Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 98c9a84 of Mon Jun 5 12:14:44 2017

Motivation ffﬁ*@%
o Complex systems almost certainly contain bugs.
o Critical systems (e.g. avionics) need to meet very high standards.
o It is infeasible in practice to achieve such high standards just by
testing.
o Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”
— Edsger W. Dijkstra

3/292

Part |

Introduction

by

L2y,
ZKTH%

VETENSKAP
28 OCH KONST %o

e

Famous Bugs gli%"

o Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

o Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)
o Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

o Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

o ...

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

4 /292

Proof

o proof can show absence of errors in design
o but proofs talk about a design, not a real system

o = testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;
and as far as they are certain,

they do not refer to reality.”

— Albert Einstein

5/292

@,
frry

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7/292

Mathematical vs. Formal Proof

Formal Proof

o formal, rigorously use a
logical formalism

Mathematical Proof

o informal, convince other
mathematicians

o checked by community of o checkable by stupid
domain experts machines

o subtle errors are hard to find o very reliable

o often provide some new o often contain no new ideas

insight about our world and no amazing insights

o often short, but require o often long, very tedious, but
creativity and a brilliant idea largely trivial

v v

We are interested in formal proofs in this lecture.

6 /292

o

T ST

Automated vs Manual (Formal) Proof

Fully Manual Proof
o very tedious one has to grind through many trivial but detailed proofs
o easy to make mistakes
o hard to keep track of all assumptions and preconditions

o hard to maintain, if something changes (see Ariane V)

Automated Proof
O amazing success in certain areas

o but still often infeasible for interesting problems

o hard to get insights in case a proof attempt fails
o even if it works, it is often not that automated
run automated tool for a few days
abort, change command line arguments to use different heuristics
run again and iterate till you find a set of heuristics that prove it fully
automatically in a few seconds

8/292

Interactive Proofs {@}

o combine strengths of manual and automated proofs
o many different options to combine automated and manual proofs
» mainly check existing proofs (e.g. HOL Zero)
» user mainly provides lemmata statements, computer searches proofs
using previous lemmata and very few hints (e.g. ACL 2)
» most systems are somewhere in the middle

o typically the human user
» provides insights into the problem
» structures the proof
» provides main arguments
o typically the computer
» checks proof
» keeps track of all use assumptions
» provides automation to grind through lengthy, but trivial proofs

9/292

Different Interactive Provers g«aﬁf’%

o there are many different interactive provers, e. g.
Isabelle/HOL

Coq

PVS

HOL family of provers

ACL2

v

vV vy VvVTVvYyywy

o important differences

» the formalism used
level of trustworthiness
level of automation
libraries
languages for writing proofs
user interface

vV VY VY VY VY

Typical Interactive Proof Activities

o provide precise definitions of concepts

o state properties of these concepts
o prove these properties

» human provides insight and structure

» computer does book-keeping and automates simple proofs
o build and use libraries of formal definitions and proofs

» formalisations of mathematical theories like

* lists, sets, bags, ...
* real numbers
* probability theory

» specifications of real-world artefacts like

>

* processors

* programming languages

* network protocols
reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

Which theorem prover is the best one? :-)

o there is no best theorem prover

o better question: Which is the best one for a certain purpose?

o important points to consider

vV Y Y VY VY VY VY VvYYy

existing libraries

used logic

level of automation

user interface

importance development speed versus trustworthiness
How familiar are you with the different provers?
Which prover do people in your vicinity use?

your personal preferences

In this course we use the HOL theorem prover,
because it is used by the TCS group.

Aims of this Course %‘%’j}
Part |l Aims
o introduction to interactive theorem proving (ITP)
Organisational Matters being able to evaluate whether a problem can benefit from ITP
hands-on experience with HOL
learn how to build a formal model

learn how to express and prove important properties of such a model

by

Sy,
$KTHE

learn about basic conformance testing

© 0 0 0 o o

use a theorem prover on a small project

VETENSKAP %

29 OCH KONST 2% R . d P . t
) o equire rerequisites
TSR

o some experience with functional programming

o knowing Standard ML syntax

o basic knowledge about logic (e.g. First Order Logic)

Dates s Exercises Py

o Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

o always in room 4523 or 4532

after each lecture an exercise sheet is handed out

o

©

work on these exercises alone, except if stated otherwise explicitly
exercise sheet contains due date

©

o each week))
» usually 10 days time to work on it

Mondays 10:15 - 11:45 Iectur.e _ » hand in during practical sessions
Wednesdays 10:00 - 12:00 practical session » lecture Monday — hand in at latest in next week's Friday session
Fridays 13:00 - 15:00 practical session o main purpose: understanding ITP and learn how to use HOL

o no lecture on Monday, 1st of May, instead on Wednesday, 3rd May » no detailed grading, just pass/fail

