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Motivation

@ Complex systems almost certainly contain bugs.
o Critical systems (e. g. avionics) need to meet very high standards.

@ It is infeasible in practice to achieve such high standards just by
testing.

@ Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra
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Famous Bugs

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

@ Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

@ Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)
e Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

Fun to read
http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

N
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http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

@ proof can show absence of errors in design
@ but proofs talk about a design, not a real system

@ = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein
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Mathematical vs. Formal Proof

Mathematical Proof Formal Proof

@ informal, convince other o formal, rigorously use a
mathematicians logical formalism

@ checked by community of @ checkable by stupid
domain experts machines

@ subtle errors are hard to find @ very reliable

@ often provide some new @ often contain no new ideas
insight about our world and no amazing insights

@ often short, but require @ often long, very tedious, but
creativity and a brilliant idea largely trivial

We are interested in formal proofs in this lecture.



Detail Level of Formal Proof {‘Zn?a

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.
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Automated vs Manual (Formal) Proof

Fully Manual Proof
@ very tedious one has to grind through many trivial but detailed proofs
@ easy to make mistakes
@ hard to keep track of all assumptions and preconditions

@ hard to maintain, if something changes (see Ariane V)

Automated Proof
@ amazing success in certain areas
but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds




Interactive Proofs

@ combine strengths of manual and automated proofs
@ many different options to combine automated and manual proofs
» mainly check existing proofs (e.g. HOL Zero)
» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)
» most systems are somewhere in the middle
o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
> keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs



Typical Interactive Proof Activities

@ provide precise definitions of concepts

@ state properties of these concepts
@ prove these properties
» human provides insight and structure
» computer does book-keeping and automates simple proofs
build and use libraries of formal definitions and proofs
» formalisations of mathematical theories like
* lists, sets, bags, ...
* real numbers
* probability theory
» specifications of real-world artefacts like
* processors
* programming languages
* network protocols
> reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.
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Different Interactive Provers

@ there are many different interactive provers, e.g.

> lIsabelle/HOL

» Coq

PVS

HOL family of provers
ACL2

vV vy VvVYyy

@ important differences

» the formalism used

level of trustworthiness
level of automation

libraries

languages for writing proofs
user interface

vV VY vy VY VY
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Which theorem prover is the best one? :-)

@ there is no best theorem prover

@ better question: Which is the best one for a certain purpose?

@ important points to consider
> existing libraries

YV VY VY VY VY VY VvYY

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.
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Aims of this Course

Aims
e introduction to interactive theorem proving (ITP)
being able to evaluate whether a problem can benefit from ITP
hands-on experience with HOL
learn how to build a formal model

°
°
°
@ learn how to express and prove important properties of such a model
@ learn about basic conformance testing

°

use a theorem prover on a small project

Required Prerequisites
@ some experience with functional programming

@ knowing Standard ML syntax

@ basic knowledge about logic (e.g. First Order Logic)
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Dates

@ Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

@ always in room 4523 or 4532
@ each week

Mondays 10:15 - 11:45  lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
last lecture: 12th of June
last practical session: 21st of June

9 lectures, 17 practical sessions



Exercises

@ after each lecture an exercise sheet is handed out

@ work on these exercises alone, except if stated otherwise explicitly
@ exercise sheet contains due date

» usually 10 days time to work on it

» hand in during practical sessions

> lecture Monday — hand in at latest in next week's Friday session
@ main purpose: understanding ITP and learn how to use HOL

» no detailed grading, just pass/fail
retries possible till pass
if stuck, ask me or one another
practical sessions intend to provide this opportunity

v

v

v
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Practical Sessions

very informal

main purpose: work on exercises

» | have a look and provide feedback

» you can ask questions

> | might sometimes explain things not covered in the lectures
> | might provide some concrete tips and tricks

> you can also discuss with each other

@ attendance not required, but highly recommended
> exception: session on 21st April

only requirement: turn up long enough to hand in exercises

you need to bring your own computer
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Handing-in Exercises

@ exercises are intended to be handed-in during practical sessions

@ attend at least one practical session each week
@ leave reasonable time to discuss exercises
» don’t try to hand your solution in Friday 14:55

@ retries possible, but reasonable attempt before deadline required
@ handing-in outside practical sessions

» only if you have a good reason
» decided on a case-by-case basis

@ electronic hand-ins
» only to get detailed feedback
does not replace personal hand-in

>
> exceptions on a case-by-case basis if there is a good reason
» | recommend using a KTH GitHub repo
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Passing the ITP Course

o there is only a pass/fail mark
@ to pass you need to

» attend at least 7 of the 9 lectures
> pass 8 of the 9 exercises
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Communication

we have the advantage of being a small group
therefore we are flexible

so please ask questions, even during lectures
there are many shy people, therefore

» anonymous checklist after each lecture
» anonymous background questionnaire in first practical session

further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se
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LCF - Logic of Computable Functions

e Standford LCF 1971-72 by Milner et al.
@ formalism devised by Dana Scott in 1969

@ intended to reason about recursively defined
functions

@ intended for computer science applications

@ strengths

» powerful simplification mechanism
» support for backward proof

@ limitations

Robin Milner
» proofs need a lot of memory (1934 - 2010)

» fixed, hard-coded set of proof commands
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LCF - Logic of Computable Functions Il

@ Milner worked on improving LCF in Edinburgh

@ research assistants

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

v vy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach
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LCF Approach

@ implement an abstract datatype thm to represent theorems

@ semantics of ML ensure that values of type thm can only be created
using its interface

@ interface is very small

> predefined theorems are axioms
» function with result type theorem are inferences

@ —> However you create a theorem, it is valid.

@ together with similar abstract datatypes for types and terms, this
forms the kernel

N)
=
N
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LCF Approach I

Modus Ponens Example

Inference Rule SML function
N'Fa=b Ara val MP : thm -> thm -> thm
FTUAFDb MP(TFa= b)(Ata)=(TUAF b)

@ very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.
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LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
e HOL family

HOL theorem prover
HOL Light

HOL Zero

Proof Power

v

v v VvYy

Isabelle
Nuprl
Coq

26 /292



History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

@ 1981 Mike Gordon becomes lecturer in Cambridge
@ 1985 Cambridge LCF

» Larry Paulson and Geérard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
> intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

N
3
N
©
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Family of HOL

o ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

o HOL Light
lean CAML / OCaml port by John Harrison

e HOL Zero
trustworthy proof checker by Mark Adams
o Isabelle
» 1990 by Larry Paulson
» meta-theorem prover that supports
multiple logics
» however, mainly HOL used, ZF a little
» nowadays probably the most widely used
HOL system
» originally designed for software verification

Edinburgh LCF
Cambridge LCF

HOLS88

/ Isabelle/HOL

hol90
ProofPower

HOL Light

hol98 HOL Zero

HOL4
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HOL Logic

@ the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

@ this sounds complicated, but is intuitive for SML programmers
@ (S)ML and HOL logic designed to fit each other
@ if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.
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Types

@ SML datatype for types

» Type Variables (’a, «, ’b, 8, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and oy, ...,0, argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 03)
01 — 03 is the type of total functions from o7 to o5.

@ types are never empty in HOL, i.e.
for each type at least one value exists

@ all HOL functions are total
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Terms

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vy vy VvYyy

terms have to be well-typed
same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i.e. no
distinction between functions and predicates, terms and formulae
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Terms Il

HOL term SML expression
0 0

x:’a x:’a

x:bool x:bool

x + 5 x + 5

\x. x +5 fn x => x + 5
(5, T) (5, true)

[5;3;2]++[6] [5,3,2]e[6]

type HOL / SML

num / int

variable of type ’a

variable of type bool

applying function + to x and 5
anonymous (a. k. a. inline) function
of type num -> num

num # bool / int * bool

num list / int list
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Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (¥ <x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and \y. y are alpha-equivalent

Example: x and y are not alpha-equivalent
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Theorems

@ theorems are of the form I' - p where
» [ is a set of hypothesis
» pis the conclusion of the theorem
> all elements of I and p are formulae, i.e. terms of type bool
o [ p records that using [ the statement p has been proved
@ notice difference to logic: there it means can be proved
@ the proof itself is not recorded
@ theorems can only be created through a small interface in the kernel
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HOL Light Kernel

o the HOL kernel is hard to explain

» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
= ’a -> ’a -> bool

» @ : (a -> bool) —> ’a

@ there are two predefined types

> bool
> ind

>

@ the meaning of these types and constants is given by inference rules
and axioms
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HOL Light Inferences |

REFL
lFs=t
Atbt=u
—  TRANS
rUAl_S:u
AFu=v
types fit

COMB

lEs=t
x not free in T

ABS
M- x.s=MXx.t

—— BETA
F(Ax. t)x =t

ASSUME
{p}Fp
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HOL Light Inferences Il

N-p<e A
P9 pEQ,MP
FTUAFgq
MNe=p Al gq

DEDUCT_ANTISYM_RULE

(Mr—{ehu(Aa—-{ph)Fpegq

Flx1, .. xa] Foplx, .-y X
Mt1, ... ta] Fplta, ..., ta]

INST

Moa,...,an| F plaa, ..., an)

INST_TYPE
M-yl byl
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HOL Light Axioms and Definition Principles

@ 3 axioms needed

ETA_AX | —(Ax. tx)=t
SELECT_AX |—=P x= P((Q)P))
INFINITY_AX  predefined type ind is infinite

definition principle for constants

» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars

definition principle for types
> new types can be defined as non-empty subtypes of existing types
@ both principles
> lead to conservative extensions
> preserve consistency
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HOL Light derived concepts

Everything else is derived from this small kernel.

T
AN

—
v
3

—def
—def
—def
—def
—def

(Ap. p) = (Ap. p)

Apg. (M. fpg)=(\f.fTT)
Apq. (PAq<p)
AP.(P=Mx.T)

AP. (Vq. (Vx. P(x) = q) = q)
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Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems
@ one does not need to look at the internal implementation

@ therefore, easy to exchange
@ there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)
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HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
> syntax
> type system
> type inference
HOL theorem prover very trustworthy because of LCF approach

> there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction
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HOL Technical Usage Issues

(]

practical issues are discussed in practical sessions
» how to install HOL

which key-combinations to use in emacs-mode

detailed signature of libraries and theories

all parameters and options of certain tools

vV vy VvYy

@ exercise sheets sometimes
» ask to read some documentation
> provide examples
> list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures
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Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

| recommend using PolyML

please use emacs with
> hol-mode
> sml-mode
» hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources


https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

@ HOL is a collection of SML modules
o starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded
» some default modules opened
> an input wrapper to help parsing terms called unquote

@ unquote provides special quotes for terms and types

» implemented as input filter

> ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]

» ‘‘“:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
@ main interfaces

» emacs (used in the course)

> vim

> bare shell
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Filenames

@ *Script.sml — HOL proof script file

>

| 3
>
>

script files contain definitions and proof scripts

executing them results in HOL searching and checking proofs
this might take very long

resulting theorems are stored in *Theory.{sml|sig} files

o *Theory.{sml|sig} — HOL theory

>

>

>

auto-generated by corresponding script file
load quickly, because they don't search/check proofs
do not edit theory files

e *Syntax.{sml|sig} — syntax libraries

>

>

contain syntax related functions
i.e. functions to construct and destruct terms and types

@ *Lib.{sml|sig} — general libraries

e *Simps.{sml|sig} — simplifications

@ selftest.sml — selftest for current directory
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Directory Structure

@ bin — HOL binaries
@ src — HOL sources
o examples — HOL examples
> interesting projects by various people
» examples owned by their developer
» coding style and level of maintenance differ a lot
@ help — sources for reference manual

» after compilation home of reference HTML page
@ Manual — HOL manuals

» Tutorial

» Description

> Reference (PDF version)
> Interaction

» Quick (cheat pages)

» Style-guide

> L.
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Unicode

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
> no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
> less portable between systems

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

@ | recommend turning Unicode output off initially
» this simplifies learning the ASCII syntax
» no need for special fonts
> it is easier to copy and paste terms from HOL's output
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Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)
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Kernel too detailed

@ we already discussed the HOL Logic

o the kernel itself does not even contain basic logic operators
@ usually one uses a much higher level of abstraction

