_CONV std_ss [] “‘x > 7 ==> x > 5¢¢
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] “‘x > 7 ==> x > 5°¢

val it = |- (x > 7 ==> x > 5) <=> T
233 /250
Context f,%ﬁ%
G e §
St
o a great feature of the simplifier is that it can use context information
o by default simple context information is used like
» the precondition of an implication
» the condition of if-then-else
o one can configure which context to use via congruence rules
» by using CONJ_ss one can easily use context of conjunctions
» warning: using CONJ_ss can be slow
» using other contexts is outside the scope of this lecture
o using context often simplifies proofs drastically

» using Rewrite lib, often a goal needs to be split and a precondition
moved to the assumptions

» then ASM REWRITE_TAC can be used

» with SIMP_TAC there is no need to split the goal

Context Examples {;%;? Conditional Rewriting | %;@E

o perhaps the most powerful feature of the simplifier is that it supports

> SIMP_CONV std_ss [] ‘“((1 =[]) ==>P 1) /\ Q 1¢¢ conditional rewriting
val it = |- ((1 [1) ==>P1) /ANQ1<=>

(L= [=>p M) A G2 o this means it allows conditional rewrite theorems of the form

|- cond ==> (t1 = t2)

> SIMP_CONV arith_ss [] ©if (c /A x <) then (Pc /A x < 6) else Q ¢ o if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2°’, it

val it = |- (if ¢ /\ x < 5 then P ¢ /\ x < 6 else Q c) <=>] | X
if ¢ /\ x < 5 then P T else Q c: tries to discharge the assumption cond’
. . . ,
> SIMP_CONV std.ss [1 P x /\ (@ x /\ P x ==> Z x)<¢ o for this, it calls itself recursively on cond
Exception- UNCHANGED raised » all the decision procedures and all context information is used

» conditional rewriting can be used
> SIMP_CONV (std_ss++boolSimps.CONJ_ss) []1 ‘P x /\ (Q x /\ P x ==> Z x)‘¢ . di h . limi . d h
valit = [-Px /N (Qx /APx==>2Z%) <=>Px /\ (Qx==>2 x) to prevent divergence, there Is a limit on recursion dept

o if cond’ = T can be shown, t1’ is rewritten to t2’

o otherwise t1’ is not modified

236 /250 237 /250
Conditional Rewriting Example gﬁfb}% Conditional Rewriting Example [l f,ﬁi&%

o consider the conditional rewrite theorem

o let's assume we want to prove prove (¢<(DROP 7 [1;2;3;41) ++ [5:6;7] = [5;6571¢¢,
(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7] ‘DROP 7 [1;2;3;4] = [1°¢ by (
o w n without conditional rewritin MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
€ ca out conditional re g REWRITE_TAC [LENGTH] >>
» show |- LENGTH [1;2;3;4] <=7 DECIDE_TAC
» use this to discharge the precondition of the rewrite theorem) &2
. . ASM_REWRITE_TAC [APPEND])
» use the resulting theorem to rewrite the goal

o with conditional rewriting, this is all automated Proof with Simplifier
> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG] prove (¢“(DROP 7 [1:2:3:4]) ++ [5:6:7] = [5:6571¢,
‘“(DROP 7 [1;2;3;4]) ++ [5;6;7]¢¢ ASM_SIMP_TAC list_ss [1)
val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

o conditional rewriting often shortens proofs considerably

Conditional Rewriting Il {

o conditional rewriting is a very powerful technique

o decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

o it provides a powerful search for theorems that apply
o however, if used naively, it can be slow

o moreover, to work well, rewrite theorems need to of a special form

240 /250

Conditional Rewriting Pitfalls [l

o good conditional rewrites |- ¢ ==> (1 = r) should mention only
variables in ¢ that appear in 1

o if c contains extra variables x1 xn, the conditional rewrite
engine has to search instantiations for them

o this mean that conditional rewriting is trying discharge the

precondition 7x1 Xn. ¢

o the simplifier is usually not able to find such instances

Transitivity

> val P_def = Define ‘P x y = x

> val my_thm = prove (‘‘!x y z.

> SIMP_CONV arith_ss [my_thm] ¢
Exception- UNCHANGED raised

<y
Pxy==>Pyz==>Pxz“, ...)
P23 /\P34==>P24

(* However transitivity of < build in via decision procedure *)

> SIMP_CONV arith_ss [P_def] ‘P 2 3 /\ P 3 4 ==>P 2 4¢¢
val it = |- P 2 3 /\ P 34 ==>P 2 4 <=>T:

()

Bt

THS
[Hﬁ

Conditional Rewriting Pitfalls |

o if the pattern is too general, the simplifier becomes very slow
o consider the following, trivial but hopefully useful example

Looping example

> val my_thm = prove (‘‘"P ==> (P = F)‘‘, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) “‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised

> time (SIMP_CONV std_ss [1) ¢‘P1 /\ P2 /\ P3 /\ ... /\ P10¢¢
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.