» many operations and datatypes are defined
> high-level derived inference rules are used

@ let's now look at this more common abstraction level



Common Terms and Types
Unicode ASCII

type vars a, B, ... ’a, ’b, ...
type annotated term term:type term:type
true T T

false F F

negation —b ~b

conjunction bl A b2 bl /\ b2
disjunction bl V b2 bl \/ b2
implication bl = b2 Dbl ==> b2
equivalence bl <= b2 bl <=> b2
disequation vl # v2 vl <> v2
all-quantification Vx. P x 'x. P x
existential quantification dx. P x ?7x. P x
Hilbert's choice operator  @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore
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Syntax conventions

@ common function syntax
» prefix notation, e.g. SUC x
> infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (\x. P x)
@ infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
@ quantifiers of the same type don't need to be repeated
Example: Vx y. P x yisshort for Vx. Vy. P x y
@ there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND ¢ v1 v2
@ associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.
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Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.
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Creating Terms |l

Parser Syntax Funs

““:bool"" mk_type ("bool", []) or bool type of Booleans

ceTes mk_const ("T", bool) or T term true

R A mk_neg ( negation of
mk_var ("b", bool)) Boolean var b

el /N LY mkeconj (L., L) conjunction

oo N/ Lo mkdisj Gol., L) disjunction

Coooe==> .0 mkiimp (..., ...) implication

el = Lo mkeq (..., ...) equation

oLl <= L0 Y mkeq (L., olll) equivalence

L. <> L0 mkneg (mkeq (..., ...)) negated equation

56 /292



Inference Rules for Equality

REFL

Ft=t

lEs=t
x not free in T

M= Ax. s = Ax.t

lFs=t
ArFu=v
types fit

FUAF s(u) =t(v)

MK_COMB

lFs=t
— GSYM
l—t=s
lEs=t
AFt=u
———— TRANS
FTUAFs=u
NlN-p&e AF
peq P B MP
FTUAFgq
BETA

F(Ax. t)x=t
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Inference Rules for free Variables

M[x1, ..oy xa] Foplx, ..y X
Mt1, ..., ta] F plt1, ..., o]

INST

Maa, ..., an] b plat, ..., an)

INST_TYPE
r[717 .. 7’7!1] F P[’Yl, CIEaE 7fyn]
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Inference Rules for Implication

-p=g¢g
AFp
——  ©  MP, MATCH.MP e
FTUAF g p DISCH
r—{g}Fg=p
rFrp=gq EQ_IMP_RULE
TEp— o QMP- Mq—
rFp=gq 9= P ynpiscu
N-g—op ru{qttop
N-p=gq N-p=—F
AFg— p i NOT_INTRO
— T 7" IMP_ANTISYM_RULE ~P
FTUAFp=gq
re-p NOT_ELIM
-p=gq M-p— }
AF-qg=r
IMP_TRANS

TUAF p=—r
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Inference Rules for Conjunction / Disjunction

"P isn

[ A+ R
p qCONJ N-p V q

FTUAFpPp A g

"9 Dbige
F-p A I
P~ 9 conguNcTI F=pVva
MN=p

lpVvag

FEp A AL U{ptEr
#CONJUNCT2 A;UE{H
Fq DISJ_CASES

FTUATUA T
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Inference Rules for Quantifiers

- p[u/x] EXISTS
M= t free in - o -
P X NOt Tree In GEN I+ Jx. p

N=-vx.p
N-3x. p
[ Vx. AU u/x|t = r
rl—[u/)l:] SPEC u not free{[iJrE F/, ]A},p and r
P CHOOSE

FTUAETr
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Forward Proofs

@ axioms and inference rules are used to derive theorems
@ this method is called forward proof

> one starts with basic building blocks
» one moves step by step forward
» finally the theorem one is interested in is derived

@ one can also implement own proof tools
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Forward Proofs — Example |

Let's prove Vp. p = p.

val IMP_REFL_THM = let

val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term

val thml = ASSUME tmil; > val thml = [p] |- p: thm

val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm
in

GEN tml thm2 > val IMP_REFL_THM =

|- 'p. p ==> p: thm

end
fun IMP_REFL t = > val IMP_REFL =

SPEC t IMP_REFL_THM; fn: term -> thm
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Forward Proofs — Example Il

Let's

prove VPv. (Ix. (x =v) AP x) < P v.

val tm_v = ‘‘v:’a‘‘;
val tm_P = ‘‘P:’a -> bool‘‘;
val tm_lhs = “‘?x. (x = v) /\ P x°¢

val tm_rhs = mk_comb (tm_P, tm_v);

val

thml = let

val thmla = ASSUME tm_rhs;
val thmlb =

CONJ (REFL tm_v) thmla;

val thmlc =

in

EXISTS (tm_lhs, tm_v) thmlb

DISCH tm_rhs thmlc

end

val thmia = [P v] |- P v: thm
val thmlb =

[Pv] |- (v=v)/\Pv: thm
val thmlc =

[Pv] |I-7x. (x=v) /\Px

val thml = [] |-
Pv==>7x. (x=v) /\Px: thm
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Forward Proofs — Example Il cont.

val thm2 = let
val thm2a =
ASSUME ‘“(u:’a =v) /\ P u‘*
val thm2b = AP_TERM tm_P
(CONJUNCT1 thm2a);
val thm2c = EQ_MP thm2b
(CONJUNCT2 thm2a);
val thm2d =
CHOOSE (‘‘u:’a‘‘,
ASSUME tm_lhs) thm2c
in
DISCH tm_lhs thm2d
end

val thm3 = IMP_ANTISYM_RULE thm2 thml

val thm4 = GENL [tm_P, tm_v] thm3

val thm2a
(u=v)

val thm2b
P u <=>

val thm2c
Pv

val thm2d
Pv

val thm2
7x. (x

val thm3

oo

7x. (x =

val thm4
7x. (x

[(w=v) /\NPul |-
/\ P u: thm
[(w=v) /\NPul |-

A

[(w=v) /\NPul |-

[?x. (x = v) /\ P x]

(1

v)

[]
v)

v)

|_
/NP x==>Pyv

|-
/NP x<=>Pv
|- 'P v.

/NP x<=>Pv
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Motivation |

@ let's prove 'A B. A /\ B <=>B /\ A

(* Show |- A /\ B ==>B /\ A %)

val thmia = ASSUME ‘‘A /\ B‘¢;

val thmlb = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmila);
val thmil DISCH ‘A /\ B‘¢ thmlb

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A¢¢;
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thml thm2

(* Add quantifiers *)
val thm4 = GENL [€‘A:bool‘‘, ‘‘B:bool‘‘] thm3

@ this is how you write down a proof
o for finding a proof it is however often useful to think backwards
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Motivation |l - thinking backwards

@ we want to prove
» '1AB. A/\B<=>B/\A
@ all-quantifiers can easily be added later, so let's get rid of them
» A /\ B<=>B/\A
@ now we have an equivalence, let's show 2 implications
» A /\B==>B/\A
»B/\NA==>A/\B
@ we have an implication, so we can use the precondition as an
assumption

» using A /\ BshowB /\ A
» A /\B==>B/\A
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Motivation Il - thinking backwards

@ we have a conjunction as assumption, let's split it

» using A and B show B /\ A
» A /\ B==>B/\A

@ we have to show a conjunction, so let's show both parts
» using A and B show B
» using A and B show A
» A /\ B==>B/\A
@ the first two proof obligations are trivial
» A /\B==>B/\A
o .

@ we are done
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Motivation IV

@ common practise

» think backwards to find proof
» write found proof down in forward style

@ often switch between backward and forward style within a proof
Example: induction proof
» backward step: induct on ...
» forward steps: prove base case and induction case
@ whether to use forward or backward proofs depend on
» support by the interactive theorem prover you use
* HOL 4 and close family: emphasis on backward proof
* Isabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof
» your way of thinking
> the theorem you try to prove
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HOL Implementation of Backward Proofs

e in HOL

» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation
@ backward proofs are implemented by tactics in HOL

» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems

@ to understand backward proofs in HOL we need to look at

» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs
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Goals

@ goals represent proof obligations, i.e. theorems we need /want to prove

@ the SML type goal is an abbreviation for term list * term

@ the goal ([asm_1,

prove the theorem {asm_1, ..., asmn} |- ¢
Example Goals
Goal Theorem
([((A({, ((B({]’ cep /\ B(() {A, B} |_ A
([((B((’ ((A((]’ ((A /\ B(() {A, B} |_ A
(LB /\ AT, ““A /\ BY) {B /\ A} |-

({1,

““B/\A) ==> (A/\B))

- (B /\ A)

., asmn], c) records that we need/want to

/\ B

/\ B

A/\B

==> (A /\ B)

v
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Tactics

@ the SML type tactic is an abbreviation for

the type goal -> goal list * validation
@ validation is an abbreviation for thm list -> thm
@ given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that

* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

@ special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid
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Tactic Example — CONJ_TAC

t =conjl /\ conj2

MN=p AlFg asl F conj1 asl F conj2
CONJ
FTUAFpPp A g aslF t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conjl, conj2) = dest_conj t
in

([(asl, conj1), (asl, conj2)],

fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""
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Tactic Example — EQ_TAC

t = 1lhs = rhs
asl  1hs ==> rhs

N-p=—=gq
AF-qg=1p asl F rhs ==> lhs
——  IMP_ANTISYM_RULE
FTUAFp=gq aslkF t

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs) = dest_eq t
in
([(asl, mk_imp (1lhs, rhs)), (asl, mk_imp (rhs, 1lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thi th2
| => raise Match)

end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""
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proofManagerLib / goalStack

@ the proofManagerLib keeps track of open goals

@ it uses goalStack internally
@ important commands
» g — set up new goal
» e — expand a tactic
> p — print the current status
> top_thm — get the proved thm at the end
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Tactic Proof Example |

Previous Goalstack

User Action
g ‘'AB. A/\ B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\NB<=>B/\A

: proof

u]
o)
I

i
it
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Tactic Proof Example Il

Previous Goalstack
Initial goal:

1A B. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\B<=>B/\A

: proof

v
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Tactic Proof Example Il {i;n?g

Previous Goalstack
A /\B<=>B/\A

: proof

User Action
e EQ_TAC,;

New Goalstack
B/\ A==>A/\B

A/\NB==>B/\A

: proof
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Tactic Proof Example IV

Previous Goalstack
B/\ A==>A/\B

A /\ B==>B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack
B /\ A
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Tactic Proof Example V

Previous Goalstack
B /\ A

0. A
1. B

User Action
e CONJ_TAC;

New Goalstack

0. A

1. B
B

0. A

1. B
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Tactic Proof Example VI

Previous Goalstack

A

0 A

1 B
B

0 A

1 B

4

User Action

e (ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘));
e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B/\A==>4/\B

: proof

v
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Tactic Proof Example VII

Previous Goalstack
B /\ A ==>4 /\B

: proof

User Action

e STRIP_TAC;
e (ASM_REWRITE_TAC[]);

New Goalstack

Initial goal proved.
|- 'AB. A/\ B <=>B/\A:
proof

D Q>
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Tactic Proof Example VIII gf

Previous Goalstack

Initial goal proved.
|- 'AB. A/\ B<=>B/\ A:
proof

User Action
val thm = top_thm();

Result

val thm =
|- 'AB. A/\ B<=>B/\A:
thm

u]
o)
I
i
it

Qe
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Tactic Proof Example IX

Combined Tactic

val thm = prove (‘“!A B. A /\ B <=> B /\ A¢‘,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢‘A:bool‘‘)
1,

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm
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Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!'A B. A /\ B <=>B /\ A‘‘,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
));

Result

val thm =
|- 'AB. A /\ B<=>B/\A:
thm
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Summary Backward Proofs

@ in HOL most user-level proofs are tactic-based

» automation often written in forward style
> low-level, basic proofs written in forward style
> nearly everything else is written in backward (tactic) style

@ there are many different tactics

@ in the lecture only the most basic ones will be discussed
@ you need to learn about tactics on your own

» good starting point: Quick manual
> learning finer points takes a lot of time
> exercises require you to read up on tactics

@ often there are many ways to prove a statement, which tactics to use
depends on
» personal way of thinking
» personal style and preferences
» maintainability, clarity, elegance, robustness
>
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Syntax of Tactics in HOL

@ originally tactics were written all in capital letters with underscores
Example: ALL_TAC

@ since 2010 more and more tactics have overloaded lower-case syntax
Example: all _tac

@ sometimes, the lower-case version is shortened
Example: REPEAT, rpt

@ sometimes, there is special syntax
Example: THEN, \\, >>
@ which one to use is mostly a matter of personal taste
all-capital names are hard to read and type
however, not for all tactics there are lower-case versions

>
» mixed lower- and upper-case tactics are even harder to read
» often shortened lower-case name is not speaking

v

In the lecture we will use mostly the old-style names.
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Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH_TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal
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Tacticals

@ tacticals are SML functions that combine tactics to form new tactics
@ common workflow

» develop large tactic interactively

» using goalStack and editor support to execute tactics one by one
» combine tactics manually with tacticals to create larger tactics

» finally end up with one large tactic that solves your goal

> use prove or store_thm instead of goalStack

@ make sure to clearly mark proof structure by e. g.

> use indentation

> use parentheses

> Uuse appropriate connectives
>

@ goalStack commands like e or g should not appear in your final proof
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Some Basic Tacticals

tacl >> tac?

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

applies tactics in sequence

applies list of tactics to subgoals
applies tac2 to the first subgoal of tacl
repeats tac until it fails

apply tac n times

reverses the order of subgoals

applies tacl only if tac2 fails

do nothing if tac fails

do nothing

fail
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Basic Rewrite Tactics

@ (equational) rewriting is at the core of HOL's automation

o we will discuss it in detail later
@ details complex, but basic usage is straightforward
> given a theorem rewr_thm of form |- P x = Q xand aterm t
> rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint
@ warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms rewrite goal using equations found
in given list of theorems

ASM_REWRITE_TAC thms in addition use assumptions

ONCE_REWRITE_TAC thms rewrite once in goal using equations

ONCE_ASM REWRITE TAC thms rewrite once using assumptions
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Case-Split and Induction Tactics

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

induct on term
induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule
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Assumption Tactics

POP_ASSUM thm-tac use and remove first assumption
common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac use (and remove) first
also PAT_X_ASSUM term thm-tac assumption matching pattern

WEAKEN_TAC term-pred removes first assumption
satisfying predicate
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Decision Procedure Tactics

@ decision procedures try to solve the current goal completely
@ they either succeed of fail
@ no partial progress

@ decision procedures vital for automation

TAUT_TAC propositional logic tautology checker
DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover
numLib.ARITH_TAC Presburger arithmetic
intLib.ARITH.TAC uses Omega test
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Subgoal Tactics

@ it is vital to structure your proofs well
» improved maintainability
» improved readability
» improved reusability
> saves time in medium-run

o therefore, use many small lemmata

@ also, use many explicit subgoals

‘term-frag’ by tac show term with tac and

add it to assumptions
‘term-frag’ sufficies by tac show it sufficies to prove term
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Term Fragments / Term Quotations

notice that by and sufficies_ by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal
this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments
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Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals
similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 /292



Tactical Proof - Example | - Slide 1

@ we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1
o first step: set up goal on goalStack

@ at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,

Actions
@ rung ‘‘!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢
@ this is done by hol-mode

@ move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)
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Tactical Proof - Example | - Slide 2

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1

@ the outermost connective is an all-quantor
@ let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€11, LENGTH (1 ++ 1) = 2 * LENGTH 1°¢,
GEN_TAC

Actions
@ run e GEN_TAC
@ this is done by hol-mode

@ mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

v
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Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

@ LENGTH of APPEND can be simplified

@ let’s search an appropriate lemma with DB.match

Actions
@ run DB.printmatch [] ¢‘LENGTH (_ ++ )¢
@ this is done via hol-mode

@ press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

@ this finds the theorem listTheory.LENGTH APPEND
|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12
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Tactical Proof - Example | - Slide 4

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1 J

o let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€€11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ connect the new tactic with tactical >> (THEN)

@ use hol-mode to expand the new tactic
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Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 *x LENGTH 1

@ let's search a theorem for simplifying 2 * LENGTH 1
@ prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
@ DB.match finds theorem arithmeticTheory.TIMES2

@ press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

v
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Tactical Proof - Example | - Slide 6

Current Goal
LENGTH (1 ++ 1) = 2 * LENGTH 1

@ extend the previous rewrite tactic
@ finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Actions
@ add TIMES?2 to the list of theorems used by rewrite tactic

@ use hol-mode to expand the extended rewrite tactic

@ goal is solved, so let's add closing parenthesis and semicolon

v
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Tactical Proof - Example | - Slide 7

@ we have a finished tactic proving our goal
@ notice that GEN_TAC is not needed
@ let's polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
GEN_TAC >>
REWRITE_TAC[1listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
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Tactical Proof - Example Il - Slide 1

let’'s prove something slightly more complicated

drop old goal by pressing M-h d
(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

@ at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!xl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (%2 <= x3) /\ x3 <= SUC x1) ==>
“(ALL_DISTINCT (11 ++ 12 ++ 13))°‘¢,
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Tactical Proof - Example Il - Slide 2

Current Goal

Ix1l x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>
~(ALL_DISTINCT (11 ++ 12 ++ 13)) ‘¢,

REPEAT STRIP_TAC

108 /292



Tactical Proof - Example Il - Slide 2

Current Goal

Ixl x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
“ALL_DISTINCT (11 ++ 12 ++ 13)

@ let's strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°¢°¢,
REPEAT STRIP_TAC

Actions
@ add REPEAT STRIP_TAC to proof script

@ expand this tactic using hol-mode

v
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Tactical Proof - Example Il - Slide 3

Current Goal

0. MEM x1 11
1. MEM x2 12
2. MEM x3 13
3 x1 <= x2

x2 <= x3
x3 <= SUC x1
ALL_DISTINCT (11 ++ 12 ++ 13)

@ oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions

@ undo REPEAT STRIP_TAC (M-h b)

@ expand more fine-tuned strip tactic

v
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Tactical Proof - Example Il - Slide 4

Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
@ now let's simplify ALL_DISTINCT

@ search suitable theorems with DB.match

@ use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[1listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]
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Tactical Proof - Example Il - Slide 5

Current Goal

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ '!e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

@ from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
@ let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...<¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC
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Tactical Proof - Example Il - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ l'e. MEM e 11 ==> “MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)
0. MEM x1 11 4. x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1
3. x1 <= x2 6b. x2 = x3

@ both goals are easily solved by first-order reasoning
@ let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_TAC[]
));
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Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
““1x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==

~“(ALL_DISTINCT (11 ++ 12 ++ 13))°°,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS_TAC[]
)

@ notice that proof structure is explicit

@ parentheses and indentation used to mark new subgoals
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Mathematical Induction

@ mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

@ HOL is expressive enough to encode this principle as a theorem.
|- 'P. PO /\ (!n. Pn==>P (SUCn)) ==> !n. Pn

@ Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

@ there are many similarish induction theorems in HOL

@ Example: complete induction principle

|- 'P. (In. (!m. m <n==>Pm) ==>Pn) ==> In. Pn
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Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype
Example: |- 'p. P [0 /\ (1t. Pt ==> th. P (h::t)) ==> !1. P 1
structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem
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Other Induction Theorems

@ there are many induction theorems in HOL

» datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
> recursive relation definitions give rise to induction theorems

» many are manually defined

@ Examples
[-'P. P[] /\ (11. P1==>1!x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P £

|- 'p. P {} /\

(!'s. FINITE s /\ P s ==> le. e NOTIN s ==> P (e INSERT s)) ==>
!'s. FINITE s ==> P s

|- P. (!lxy.Rxy==>Pxy) /\(Uxyz. Pxy/\Pyz-==>Pxz) ==>

lwuv. Rftuv==>Puv
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Induction (and Case-Split) Tactics

@ the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

@ this is usually what one needs

@ other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

@ similarish Cases_on picks and applies default case-split theorems
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Induction Proof - Example | - Slide 1

@ let’s prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct
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Induction Proof - Example | - Slide 2

@ the induction tactic produced two cases

@ base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

@ induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

112. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

@ both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (‘¢
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D
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Induction Proof - Example Il - Slide 2

@ let's prove via induction
1. REVERSE (REVERSE 1) =1

@ we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct
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Induction Proof - Example Il - Slide 2

@ the induction tactic produced two cases

@ base case:
REVERSE (REVERSE [1) = []

@ induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) =1

@ again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1°¢¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF],
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
D
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Definitional Extensions

@ there are conservative definition principles for types and constants

@ conservative means that all theorems that can be proved in extended
theory can also be proved in original one

@ however, such extensions make the theory more comfortable
@ definitions introduce no new inconsistencies

o the HOL community has a very strong tradition of a purely
definitional approach
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Axiomatic Extensions

(]

e 6 6 o o

axioms are a different approach

they allow postulating arbitrary properties, i.e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies
in HOL axioms are very rarely needed

using definitions is often considered more elegant
it is hard to keep track of axioms

use axioms only if you really know what you are doing



Oracles

e 6 6 o6 o

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

you might want to use an external automated prover
this external tool acts as an oracle

> it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool



Oracles Il

@ Common oracle-tags

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast _proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

vV vy vy VvYyy

@ cheating via e. g. the cheat tactic means skipping proofs
@ it can be helpful during proof development

v

test whether some lemmata allow you finishing the proof

» skip lengthy but boring cases and focus on critical parts first
» experiment with exact form of invariants
>

@ cheats should be removed reasonable quickly
@ HOL warns about cheats and skipped proofs
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Pitfalls of Definitional Approach

definitions can't introduce new inconsistencies

they force you to state all assumed properties at one location
however, you still need to be careful

Is your definition really expressing what you had in mind ?
Does your formalisation correspond to the real world artefact ?

How can you convince others that this is the case ?

we will discuss methods to deal with this later in this course

» formal sanity

» conformance testing

» code review

» comments, good names, clear coding style
>

this is highly complex and needs a lot of effort in general



Specifications

@ HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and 0DD

> EVEN_ODD_EXISTS
val it = |- ?even odd. even O /\ “odd 0 /\ (!n. even (SUC n) <=> odd n) /\
('n. odd (SUC n) <=> even n)

> val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
val EO_SPEC = |- EVEN O /\ ~0DD O /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) )

@ new_specification is a convenience wrapper
> it uses existential quantification instead of Hilbert's choice

» deals with pair syntax
> stores resulting definitions in theory

@ new_specification captures the underlying principle nicely
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Definitions

@ special case: new constant defined by equality

Specification with Equality

> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =

|- 'n. double n =n + n

@ there is a specialised methods for such non-recursive definitions

Non Recursive Definitions

> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)
val DOUBLE_DEF =
|- 'n. DOUBLE n = n + n
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Restrictions for Definitions

@ all variables occurring on right-hand-side (rhs) need to be arguments
» e.g. new.definition (..., ““Fn =n + n‘) fails
» m is free on rhs

@ all type variables occurring on rhs need to occur on lhs

» e.g. new definition ("IS_FIN_TY",
‘IS FIN.TY = FINITE (UNIV : ’a set)‘‘) fails
IS_FIN_TY would lead to inconsistency
|- FINITE (UNIV : bool set)
|- ~FINITE (UNIV : num set)
T <=> FINITE (UNIV:bool set) <=>
IS_FIN_TY <=>
FINITE (UNIV:num set) <=> F
» therefore, such definitions can't be allowed

vV vy VvVYyy
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Underspecified Functions

function specification do not need to define the function precisely
multiple different functions satisfying one spec are possible
functions resulting from such specs are called underspecified
underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions

functions like e. g. HD and TL are total
they are defined for empty lists
however, it is not specified, which value they have for empty lists
only known: HD [1 = HD [] and TL [] = TL []
val MY_HD_EXISTS = prove (‘‘?hd. !'x xs. (hd (x::xs) =x)¢‘, ...);
val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

v vy VvYy
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Primitive Type Definitions