Exception- UNCHANGED raised

» notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

notice that each backchaining triggers many more backchainings
each has to be aborted to prevent diverging

as a result, the simplifier becomes very slow

incidentally, the conditional rewrite is useless

vVvyVvyy

Conditional Rewriting Pitfalls I

o let's look in detail why SIMP_CONV did not make progress above

> set_trace "simplifier" 2;

> SIMP_CONV arith_ss [my_thm] ¢‘P 2 3 /\ P 3 4 ==>P 2 4°¢

[468000] : more context: |- !x yz. Pxy==>Pyz==>Pxz

[468000]: New rewrite: |- (?y. Pxy /\ Py 2z) ==> (P x 2z <=>T)
[684000]: more context: [.]J |[-P 23 /\P 34

[684000]: New rewrite: [.] |[-P 23 <=>T

[684000]: New rewrite: [.] |- P 34 <=>T

[688000]: rewriting P 2 4 with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
[588000]: trying to solve: ?y. P2y /\ Py 4

[688000]: rewriting P 2 y with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
[692000]: trying to solve: ?y’. P 2y’ /\ Py’ y

[696000]: looping - cut

[608000] : looping - stack limit reached

[640000] : couldn’t solve: ?y. P2y /\ Py 4

Exception- UNCHANGED raised

241

250

b,

(&

Conditional vs. Unconditional Rewrite Rules {;%;?

o conditional rewrite rules are often much more powerful
o however, Rewrite lib does not support them

o for this reason there are often two versions of rewrite theorems

drop example
o DROP_LENGTH.NIL is a useful rewrite rule:
|- '1. DROP (LENGTH 1) 1 = []
o in proofs, one needs to be careful though to preserve exactly this form
one should not (partly) evaluate LENGTH 1 or modify 1 somehow

o with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does
not need to be as careful
|- '1 n. LENGTH 1 <= n ==> (DROP n 1 = [])
the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

244 /250

Example Once g‘%’%

> SIMP_CONV pure_ss [Once ADD_COMM] ‘‘a + b = c + 4¢¢
val it = |- (@a+b=c +d) <=> (b +a=c+d)

> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ‘‘a + b = c + 4¢¢

val it = |- (a+ b =c +d) <=> (a+b =c + 4d)
> SIMP_CONV pure_ss [ADD_COMM] ‘‘a + b = c + d¢¢
Exception- UNCHANGED raised

> ONCE_REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d°¢
val it = |- (a+b=c +d) <=> (b+a=4+ c)

> REWRITE_CONV [ADD_COMM] ‘‘a + b =c + d‘¢
. diverges ...

Special Rewrite Forms {Z%?:;

o some theorems given in the list of rewrites to the simplifier are used
for special purposes
o there are marked functions that mark these theorems

» Once : thm -> thm use given theorem at most once

» Ntimes : thm -> int -> thm use given theorem at most the given
number of times

» AC : thm -> thm -> thm use given associativity and commutativity
theorems for AC rewriting

» Cong : thm -> thm use given theorem as a congruence rule

o these special forms are easy ways to add this information to a simpset

o it can be directly set in a simpset as well

Stateful Simpset gl%;%

o the simpset srw_ss() is maintained by the system

» it is automatically extended by new type-definitions
» theories can extend it via export_rewrites
» libs can augment it via augment_srw_ss

o the stateful simpset contains many rewrites

o it is very powerful and easy to use

Example
> SIMP_CONV (srw_ss()) [] ‘‘case [] of [1 => (2 + 4)“¢
val it = |- (case [] of [=> 2 + 4 | v::vl => ARB) = 6

Discussion on Stateful Simpset {;%;? Adding Own Conversions {i%}
vy e
o it is complicated to add arbitrary decision procedures to a simpset
o the stateful simpset is very powerful and easy to use o however, adding simple conversions is straightforward
o however, results are hard to predict o a conversion is described by a stdconvdata record
. type stdconvdata = {
o proofs using it unwisely are hard to maintain name: string, (* name for debugging *)
o the stateful simpset can expand too much pats: term list, (* list of patterns, when to try conv *)
. : h i
» bigger, harder to read proof states } convr conv (the conversion)
> high level arguments become hard to see)
. o use std_conv_ss to create simpset-fragement
o whether to use the stateful simpset depends on personal proof style
o | advise at the beginning to not use srw_ss Example
@ once you got a good intuition on how the simplifier works, make your val WORD_ADD_ss =
. simpLib.std_conv_ss
own choice {conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [‘‘words$word_add (w:’a word) y‘‘1}
248 / 250 249 /250
Summary Simplifier gﬁfb}%

o the simplifier is HOL's main workhorse for automation
o it is very powerful

o conditional rewriting very powerful
» here only simple examples were presented
» experiment with it to get a feeling
o many advanced features not discussed here at all

» using congruence rules
» writing own decision procedures
» rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in
control when using it. Otherwise your proofs easily become lengthy,
convoluted and hard to maintain.