HOL allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty
ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex—-thm of form 7e. P e is needed

new_type_definition (op-name, ex-thm) then introduces a new
type op-name specified by P
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Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates
predicate ALL_ DISTINCT : ’a list -> bool is used to define it
easy to prove theorem dlist_exists: |- 71. ALL_DISTINCT 1

val dlist_TY DEF = new_type_definitions("dlist",
dlist_exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).
TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
> rep is injective
> a list satisfies ALL_DISTINCT iff there is a corresponding dlist
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Primitive Type Definitions - Example 2

@ define new_type_bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
REP="rep_dlist", tyax=d1ist_TY_DEF}

val it =
|- ('a. abs_dlist (rep_dlist a) = a) /\
(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

@ other useful theorems can be automatically proved by

» prove_abs_fn_one_one
» prove_abs_fn_onto
» prove_rep_fn_one_one
» prove_rep_fn_onto

136 /292



Primitive Definition Principles Summary

@ primitive definition principles are easily explained
@ they lead to conservative extensions
@ however, they are cumbersome to use

@ LCF approach allows implementing more convenient definition tools

» Datatype package

» TFL (Total Functional Language) package
» IndDef (Inductive Definition) package

» quotientLib Quotient Types Library

>
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Functional Programming

the Datatype package allows to define datatypes conveniently
the TFL package allows to define (mutually recursive) functions

o

o

@ the EVAL conversion allows evaluating those definitions

@ this gives many HOL developments the feeling of a functional program
o

there is really a close connection between functional programming a
definitions in HOL
» functional programming design principles apply
» EVAL is a great way to test quickly, whether your definitions are
working as intended
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Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist®
val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))°¢
Definition has been stored under "mylen_def"
val it =
|- (mylen E = 0) /\ 'x xs. mylen (L x xs) = SUC (mylen xs):
thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*¢
val it =
|- mylen (L 2 (L 3 (L 1E))) =3:
thm
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Datatype Package

@ the Datatype package allows to define SML style datatypes easily
@ there is support for

> algebraic datatypes

> record types

» mutually recursive types

>
@ many constants are automatically introduced

> constructors

> case-split constant

» size function

» field-update and accessor functions for records
| 3

@ many theorems are derived and stored in current theory

» injectivity and distinctness of constructors

» nchotomy and structural induction theorems

> rewrites for case-split, size and record update functions
>
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Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a
| Node btree ’b btree

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btree®
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Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 'a2 al a0 a. Leaf a <> Node a0 al a2

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
('a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (al = a1’) /\ (a2 = a2’))

btree nchotomy

|- 'bb. (7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. ('a. P (Leaf a)) /\

(!'b b0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
'b. P b
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Datatype Package - Example | - Derived Theorems 2

btree_size_def

|- ('f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2)))

bbtree_case_def

|- (la f f1. btree_CASE (Leaf a) f f1 = f a) /\
('a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)

btree_case_cong

|- M M> £ f1.
M =M) /\ (ta. (M’ = Leaf a) ==> (f a = £’ a)) /\
(a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1°)
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Datatype Package - Example Il ﬁ‘@i

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

u]
o)
I

i
it
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Datatype Package - Example Il - Derived Theorems

my_enum_nchotomy
|- 'P. PEL /\PE2/\PE3==>1!a Pa

my_enum_distinct
|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my_enum2num_num2my_enum

|- 'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)
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Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }

Record type in HOL

Datatype ‘rgb = <| r : num; g : num; b : num |[>¢
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Datatype Package - Example Ill - Derived Theorems

rgb_component_equality

|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (rl.g = r2.g) /\ (rl.b = r2.b)

rgb_nchotomy

|- 'rr. ?n n0 nl. rr = rgb n n0 nl

rgb_r_fupd

|- 'f n n0 nl. rgb n n0 nl with r updated_by f = rgb (f n) n0 ni

rgb_updates_eq_literal

|- 'r n1 nO n.
r with <|r :=nl; g := n0; b := n|> = <|r :=nl; g := n0; b

:= n|>
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Datatype Package - Example IV

@ nested record types are not allowed
@ however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}

et

Not Supported Nested Record Type Example in HOL

Datatype ‘file = Text string
| Dir <| owner : string ;
files : (string # file) list [>¢

Filesystem Datatype - Mutual Recursion in HOL

Datatype ‘file = Text string
| Dir directory
directory = <| owner : string ;
files : (string # file) list [>¢

v
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Datatype Package - No support for Co-Algebraic Typesfg}“ﬂ:

et

@ there is no support for co-algebraic types
@ the Datatype package could be extended to do so

@ other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))
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Datatype Package - Discussion

Datatype package allows to define many useful datatypes

@ however, there are many limitations

> some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

> there are bugs (currently e. g. some trouble with certain mutually
recursive definitions)

@ biggest restrictions in practice (in my opinion and my line of work)
» no support for co-algebraic datatypes
> no nested record datatypes
@ depending on datatype, different sets of useful lemmata are derived
@ most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
> there is support for pattern matching
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Total Functional Language (TFL) package

TFL package implements support for terminating functional definitions
Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL
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Well-Founded Relations

@ arelationR : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

@ Example: $< : num -> num -> bool is well-founded

e if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

@ this is the essence of termination proofs
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Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

@ this recursion principle is called WFREC in HOL
@ idea of WFREC

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user
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Define - Initial Examples

Simple Definitions

> val DOUBLE_def = Define ‘DOUBLE n = n + n‘
val DOUBLE_def =

|- !'n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ¢(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢

val MY_LENGTH_def =
|- (MY_LENGTH []
thm

0) /\ 'x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ¢(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys
val MY_APPEND_def =
|- ('ys. MY_APPEND [] ys = ys) /\

= x :: (MY_APPEND xs ys)) ¢

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm
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Define discussion

Define feels like a function definition in HOL
it can be used to define "terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define sometimes hard to predict

the input descriptions are only hints

the produced function and the definitional theorem might be different
> in simple examples, quantifiers added

> pattern compilation takes place

» earlier “conjuncts” have precedence

v



Define - More Examples

([
ke

> val MY_HD_def = Define ‘MY_HD (x :: xs)
val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ¢
(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\
(IS_SORTED _ = T)°
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN O = T) /\ (ODD O = F) /\
(EVEN (SUC n) = 0DD n) /\ (ODD (SUC n) = EVEN n) ¢
val EVEN_def =
|- (EVEN 0 <=> T) /\ (ODD O <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zip _ _ = [1)¢
val ZIP_def =
|- ('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(tvi. zIP [1 vi = [1) /\ (!v4 v3. ZIP (v3::v4) [1 = [1) : thm
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Primitive Definitions

@ Define introduces (if needed) the function using WFREC
@ intended definition derived as a theorem
@ the theorems are stored in current theory

@ usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.

case a of
[1=>1IT
| [x11 => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- 'R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- 'f R x. RESTRICT £ R x = (\y. if R y x then f y else ARB)
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Induction Theorems

@ Define automatically defines induction theorems
@ these theorems are stored in current theory with suffix ind
@ use DB.fetch "-" "something_ind" to retrieve them

@ these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [1 /\
(tv. P [v])) ==>
'v. P v
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Define failing

@ Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

> there is a bug :-)

@ termination is an important concept for Define
@ it is easy to misunderstand termination in the context of HOL

@ we need to understand what is meant by termination
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Termination in HOL

@ in SML it is natural to talk about termination of functions
@ in the HOL logic there is no concept of execution

@ thus, there is no concept of termination in HOL

3 characterisations of a function £ : num -> num

|- 'n. £fn=0

|- (£ 0=0) /\ !n. (f (SUC n) = f n)

|- (£ 0=0) /\ 'n. (£ n=£ (SUC n))

Is £ terminating? All 3 theorems are equivalent.
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Termination in HOL I

@ it is useful to think in terms of termination

@ the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
@ the required well-founded relation corresponds to a termination proof

@ therefore, it is very natural to think of Define searching a
termination proof

@ important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions
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Termination in HOL Il

ot
@ one can define "non-terminating” functions in HOL

@ however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions

A function £ : num -> num with the following property cannot be defined in HOL unless HOL
has an inconsistancy:

'In. fn=((fn + 1)

Such a function would allow to prove 0 = 1.
v
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Manual Termination Proofs |

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually
the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- 1 (f:’a -> num) x y. measure f x y <=> (f x < f y)

all measures are well-founded: |- 'f. WF (measure f)

@ moreover, existing well-founded relations can be combined

> lexicographic order LEX

> list lexicographic order LLEX
-
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Manual Termination Proofs Il

if Define fails to find a termination proof, Hol_defn can be used
Hol _defn defers termination proofs

it derives termination conditions and sets up the function definitions
all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

Defn.tprove and Defn.tgoal are intended for this
proofs usually start by providing relation via tactic WF_REL_TAC
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Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))‘

val gsort_defn = HOL function definition (recursive)

Equation(s)
[...] |- gsort ord [1 = []
[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)
Induction :

Termination conditions :
0. !'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)
1. !'rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
2. WF R
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Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\

(!'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))
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Manual Termination Proof Example 2

> Defn.tgoal gsort_defn
Initial goal:

7R.
WF R /\
('rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
('rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)°¢)

1 subgoal :

('rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))
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Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,
WF_REL_TAC ‘measure (\(., 1). LENGTH 1)) >> ...)

val gsort_def =

|- (gsort ord [1 = [1) /\
(gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst))

val gsort_ind =
|- 'P. (lord. P ord [1) /\
(lord x rst.
P ord (FILTER (ord x) rst) /\
P ord (FILTER ($~ o ord x) rst) ==
P ord (x::rst)) ==
'v vi. Pv vl
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Importance of Good Definitions

@ using good definitions is very important

» good definitions are vital for clarity
» proofs depend a lot on the form of definitions

unluckily, it is hard to state what a good definition is

even harder to come up with good definitions

let's look at it a bit closer anyhow
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Importance of Good Definitions — Clarity |

@ HOL guarantees that theorems do indeed hold

@ However, does the theorem mean what you think it does?
@ you can separate your development in

» main theorems you care for
» auxiliary stuff used to derive your main theorems

@ it is essential to understand your main theorems
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Importance of Good Definitions — Clarity |l

Guarded by HOL Manual review needed for
@ proofs checked @ meaning of main theorems
@ internal, technical definitions @ meaning of definitions used

@ technical lemmata by main theorems

@ meaning of types used by
’ main theorems

@ proof tools
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Importance of Good Definitions — Clarity Il

@ it is essential to understand your main theorems

» you need to understand all the definitions directly used
» you need to understand the indirectly used ones as well
» you need to convince others that you express the intended statement
> therefore, it is vital to use very simple, clear definitions

@ defining concepts is often the main development task

@ checking resulting model against real artefact is vital

> testing via e.g. EVAL
» formal sanity
» conformance testing

@ wrong models are main source of error when using HOL

@ proofs, auxiliary lemmata and auxiliary definitions

> can be as technical and complicated as you like
» correctness is guaranteed by HOL
> reviewers don't need to care



Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainability

o

o

@ they can improve automation drastically

@ unluckily for proofs definitions often need to be technical
o

this contradicts clarity aims

173 /292



How to come up with good definitions

@ unluckily, it is hard to state what a good definition is

@ it is even harder to come up with them
> there are often many competing interests
> a lot of experience and detailed tool knowledge is needed
» much depends on personal style and taste

@ general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

* one very close to your favourite textbook

* one nice for certain types of proofs

* another one good for evaluation
* L.

@ lessons from functional programming apply
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Good Definitions in Functional Programming

Objectives
o clarity (readability, maintainability)

e performance (runtime speed, memory usage, ...)

General Advice
@ use the powerful type-system
@ use many small function definitions

@ encode invariants in types and function signatures
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Good Definitions — no number encodings

@ many programmers familiar with C encode everything as a number o
@ enumeration types are very cheap in SML and HOL
@ use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER®;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) ;

val list_compare_def = Define ¢

(list_compare cmp [1 [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(* x<y *) LESS
(x x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) ¢;

v
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Good Definitions — Isomorphic Types

@ the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

@ even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val
val

_ = Datatype ‘vaddr = VAddr num‘;
_ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ¢
virt_to_phys_addr (VAddr a) = PAddr( translation of a )‘;
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Good Definitions — Record Types |

@ often people use tuples where records would be more appropriate
@ using large tuples quickly becomes awkward
> it is easy to mix up order of tuple entries
* often types coincide, so type-checker does not help
» no good error messages for tuples

* hard to decipher type mismatch messages for long product types
* hard to figure out which entry is missing at which position

* non-local error messages

* variable in last entry can hide missing entries

@ records sometimes require slightly more proof effort

@ however, records have many benefits
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Good Definitions — Record Types I

@ using records

» introduces field names
» provides automatically defined accessor and update functions
> leads to better type-checking error messages

@ records improve readability

» accessors and update functions lead to shorter code
» field names act as documentation

@ records improve maintainability

> improved error messages
» much easier to add extra fields
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Good Definitions — Encoding Invariants

@ try to encode as many invariants as possible in the types
@ this allows the type-checker to ensure them for you
@ you don't have to check them manually any more

@ your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,
server : inet_address,
last_ping_time : time option,
last_ping_id : int option,
session_id : string option,
when_initiated : time option,
when_disconnected : time option
}
v
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Good Definitions — Encoding Invariants Il

Network Connections (Example by Yaron Minsky from Jane Street) Il

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

181 /292



Good Definitions in HOL

Objectives
o clarity (readability)
@ good for proofs

@ performance (good for automation, easily evaluatable, ...)

General Advice
@ same advice as for functional programming applies
@ use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

@ tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability




Good Definitions in HOL I

Technical Issues

@ write definition such that they work well with HOL's tools
@ this requires you to know HOL well
@ a lot of experience is required

@ general advice

avoid explicit case-expressions
prefer curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zp _ _ = [1)¢

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)
I, )= [O°

val ZIP_BAD2_def = Define ¢(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\
(ZIP _ = [1)°
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Good Definitions in HOL Ill

Multiple Equivalent Definitions

@ satisfy competing requirements by having multiple equivalent
definitions

@ derive them as theorems

@ initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_ DISTINCT

|- (ALL_DISTINCT []1 <=> T) /\
('h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- '1. ALL_DISTINCT 1 <=>
('x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))

|- !1s. ALL_DISTINCT 1ls <=> (CARD (set 1s) = LENGTH 1ls):
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Formal Sanity

Formal Sanity
@ to ensure correctness test your definitions via e. g. EVAL

@ in HOL testing means symbolic evaluation, i.e. proving lemmata
o formally proving sanity check lemmata is very beneficial
they should express core properties of your definition
thereby they check your intuition against your actual definitions
these lemmata are often useful for following proofs
using them improves robustness and maintainability of your
development

@ | highly recommend using formal sanity checks




Formal Sanity Example |

> val ALL_DISTINCT = Define ¢
(ALL_DISTINCT [] = T) /\
(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)°‘;

Example Sanity Check Lemmata

|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
|- !x. ALL_DISTINCT [x]

|- !'x xs. ~(ALL_DISTINCT (x::x::xs))

|- '1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1

|- 'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> ~MEM e 12
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Formal Sanity Example |l 1

> val ZIP_def = Define ¢
(ZIP [1 ys = [1) /\ (ZIP xs [1 = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (lys. ZIP [1 ys = [1D) /\ (!v3 v2. ZIP (v2::v3) [1 = [1) /\
('ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

@ above definition of ZIP looks straightforward
@ small changes cause heuristics to produce different theorems

@ use formal sanity lemmata to compensate

> val ZIP_def = Define ¢
(zip xs [1 = [ /\ (ZIP [1 ys = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*

val ZIP_def =
- (Mxs. 2IP xs [1 = [1) /\ (!v3 v2. ZIP [] (v2::v3) = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ysO
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Formal Sanity Example Il 2

val ZIP_def =

- (tys. ZIP [1 ys = [1) /\ (1v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata

('xs. ZIP xs [1 = [1) /\ (lys. ZIP [] ys = [1) /\
(ly ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
!xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
'x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)
'xsl xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1l ==>
(ZIP (xs1++xs2) (ysl++ys2) = (ZIP xsl ysl ++ ZIP xs2 ys2))

@ in your proofs use sanity lemmata, not original definition
@ this makes your development robust against

» small changes to the definition required later
» changes to Define and its heuristics
» bugs in function definition package
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Deep and Shallow Embeddings

often one models some kind of formal language

important design decision: use deep or shallow embedding
@ in a nutshell:

» shallow embeddings just model semantics
> deep embeddings model syntax as well

a shallow embedding directly uses the HOL logic

a deep embedding

> defines a datatype for the syntax of the language
» provides a function to map this syntax to a semantic

190 /292



Example: Embedding of Propositional Logic |

@ propositional logic is

a subset of HOL

@ a shallow embedding is therefore trivial

val
val
val
val
val
val

sh_true_def
sh_var_def
sh_not_def
sh_and_def
sh_or_def
sh_implies_def

= Define

Define
Define

= Define

Define
Define

‘sh_true = T¢;
‘sh_var (v:bool) = v°¢;
‘sh_not b = ~b‘;
‘sh_and bl b2 = (bl /\ b2)¢;
‘sh_or bl b2 = (bl \/ b2)¢;
‘sh_implies bl b2 = (bl ==> b2)°;
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Example: Embedding of Propositional Logic Il

@ we can also define a datatype for propositional logic
@ this leads to a deep embedding

val _ = Datatype ‘bvar = BVar num‘

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop
| d_and prop prop | d_or prop prop
| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)°

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)°¢

val PROP_SEM_def = Define ¢

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and pl p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or pl p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
a

(PROP_SEM (d_implies pl p2) = (PROP_SEM a pl ==> PROP_SEM a p2))°
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Shallow vs. Deep Embeddings

Shallow Deep
@ quick and easy to build @ can reason about syntax
@ extensions are simple @ allows verified

implementations
@ sometimes tricky to define
e. g. bound variables

Important Questions for Deciding
@ Do | need to reason about syntax?
@ Do | have hard to define syntax like bound variables?
@ How much time do | have?
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Example: Embedding of Propositional Logic Ill

@ with deep embedding one can easily formalise syntactic properties like

» Which variables does a propositional formula contain?
» Is a formula in negation-normal-form (NNF)?

@ with shallow embeddings
» syntactic concepts can't be defined in HOL

» however, they can be defined in SML
» no proofs about them possible

val _ = Define °

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) =T) /\
(IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
(IS_NNF (d_and pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_or pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_implies pl p2) = (IS_NNF p1 /\ IS_NNF p2))°
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Verified vs. Verifying Program

Verified Programs

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

y

Verifying Programs
@ are written in meta-language

@ they produce a separate
proof for each run

@ only certain that current run
has properties

@ allow more flexibility, e. g.
fancy heuristics

@ good pragmatic solution

@ shallow embedding fine
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Summary Deep vs. Shallow Embeddings

@ deep embeddings require more work
@ they however allow reasoning about syntax
» induction and case-splits possible
> a semantic subset can be carved out syntactically
@ syntax sometimes hard to define for deep embeddings
@ combinatations of deep and shallow embeddings common

> certain parts are deeply embedded
» others are embedded shallowly
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Rewriting in HOL

@ simplification via rewriting was already a strength of Edinburgh LCF
@ it was further improved for Cambridge LCF
@ HOL inherited this powerful rewriter

@ equational reasoning is still the main workhorse
@ there are many different equational reasoning tools in HOL
> Rewrite library
inherited from Cambridge LCF
you have seen it in the form of REWRITE_TAC
» computeLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL
» simpLib — Simplification
sophisticated rewrite engine, HOL's main workhorse
not discussed in this lecture, yet
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Semantic Foundations

@ we have seen primitive inference rules for equality before

lFs=t
AFu=v lFs=t
types fit x not free in T
COMB ABS
FrUAF s(u) =t(v) MEAx.s=Ax. t
lFs=t REFL
AFt= _
277" TRANS Ft=t
FTUAFs=u

@ these rules allow us to replace any subterm with an equal one

@ this is the core of rewriting
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Conversions

@ in HOL, equality reasoning is implemented by conversions

@ a conversion is a SML function of type term -> thm

@ given a term t, a conversion
» produces a theorem of the form |- t
> raises an UNCHANGED exception or
» fails, i.e. raises an HOL_ERR exception

Example
> BETA_CONV ““(\x. SUC x) y*°¢
val it = |- (\x. SUC x) y = SUC y

> BETA_CONV ‘SUC y*°
Exception-HOL_ERR ... raised

> REPEATC BETA_CONV ‘¢SUC y*°¢
Exception- UNCHANGED raised

t°’
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Conversionals

@ similar to tactics and tacticals there are conversionals for conversions

@ conversionals allow building conversions from simpler ones
@ there are many of them
» THENC
ORELSEC
REPEATC
TRY_CONV
RAND_CONV
RATOR_CONV
ABS_CONV

vV VY vy VY VY VY
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Depth Conversionals

o for rewriting depth-conversionals are important

@ a depth-conversional applies a conversion to all subterms
@ there are many different ones
» ONCE_DEPTH_CONV c — top down, applies c once at highest possible
positions in distinct subterms
» TOP_SWEEP_CONV ¢ — top down, like ONCE_DEPTH_CONV, but continues
processing rewritten terms
» TOP_DEPTH_CONV ¢ — top down, like TOP_SWEEP_CONV, but try
top-level again after change
» DEPTH_CONV c — bottom up, recurse over subterms, then apply c
repeatedly at top-level
» REDEPTH_CONV ¢ — bottom up, like DEPTH_CONV, but revisits subterms
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REWR_CONV

@ it remains to rewrite terms at top-level

@ this is achieved by REWR_CONV
@ given a term t and a theorem |- t1 = t2, REWR_.CONV t thm
» searches an instantiation of term and type variables such that t1
becomes a-equivalent to t
» fails, if no instantiation is found
» otherwise, instantiate the theorem and get |- t1’ = t2°
> return theorem |- t = t2’

Example

term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)
found type instantiation: [““:’a‘‘ [-> ¢‘:num‘‘]

found term instantiation: [‘‘x:num‘‘¢ |[-> “€1¢¢; “‘xs¢ |-> ““[2;3]“¢]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

@ the tricky part is finding the instantiation

@ this problem is called the (term) matching problem
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Term Matching

@ given term t_org and a term t_goal try to find

> type substitution ty_s
> term substitution tm_s

@ such that subst tm_s (inst ty.s t_org)

a

t_goal

@ this can be easily implemented by a recursive search

t_org

tl_org t2_org
tl_org t2_org
\x. t_org x
\x. t_org x
const

const

var

t_goal

tl_goal t2_goal
otherwise

\y. t_goal y
otherwise

same const
otherwise
anything

action

recurse

fail

match types of x, y and recurse
fail

match types

fail

try to bind var,

take care of existing bindings
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Examples Term Matching

t_org t_goal substs

LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a — num, x — 1, xs — [2;3]
[1:’a list [1:’b list ’a — ’b

0 0 empty substitution

bAT (P (x:’a) ==>Q /AT b —Px==>0Q

b /\b Px /\Px b — P x

b /\b Px/\Py fail

'x:num. P x /\ Q x ly:num. P y /\ Q’ ¥y P —-P,Q —- Q

!x:num. P x /\ Q x ly. @Q=yv) /\ANQ ¥y P— (3=2),Q0 - @

'x:num. P x /\ Q x ly. (y=2) NQ vy fail

@ it is often very annoying that the last match fails

@ it prevents us for example rewriting !'y. (2 = y) /\ Q y to
(ly. (2=y)) /\ (ly. Q v
e Can we do better? Yes, with higher order (term) matching.
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Higher Order Term Matching

@ term matching searches for substitutions such that t_org becomes
a-equivalent to t_goal

@ higher order term matching searches for substitutions such that
t_org becomes t_subst such that the Sn-normalform of t_subst is
a-equivalent equivalent to Sn-normalform of t_goal, i.e.
higher order term matching is aware of the semantics of \

B-reduction  (Ax. f) y = fly/x]
n-conversion (Ax. f x) = f where x is not free in f

o the HOL implementation expects t_org to be a higher-order
pattern

» t_org is S-reduced
» if X is a variable that should be instantiated, then all arguments should
be distinct variables

o for other forms of t_org, HOL's implementation might fail
@ higher order matching is used by HO_REWR_CONV
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Examples Higher Order Term Matching

t_org t_goal substs

'x:inum. Px /N Qx ly. (y=2) NQ ¥y P—> (\y.y=2),Q0 - Q
'x. Px /\ Q x 'x. Px/\Qx /\Zx Q> \x. Q@ x/\Zx

x. Px /\ Q 'x. Px /\ Q x fails

'x. P (x, x) x. Q@ x fails

'x. P (x, x) 'x. FST (x,x) = SND (x,x) P — \xx. FST xx = SND xx

Don’t worry, it might look complicated, but
in practice it is easy to get a feeling for higher order matching.
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Rewrite Library

the rewrite library combines REWR_CONV with depth conversions

there are many different conversions, rules and tactics

at they core, they all work very similarly
» given a list of theorems, a set of rewrite theorems is derived
* split conjunctions
* remove outermost universal quantification
* introduce equations by adding = T (or = F) if needed
» REWR_CONV is applied to all the resulting rewrite theorems
» a depth-conversion is used with resulting conversion

for performance reasons an efficient indexing structure is used

by default implicit rewrites are added
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Rewrite Library Il

REWRITE_CONV
REWRITE_RULE
REWRITE_TAC
ASM_REWRITE_TAC
ONCE_REWRITE_TAC
PURE_REWRITE_TAC
PURE_ONCE_REWRITE_TAC
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Ho Rewrite Library

@ similar to Rewrite lib, but uses higher order matching

@ internally uses HO_REWR_CONV
@ similar conversions, rules and tactics as Rewrite lib

vV VY VY VY VY VY VvYY

Ho_Rewrite
Ho_Rewrite
Ho_Rewrite
Ho_Rewrite

Ho_Rewrite.
.PURE_REWRITE_TAC
.PURE_ONCE_REWRITE_TAC

Ho_Rewrite
Ho_Rewrite

.REWRITE_CONV
.REWRITE_RULE
.REWRITE_TAC
.ASM_REWRITE_TAC

ONCE_REWRITE_TAC
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Examples Rewrite and Ho Rewrite Library

> REWRITE_CONV [LENGTH] °‘LENGTH [1;2] ¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE_REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]°°
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE_CONV [] ‘A /\ A /\ ~A°¢
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] ‘€A /\ A /\ ~A¢¢
val it = |- A /AN A /\ ~A <=> A /\F

> REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A¢¢
val it = |- A /\ A /\ ~A<=>F

> REWRITE_CONV [FORALL_AND_THM] ‘“!x. P x /\ Q@ x /\ R x“°¢
Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q@ x /\ R x*¢
val it = |- 'x. Px /\Qx /\Rx <= (!'x. Px)/\ (!x. Qx) /\ (!x. R x)
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Summary Rewrite and Ho Rewrite Library

@ the Rewrite and Ho_Rewrite library provide powerful infrastructure
for term rewriting

@ thanks to clever implementations they are reasonably efficient
@ basics are easily explained

@ however, efficient usage needs some experience
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Term Rewriting Systems

to use rewriting efficiently, one needs to understand about term
rewriting systems

this is a large topic
one can easily give whole course just about term rewriting systems

however, in practise you quickly get a feeling
important points in practise

> ensure termination of your rewrites
» make sure they work nicely together
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Term Rewriting Systems — Termination

Theory
@ choose well-founded order <

o for each rewrite theorem |- t1 = t2 ensure t2 < t1

Practice
o informally define for yourself what simpler means
@ ensure each rewrite makes terms simpler

@ good heuristics

subterms are simpler than whole term
use an order on functions
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Termination — Subterm examples

@ a proper subterm is always simpler
» !1. APPEND [] 1 =1
'In. n+0=n
1. REVERSE (REVERSE 1) =1
1t1 t2. if T then t1 else t2 <=> ti
In. nx 0=20

vV vyVvYy

@ the right hand side should not use extra vars, throwing parts away is
usually simpler
» Ix xs. (SNOC x xs = []) = F
» Ix xs. LENGTH (x::xs) = SUC (LENGTH xs)
» 'n x xs. DROP (SUC n) (x::xs) = DROP n xs
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Termination — use simpler terms

it is useful to consider some functions simple and other complicated
replace complicated ones with simple ones
never do it in the opposite direction

clear examples

» |- 'mn. MEM m (COUNT_LIST n) <=> (m < n)
» |- !1s n. (DROP n 1s = []) <=> (n >= LENGTH 1s)

unclear example
» |- !L. REVERSE L = REV L []
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Termination — Normalforms

@ some equations can be used in both directions
@ one should decide on one direction

@ this implicitly defined a normalform one wants terms to be in
@ examples

» |- 'f 1. MAP £ (REVERSE 1) = REVERSE (MAP f 1)
» |- 111 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13
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Termination — Problematic rewrite rules

@ some equations immediately lead to non-termination, e. g.
» |- mn. m+n=n+m
» |- !m. m=m+ 0

o slightly more subtle are rules like
» |- !'n. fact n = if (n = 0) then 1 else n * fact(n-1)

@ often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

» [-mnp.m+ (n+p)=(m+n) + pand
|- mnp. (m+n) +p=mn+ (n+ p)
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Rewrites working together

@ rewrite rules should not complete with each other

o if a term ta can be rewritten to tal and ta2 applying different
rewrite rules, then the tal and ta2 should be further rewritten to a
common tb

@ this can often be achieved by adding extra rewrite rules

Example
Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
e Tor
@ EVEN (2 + 2).
To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

v
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Rewrites working together |l

e 6 o ¢

to design rewrite systems that work well, normalforms are vital
a term is in normalform, if it cannot be rewritten any further

one should have a clear idea what the normalform of common terms
looks like

all rules should work together to establish this normalform
the right-hand-side of each rule should be in normalform
the left-hand-side should not be simplifiable by any other rule

the order in which rules are applied should not influence the final
result



computelLib

@ computeLib is the library behind EVAL

@ it is a rewriting library designed for evaluating ground terms (i.e.
terms without variables) efficiently

@ it uses a call-by-value strategy similar to SML's
@ it uses first order term matching

@ it performs (8 reduction in addition to rewrites
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compset

@ computeLib uses compsets to store its rewrites

@ a compset stores

» rewrite rules
» extra conversions

@ the extra conversions are guarded by a term pattern for efficiency
@ users can define their own compsets

@ however, computeLib maintains one special compset called
the_compset

@ the_compset is used by EVAL

222 /292



EVAL

EVAL uses the_compset

tools like the Datatype of TFL automatically extend the_compset
this way, EVAL knows about (nearly) all types and functions

one can extended the_compset manually as well

rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

zDefine prevents TFL from automatically extending the _compset
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simpLib

@ simpLib is a sophisticated rewrite engine
@ it is HOL's main workhorse
@ it provides
> higher order rewriting
» usage of context information
conditional rewriting
arbitrary conversions
support for decision procedures
simple heuristics to avoid non-termination
fancier preprocessing of rewrite theorems

vV VY vy VvV VY

@ it is very powerful, but compared to Rewrite lib sometimes slow

224 /292



Basic Usage |

@ simpLib uses simpsets

@ simpsets are special datatypes storing

> rewrite rules
> conversions
» decision procedures

» congruence rules
>

in addition there are simpset-fragments
simpset-fragments contain similar information as simpsets
fragments can be added to and removed from simpsets

common usage: basic simpset combined with one or more
simpset-fragments, e. g.
» list_ss ++ pairSimps.gen_beta_ss

> std_ss ++ QI_ss
> L.
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Basic Usage Il

@ a call to the simplifier takes as arguments

>

>

a simpset
a list of rewrite theorems

@ common high-level entry points are

>

>
>
>
>

SIMP_CONV ss thmL — conversion

SIMP RULE ss thmL — rule

SIMP_TAC ss thmL — tactic without considering assumptions
ASM_SIMP TAC ss thmL — tactic using assumptions to simplify goal
FULL_SIMP_TAC ss thmL — tactic simplifying assumptions with each
other and goal with assumptions

REV_FULL_SIMP_TAC ss thmL — similar to FULL_SIMP_TAC but with
reversed order of assumptions

@ there are many derived tools not discussed here
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Basic Simplifier Examples

> SIMP_CONV bool_ss [LENGTH] ¢‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ‘‘LENGTH [1;2]°‘¢
val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ¢‘LENGTH [1;2]°°
val it = |- LENGTH [1; 2] = 2
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FULL_SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) (SUC (SUC y0))

0. SUC y1 = y2

1. x1 = SUC xO0

2. yi = SUC yO

3. SUC x1 = x2 )
Action

FULL_SIMP_TAC std_ss []

Resulting GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC yO) = y2
1. x1 = SUC x0
2. yi1 = SUC yo
3. SUC x1 = x2

228 /292



REV_FULL _SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) y2

LA,

Mol

0. SUC (SUC yO) = y2

1. x1 = SUC x0

2. yi = SUC yO

3. SUC x1 = x2 )
Action

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack

P x2 y2
0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. y1 = SUC y0
3. SUC (SUC x0) = x2
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Common simpsets

pure_ss — empty simpset
bool_ss — basic simpset
std_ss — standard simpset
arith_ss — arithmetic simpset

list_ss — list simpset

real _ss — real simpset
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Common simpset-fragments

many theories and libraries provide their own simpset-fragments
PRED_SET_ss — simplify sets

STRING_ss — simplify strings

QI_ss — extra quantifier instantiations

gen beta ss — [ reduction for pairs

ETA_ss — 7 conversion

EQUIV_EXTRACT_ss — extract common part of equivalence

CONJ_ss — use conjunctions for context
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Build-In Conversions and Decision Procedures

in contrast to Rewrite lib the simplifier can run arbitrary conversions
most useful is probably [ reduction
std_ss has support for basic arithmetic and numerals
it also has simple, syntactic conversions for instantiating quantifiers
» Ix. ... /N x=¢)/\ ... => ...
» !Ix. ... \/ ~&x=¢c)\/ ...
» ?x. ... /N x=¢c) /\ ...

besides very useful conversions, there are decision procedures as well

the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE

232 /292



Examples |

> SIMP_CONV std_ss [1 “‘(\x. x + 2) 5¢¢
val it = |- (\x. x +2) 65 =7

> SIMP_CONV std_ss [1 ““!'x. Q x /\ (x =7) ==>P x°¢
val it = |- (Ix. Q x /\ (x=7) ==>P x) <=> (Q 7 =>P 7)¢¢

> SIMP_CONV std_ss [] “‘?x. Q x /\ (x=7) /\ P x“¢
val it = |- (?x. Q x /\ (x=7) /\Px)<=>(Q7 /\PT7)°

> SIMP_CONV std_ss [] “‘x > 7 ==> x > 5¢¢
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] “‘x > 7 ==> x > 5¢¢
val it = |- (x > 7 ==>x >5) <=>T

233 /292



Higher Order Rewriting

o the simplifier supports higher order rewriting
@ this is often very handy

o for example it allows moving quantifiers around easily

Examples

> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x¢°¢
val it = |- (!x. P x /\ Q /\ R x) <=>
('x. Px) /\Q/\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
Gl @ 5 A (G 5 o B8 ) =5 B g0
val it = |- (!y. Py /\ (7x. y = SUC x) ==> Q y) <=>
'x. P (SUC x) ==> Q (SUC x)
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Context

a great feature of the simplifier is that it can use context information

by default simple context information is used like
» the precondition of an implication
> the condition of if-then-else
@ one can configure which context to use via congruence rules
» by using CONJ_ss one can easily use context of conjunctions
> warning: using CONJ_ss can be slow
> using other contexts is outside the scope of this lecture
@ using context often simplifies proofs drastically

» using Rewrite lib, often a goal needs to be split and a precondition
moved to the assumptions

> then ASM_REWRITE_TAC can be used

» with SIMP_TAC there is no need to split the goal



Context Examples

> SIMP_CONV std_ss [] ‘(1 = [1) ==>P 1) /\ Q 1¢¢
val it = |- (1 =1[1) === P 1) /A Q1 <=>
(@=[0[M ==PI[D /\NQ1

> SIMP_CONV arith_ss [] “‘if (¢ /\ x < 5) then (P ¢ /\ x < 6) else Q c“¢
val it = |- (if ¢ /\ x < 5 then P ¢ /\ x < 6 else Q c) <=>
if ¢ /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [J ‘P x /\ (Q x /\ P x ==> 727 x)‘¢
Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [1 ‘P x /\ (Q x /\ P x ==> Z x)¢¢
val it = |-Px /\ (Qx /\Px==>2Z%x)<=Px/\ (Qx =2 %)
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Conditional Rewriting |

@ perhaps the most powerful feature of the simplifier is that it supports
conditional rewriting

@ this means it allows conditional rewrite theorems of the form
|- cond ==> (t1 = t2)

o if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2’, it
tries to discharge the assumption cond’

o for this, it calls itself recursively on cond’

» all the decision procedures and all context information is used
» conditional rewriting can be used
> to prevent divergence, there is a limit on recursion depth

@ if cond’ = T can be shown, t1’ is rewritten to t2°’

@ otherwise t1’ is not modified
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Conditional Rewriting Example

@ consider the conditional rewrite theorem
'1 n. LENGTH 1 <= n ==> (DROP n 1 = [])
@ let's assume we want to prove
(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]
@ we can without conditional rewriting
» show |- LENGTH [1;2;3;4] <= 7
» use this to discharge the precondition of the rewrite theorem
> use the resulting theorem to rewrite the goal
@ with conditional rewriting, this is all automated
> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]
““(DROP 7 [1;2;3;4]) ++ [5;6;7]°¢
val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

@ conditional rewriting often shortens proofs considerably
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Conditional Rewriting Example Il

et

Proof with Rewrite

prove (¢‘(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]1 ¢,
‘DROP 7 [1;2;3;4] = [1° by (
MATCH_MP_TAC DROP_LENGTH_TOO0_LONG >>
REWRITE_TAC[LENGTH] >>
DECIDE_TAC
) >>
ASM_REWRITE_TAC[APPEND] )

Proof with Simplifier

prove (‘“(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;71°¢,
ASM_SIMP_TAC list_ss [1)
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Conditional Rewriting Il

@ conditional rewriting is a very powerful technique

@ decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

@ it provides a powerful search for theorems that apply
@ however, if used naively, it can be slow

@ moreover, to work well, rewrite theorems need to of a special form
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Conditional Rewriting Pitfalls |

o if the pattern is too general, the simplifier becomes very slow
@ consider the following, trivial but hopefully useful example

Looping example

> val my_thm = prove (‘‘"P ==> (P = F) ‘¢, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ¢‘P1 /\ P2 /\ P3 /\ ... /\ P10¢¢
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised

> time (SIMP_CONV std_ss [1) “‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
Exception- UNCHANGED raised

4

>

v vy VvYy

notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

notice that each backchaining triggers many more backchainings
each has to be aborted to prevent diverging

as a result, the simplifier becomes very slow

incidentally, the conditional rewrite is useless
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Conditional Rewriting Pitfalls Il

@ good conditional rewrites |- ¢ ==> (1 = r) should mention only
variables in c that appear in 1

@ if c contains extra variables x1 ... =xn, the conditional rewrite
engine has to search instantiations for them

@ this mean that conditional rewriting is trying discharge the
precondition 7x1 ... xn. c

@ the simplifier is usually not able to find such instances

Transitivity

> val P_def = Define ‘P xy = x < y°;
> val my_thm = prove (‘‘!x y z. Px y
> SIMP_CONV arith_ss [my_thm] ‘P 2 3
Exception- UNCHANGED raised

==>Pyz==>Pxz ...)
/\ P 34==>P 24

(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ‘P 2 3 /\ P 3 4 ==>P 2 4¢¢
val it = |- P23 /\ P34 ==>P24<=>T:
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Conditional Rewriting Pitfalls Il

@ let's look in detail why SIMP_CONV did not make progress above

> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [my_thm] ‘P 2 3 /\ P 3 4 ==>P 2 4°¢

[468000] :
[468000] :

[584000] :
[584000] :
[584000] :

[588000] :
[588000] :
[588000] :
[6592000] :
[596000] :
[608000] :

[640000] :

more context: |- !x y z. Pxy==>Pyz==>Pxz
New rewrite: |- (?y. Pxy /NPy z) ==> (P xz <=>T)

more context: [.] |[-P 23 /\P 34

New rewrite: [.] [-P 23 <=>T

New rewrite: [.] |- P 34 <=>T

rewriting P 2 4 with |- (?y. Pxy /APy z) ==> (Px 2z <=>T)
trying to solve: ?7y. P2y /\ Py 4

rewriting P 2 y with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
trying to solve: ?y’. P2y’ /\ Py’ y

looping - cut
looping - stack limit reached

couldn’t solve: ?y. P2y /\ Py 4

Exception- UNCHANGED raised
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Conditional vs. Unconditional Rewrite Rules

@ conditional rewrite rules are often much more powerful
@ however, Rewrite lib does not support them

@ for this reason there are often two versions of rewrite theorems

drop example
@ DROP_LENGTH.NIL is a useful rewrite rule:
|- !'1. DROP (LENGTH 1) 1 = []
@ in proofs, one needs to be careful though to preserve exactly this form
one should not (partly) evaluate LENGTH 1 or modify 1 somehow

@ with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does

not need to be as careful
|- 11 n. LENGTH 1 <= n ==> (DROP n 1 = [])

the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

v
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Special Rewrite Forms

@ some theorems given in the list of rewrites to the simplifier are used
for special purposes
@ there are marked functions that mark these theorems

» Once : thm -> thm use given theorem at most once

» Ntimes : thm -> int -> thm use given theorem at most the given
number of times

» AC : thm -> thm -> thm use given associativity and commutativity
theorems for AC rewriting

» Cong : thm -> thm use given theorem as a congruence rule

@ these special forms are easy ways to add this information to a simpset

@ it can be directly set in a simpset as well
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Example Once

> SIMP_CONV pure_ss [Once ADD_COMM] ‘‘a + b = c + d¢¢
val it = |- (a+b=c+d) <=> (b+a=c+d)

> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ‘‘a + b = c + d¢¢

val it = |- (a+b=c +d) <=> (a+b=c+ d)
> SIMP_CONV pure_ss [ADD_COMM] ‘‘a + b =c + d¢
Exception- UNCHANGED raised

> ONCE_REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d°¢
val it = |- (a+b=c+d) <=> (b+a=4d+c)

> REWRITE_CONV [ADD_COMM] ‘‘a + b =c + d¢¢
. diverges ...
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Stateful Simpset

@ the simpset srw_ss() is maintained by the system

> it is automatically extended by new type-definitions
> theories can extend it via export_rewrites
> libs can augment it via augment_srw_ss

@ the stateful simpset contains many rewrites

@ it is very powerful and easy to use

Example

> SIMP_CONV (srw_ss()) [] ‘‘case [] of [] => (2 + 4)¢¢
val it = |- (case [J of [] => 2 + 4 | v::vl => ARB) = 6
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Discussion on Stateful Simpset

the stateful simpset is very powerful and easy to use
however, results are hard to predict

proofs using it unwisely are hard to maintain
the stateful simpset can expand too much

> bigger, harder to read proof states
> high level arguments become hard to see

whether to use the stateful simpset depends on personal proof style
| advise at the beginning to not use srw_ss

once you got a good intuition on how the simplifier works, make your
own choice
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Adding Own Conversions ‘
Q?&@zw&
@ it is complicated to add arbitrary decision procedures to a simpset

@ however, adding simple conversions is straightforward

@ a conversion is described by a stdconvdata record
type stdconvdata = {

name: string, (* name for debugging *)
pats: term list, (* list of patterns, when to try conv *)
conv: conv (* the conversion *)

}

@ use std_conv_ss to create simpset-fragement

Example

val WORD_ADD_ss =
simpLib.std_conv_ss
{conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [‘‘words$word_add (w:’a word) y‘‘l}
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Summary Simplifier

@ the simplifier is HOL's main workhorse for automation
@ it is very powerful

@ conditional rewriting very powerful
> here only simple examples were presented
> experiment with it to get a feeling
@ many advanced features not discussed here at all

> using congruence rules
> writing own decision procedures
> rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in
control when using it. Otherwise your proofs easily become lengthy,
convoluted and hard to maintain.
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Relations

@ a relation is a function from some arguments to bool

@ the following example types are all types of relations:
» : ’a -> ’a -> bool
’a => ’b -> bool
’a => ’b -> ’c -> ’d -> bool
: CCa# ’b # ’c) —> bool
: bool
’a —> bool

@ relations are closely related to sets

»Rabc<=>(a, b, ¢) IN {(a, b, c) | R abc}
» (a, b, ¢c) INS <=> (\abec. (a, b, c) INS) abc

vV vy VY VvYYy
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Relations |l

@ relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relationR : ’a -> ’a —>
bool can be defined as the least relation RTC R that satisfies the
following rules:

Rxy RTC R x y RTC R y z
RTC R xy RICR x x RTC R x z

@ if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

@ least fixpoints give rise to inductive relations

@ greatest fixpoints give rise to coinductive relations
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(Co)inductive Relations in HOL

@ (Co)IndDefLib provides infrastructure for defining (co)inductive
relations
@ given a set of rules Hol_(co)reln defines (co)inductive relations

@ 3 theorems are returned and stored in current theory
> a rules theorem — it states that the defined constant satisfies the rules
> a cases theorem — this is an equational form of the rules showing that
the defined relation is indeed a fixpoint
» a (co)induction theorem

@ additionally a strong (co)induction theorem is stored in current theory
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Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ¢
(Ix y. Rxy ==> RTC_REL R x y) /\
('x. RTC_REL R x x) /\
(x y z. RIC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)°

val RTC_REL_rules = |- !R.
(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
(!'x y z. RTC_.REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 al.
RTC_REL R a0 al <=>
(R a0 a1l \/ (a1l = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R a0 al)
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Example: Transitive Reflexive Closure Il

val RTC_REL_ind = |- !'R RTC_REL’.
((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
(!x y z. RTC_LREL’ x y /\ RTC_REL’ x z ==> RTC_REL’ x z)) ==
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- !R RTC_REL’.
('x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R x z /\
RTC_REL’ x z ==>
RTC_REL’> x z) ==>

( 'a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)
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Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
¢(EVEN_REL 0) /\ (!'n. EVEN_REL n ==> (EVEN_REL (n + 2)))¢;

val EVEN_REL_cases =
|- 'a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
|- EVEN_REL O /\ 'm. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>
('a0. EVEN_REL a0 ==> EVEN_REL’ a0)

@ notice that in this example there is exactly one fixpoint

@ therefore for these rule, the induction and coinductive relation coincide
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Example: Dummy Relations
> val (DF_rules, DF_ind, DF_cases) = Hol_reln
‘(!n. DF (n+1) ==> (DF n))°

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
‘('n. DT (n+1) ==> (DT n))*

val DT_coind =
|- IDT’. (!'a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’

val DF_ind =

|- 'DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 =

val DT_cases = |- !'a0. DT a0 <=> DT (a0 + 1):
val DF_cases = |- !'a0. DF a0 <=> DF (a0 + 1):

a0 ==> DT a0

=> DF’ a0

@ notice that for both DT and DF we used essentially a non-terminating

recursion
@ DT is always true, i.e. |- !'n. DT n
@ DF is always false, i.e. |- !'n. ~(DF n)
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Quotient Types

quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

each equivalence class becomes a value of the new type
partiality allows ignoring certain types
quotientLib allows to lift definitions and lemmata as well

details are technical and won't be presented here
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Quotient Types Example

et

@ let's assume we have an implementation of finite sets of numbers as
binary trees with
> type binset
binary tree invariant WF_BINSET : binset -> bool
constant empty_binset
add and member functions add : num -> binset -> binset,
mem : binset -> num -> bool

v

v

v

@ we can define a partial equivalence relation by
binset_equiv bl b2 := (
WF_BINSET bl /\ WF_BINSET b2 /\
('n. mem bl n <=> mem b2 n))
o this allows defining a quotient type of sets of numbers
o functions empty_binset, add and mem as well as lemmata about
them can be lifted automatically
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Quotient Types Summary

@ quotient types are sometimes very useful
> e.g. rational numbers are defined as a quotient type

@ there is powerful infrastructure for them
@ many tasks are automated

@ however, the details are technical and won't be discussed here
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Pattern Matching / Case Expressions

pattern matching ubiquitous in functional programming
pattern matching is a powerful technique
it helps to write concise, readable definitions

very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)
however, it is not directly supported by HOL's logic

@ representations in HOL

» sets of equations as produced by Define
» decision trees (printed as case-expressions)
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TFL / Define

@ we have already used top-level pattern matches with the TFL package
@ Define is able to handle them

> all the semantic complexity is taken care of
» no special syntax or functions remain
> no special rewrite rules, reasoning tools needed afterwards

@ Define produces a set of equations

@ this is the recommended way of using pattern matching in HOL

Example

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIp 1 00 =[D°
val ZIP_def = |- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(zip [1 00 = [D
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Case Expressions

@ sometimes one does not want to use this compilation by TFL

> one wants to use pattern-matches somewhere nested in a term
» one might not want to introduce a new constant
» one might want to avoid using TFL for technical reasons

@ in such situations, case-expressions can be used

@ their syntax is similar to the syntax used by SML

Example

> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)

[, ) = 0°

val ZIP_def = |- !ys xs. ZIP xs ys =
case (xs,ys) of
(0,0H = 0

| ([1,v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs?,y::y8’) => (x,y)::ZIP xs’ ys’

v
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Case Expressions |l

@ the datatype package define case-constants for each datatype
@ the parser contains a pattern compilation algorithm

@ case-expressions are by the parser compiled to decision trees using
case-constants

@ pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =
pair_CASE (xs,ys)
(\v vi.

list_CASE v (list_CASE v1 [] (\v4 v5. ARB))
(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):
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Case Expression Issues

using case expressions feels very natural to functional programmers
case-expressions allow concise, well-readable definitions
however, there are also many drawbacks

there is large, complicated code in the parser and pretty printer

> this is outside the kernel
> parsing a pretty-printed term can result in a non a-equivalent one
» there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)

the results are hard to predict

> heuristics involved in creating decision tree

> results sometimes hard to predict

> however, it is beneficial that proofs follow this internal, volatile
structure
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Case Expression Issues |l

@ technical issues

> it is tricky to reason about decision trees
> rewrite rules about case-constants needs to be fetched from TypeBase

* alternative srw_ss often does more than wanted
> partially evaluated decision-trees are not pretty printed nicely any more
@ underspecified functions
> decision trees are exhaustive
> they list underspecified cases explicitly with value ARB
> this can be lengthy
» Define in contrast hides underspecified cases
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Case Expression Example |

Partial Proof Script

val _ = prove (¢‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (11 = [1) /\ Q2 = [1)))“*,

ONCE_REWRITE_TAC [ZIP_def]

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case (11,12) of
a1, =0

| ([1,v4::v5) => ARB
| (x::xs’,[1) => ARB
| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =
[1) <=> 11 = [ /\ 12 = [1))
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Case Expression Example lla — partial evaluation

Partial Proof Script

val _ = prove (‘‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (A1 = [1) /\ A2 = [,

ONCE_REWRITE_TAC [ZIP_def] >>
REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case 11 of
[1 => (case 12 of [1 => [1 | v4::v5 => ARB)
| x::x8” => case 12 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =
[1) <=> (11 = [ /\ 12 = [1))
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Case Expression Example IIb — following tree

Partial Proof Script

val _ = prove (‘‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (11 = [1) /\ Q2 = [D)) ‘",

ONCE_REWRITE_TAC [ZIP_def] >>
Cases_on ‘11¢ >| [
REWRITE_TAC[1listTheory.list_case_def]

ap
structu reg’g

et

Current Goal

112.
(LENGTH [] = LENGTH 12) ==>
(((case ([1,12) of
aa,m = 0

| ([],v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs’,y::y8’) => (x,y)::ZIP xs’ ys’) =
[1) <=> (12 = [1))
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Case Expression Summary

case expressions are natural to functional programmers

they allow concise, readable definitions
@ however, fancy parser and pretty-printer needed

» trustworthiness issues
» sanity check lemmata advisable

reasoning about case expressions can be tricky and lengthy

proofs about case expression often hard to maintain

o therefore, use top-level pattern matching via Define if easily possible
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Part XV

Maintainable Proofs
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Motivation

@ proofs are hopefully still used in a few weeks, months or even years
@ often the environment changes slightly during the lifetime of a proof
» your definitions change slightly
» your own lemmata change (e. g. become more general)

> used libraries change
HOL changed

>

*
*
*
*

automation became more powerful

rewrite rules in certain simpsets changed

definition packages produce slightly different theorems
autogenerated variable-names change

L

@ even if HOL and used libraries are stable, proofs often go through
several iterations

@ often they are adapted by someone else than the original author

@ therefore it is important that proofs are easily maintainable
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Nice Properties of Proofs

@ maintainability is closely linked to other desirable properties of proofs

> easily understandable

» well-structured

> robust
* they should be able to scope with minor changes to environment
* if they fail they should do so at sensible points

> reusable
@ How can one write proofs with such properties?
@ as usual, there are no easy answers but plenty of good advice

@ | recommend following the advice of ProofStyle manual
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Formatting

format your proof such that it easily understandable
make the structure of the proof very clear
show clearly where subgoals start and stop
use indentation to mark proofs of subgoals
use empty lines to separate large proofs of subgoals

use comments where appropriate
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Formatting Example | {Z‘%ﬁ?

Bad Example Term Formatting

prove (¢¢!111 12. 11 <> [] ==> LENGTH 12 <
LENGTH (11 ++ 12)°“¢,
.2

Good Example Term Formatting

prove (€¢111 12. 11 <> [] ==>
(LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
)
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Formatting Example Il

Bad Example Subgoals

prove (€¢!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢¢,
Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals
At least show when a subgoal starts and ends

prove (¢¢!'11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°°¢,
Cases >> (

REWRITE_TAC[]
) >
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)
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Formatting Example Il 2

Good Example Subgoals

Make sure REWRITE_TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°°¢,
Cases >- (

REWRITE_TAC[] >>
)
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC) )
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Formatting Example Il 3

Alternative Good Example Subgoals
Alternative good formatting using THENL

prove (€¢!111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢¢,
Cases >| [
REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Another Bad Example Subgoals
Bad formatting using THENL

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >> DECIDE_TAC])
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Some basic advice

@ use semicoli after each declaration
» if exception is raised during interactive processing (e.g. by a failing
proof), previous successful declarations are kept
> it sometimes leads to better error messages in case of parsing errors

(]

use plenty of parentheses to make structure very clear

don’t ignore parser warnings
> especially multiple possible parse trees are likely to lead to unstable
proofs
» understand why such warnings occur and make sure there is no problem

format your development well
> use indentation
> use linebreaks at sensible points

» don't use overlong lines
> ...

don't use open in middle of files

personal opinion: avoid unicode in source files
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KISS and Premature Optimisation

follow standard design principles

» KISS principle

» “premature optimization is the root of all evil’ (Donald Knuth)
don't try to be overly clever
simple proofs are preferable

proof-checking-speed mostly unimportant

conciseness not a value in itself but desirable if it helps
» readability
> maintainability

abstraction is often declarable, but also has a price
» don't use too complex, artificial definitions and lemmata
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Too much abstraction

Too much abstraction Example

val ABSTRACT_LEMMA = prove (‘¢

!(size :’a -> num) (P : ’a -> bool) (combine : ’a -> ’a -> ’a).
('x. P x ==> (0 < size x)) /\
('x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

(1x1 x2. P x1 ==> (size x2 < size (combine x1 x2)))‘‘,

50)

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
some proof using ABSTRACT_LEMMA
)
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Too clever tactics

@ a common mistake is to use too clever tactics

» intended to work on many (sub)goals
» using TRY and other fancy trial and error mechanisms
» intended to replace multiple simple, clear tactics

typical case: a tactic containing TRY applied to many subgoals
it is often hard to see why such tactics work
if something goes wrong, they are hard to debug

general advice: don't factor with tactics, instead use definitions and
lemmata
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Too Clever Tactics Example |

Bad Example Subgoals

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >> (
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC
))

Alternative Good Example Subgoals Il

prove (€¢!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢,
Cases >> SIMP_TAC list_ss [1)

prove (€€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢,
Cases >| [
REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D
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Too Clever Tactics Example |l

Bad Example

val oadd_def = Define ‘(oadd (SOME nl1) (SOME n2) = (SOME (nl1 + n2))) /\
(oadd _ _ = NONE) ¢;

val osub_def = Define ‘(osub (SOME nl1) (SOME n2) = (SOME (nl - n2))) /\
(osub _ _ = NONE) ¢;

val omul_def = Define ‘(omul (SOME nl1) (SOME n2) = (SOME (n1 * n2))) /\
(omul _ _ = NONE) ¢;

val onum_NONE_TAC =
Cases_on ‘01‘ >> Cases_on ‘02¢ >>
SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (
‘€10l 02. (oadd ol 02 = NONE) <=> (ol
onum_NONE_TAC) ;

val osub_NULL = prove (
‘101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,
onum_NONE_TAC) ;

val omul _NULL = prove (
‘101 02. (omul ol 02 = NONE) <=> (ol
onum_NONE_TAC) ;

NONE) \/ (o2 = NONE)“°¢,

NONE) \/ (o2 = NONE) ‘¢,




Too Clever Tactics Example |l

Good Example

val obin_def = Define ‘(obin op (SOME ni) (SOME n2) (SOME (op nl1 n2))) /\
(obin _ _ _ NONE) ¢;

val oadd_def Define ‘oadd = obin $+¢;

val osub_def = Define ‘osub = obin $-°;

val omul_def = Define ‘omul = obin $x*°¢;

val obin_NULL = prove (
‘“lop ol 02. (obin op ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘°,
Cases_on ‘ol‘ >> Cases_on ‘02¢ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (

‘1ol 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,
REWRITE_TAC[oadd_def, obin_NULL]);

val osub_NULL = prove (
““101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE)“°,
REWRITE_TAC[osub_def, obin_NULL]);

val omul_NULL = prove (
‘101 02. (omul ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,

REWRITE_TAC[omul_def, obin_NULL]);
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Use many subgoals and lemmata

o often it is beneficial to use subgoals
» they structure long proofs well
> they help keeping the proof state clean
» they mark clearly what one tries to proof and provide points where
proofs can break sensibly
@ general subgoals should often become lemmata
> this improves reusability
» proof scripts become shorter
» proofs are disentangled
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Subgoal Example

@ the following example is taken from exercise 5

First Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°°¢,
REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
Induct_on ‘1¢ >- (
Q.EXISTS_TAC “[]1°¢ >>
SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]
) >>
FULL_SIMP_TAC std_ss [] >>
GEN_TAC >>
Q.EXISTS_TAC ‘T::bl¢ >>
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])
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Subgoal Example Il

Subgoal Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€11, IS_WEAK_SUBLIST_FILTER 1 1°¢°¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢ suffices_by (
METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘1¢ >> (
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))
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Subgoal Example Il

Lemma Version

val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",
€¢11. FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢¢,
Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°¢°¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH 1) T¢ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])
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Avoid Autogenerated Names

@ many HOL-tactics introduce new variable names

» Induct

» Cases
> .

@ the new names are often very artificial

@ even worse, generated names might change in future

@ proof scripts using autogenerated names are therefore
> hard to read
» potentially fragile

@ therefore rename variables after they have been introduced
@ HOL has multiple tactics supporting renaming

@ most useful is renamel ‘pat, it searches for pattern and renames
vars accordingly
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Autogenerated Names Example

Bad Example

prove (¢¢!1. 1 < LENGTH 1 ==> (?x1 x2 1°. 1 = x1::x2::1°)¢¢,

GEN_TAC >>

Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>

Cases_on ‘t‘ >> SIMP_TAC list_ss []) y
Good Example

prove (¢‘!1. 1 < LENGTH 1 ==> (?x1 x2 1’. 1 = x1::x2::1°)‘°¢,

GEN_TAC >>

Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>
renamel ‘LENGTH 12¢ >>

Cases_on ‘12¢ >> SIMP_TAC list_ss [])

Proof State before renamel
1 < SUC (LENGTH t) ==> ?x2 1’. t = x2::1°

Proof State after renamel
1 < SUC (LENGTH 12) ==> ?x2 1’. 12 = x2::1°
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