» retries possible till pass
» if stuck, ask me or one another
» practical sessions intend to provide this opportunity

o last lecture: 12th of June
o last practical session: 21st of June

o 9 lectures, 17 practical sessions

15 /292 16 /292

Practical Sessions

o very informal
© main purpose: work on exercises
» | have a look and provide feedback
you can ask questions
I might sometimes explain things not covered in the lectures
| might provide some concrete tips and tricks
you can also discuss with each other

vvyVvVvyy

o attendance not required, but highly recommended
> exception: session on 21st April

o only requirement: turn up long enough to hand in exercises

o you need to bring your own computer

Passing the ITP Course

o there is only a pass/fail mark
o to pass you need to

» attend at least 7 of the 9 lectures
» pass 8 of the 9 exercises

17 /292

P

19 /292

Communication f!%

Handing-in Exercises {Z@E

o exercises are intended to be handed-in during practical sessions

o attend at least one practical session each week
o leave reasonable time to discuss exercises
» don't try to hand your solution in Friday 14:55
o retries possible, but reasonable attempt before deadline required
o handing-in outside practical sessions

» only if you have a good reason
» decided on a case-by-case basis

o electronic hand-ins

» only to get detailed feedback

» does not replace personal hand-in

» exceptions on a case-by-case basis if there is a good reason
» | recommend using a KTH GitHub repo

o we have the advantage of being a small group
o therefore we are flexible
o so please ask questions, even during lectures

o there are many shy people, therefore

» anonymous checklist after each lecture
» anonymous background questionnaire in first practical session

o further information is posted on Interactive Theorem Proving
Course group on Group Web

o contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

Part Il

HOL 4 History and Architecture

by

kY
FKTH®

VETENSKAP é?
39 OCH KONST o%

) 9

TR

LCF - Logic of Computable Functions Il

©

Milner worked on improving LCF in Edinburgh

o research assistants

©

© © o

v

Lockwood Morris
Malcolm Newey
Chris Wadsworth
Mike Gordon

Edinburgh LCF 1979
introduction of Meta Language (ML)

vYyy

ML was invented to write proof procedures
ML become an influential functional programming language

using ML allowed implementing the LCF approach

LCF - Logic of Computable Functions

©

Standford LCF 1971-72 by Milner et al.
formalism devised by Dana Scott in 1969

©

o intended to reason about recursively defined

functions
o intended for computer science applications
o strengths
» powerful simplification mechanism
» support for backward proof
o limitations Robin Milner
> proofs need a lot of memory (1934 - 2010)
» fixed, hard-coded set of proof commands
22 /292
gﬁ%@% LCF Approach ﬁ%‘%

o implement an abstract datatype thm to represent theorems

o semantics of ML ensure that values of type thm can only be created
using its interface

o interface is very small

» predefined theorems are axioms
» function with result type theorem are inferences

o = However you create a theorem, it is valid.

©

together with similar abstract datatypes for types and terms, this
forms the kernel

23 /292 24 /292

LCF Approach I {ﬁ“}

Modus Ponens Example
Inference Rule
lFa=b Al a

FTUAEFb

SML function

val MP : thm -> thm -> thm
MP(T+a= b)(AF a)= (TUAF b)

o very trustworthy — only the small kernel needs to be trusted

o efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

History of HOL gﬁ%

o 1979 Edinburgh LCF by Milner, Gordon, et al.

o 1981 Mike Gordon becomes lecturer in Cambridge
o 1985 Cambridge LCF

» Larry Paulson and Gerard Huet

» implementation of ML compiler

» powerful simplifier

» various improvements and extensions

o 1988 HOL

» Mike Gordon and Keith Hanna
» adaption of Cambridge LCF to classical higher order logic
» intention: hardware verification

o 1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

o 1998 HOL98
implementation in Moscow ML and new library and theory mechanism

o since then HOL Kananaskis releases, called informally HOL 4

LCF Style Systems {Z‘%‘}

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.
o HOL family
HOL theorem prover
HOL Light

HOL Zero
Proof Power

v

vvyVvVvyy

Isabelle

©

©

Nuprl
o Coq

Family of HOL P

Edinburgh LCF
o ProofPower

commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

o HOL Light
lean CAML / OCaml port by John Harrison HOLSS

o HOL Zero / \
Isabelle/HOL

Cambridge LCF

trustworthy proof checker by Mark Adams hotoo

ProofPower

o Isabelle

» 1990 by Larry Paulson
» meta-theorem prover that supports
multiple logics

HOL Light

» however, mainly HOL used, ZF a little hol9s HOL Zero
» nowadays probably the most widely used

HOL system
» originally designed for software verification HOL4

HOL Logic i@E

Part IV o the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

HOL's Logic

o this sounds complicated, but is intuitive for SML programmers
o (S)ML and HOL logic designed to fit each other
o if you understand SML, you understand HOL logic

==
éj‘igg %%% HOL = functional programming + logic
Lyl KTH Y

VETENSKAP Q}
&9 OCH KONST ¢

LI Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It's also a common abbreviation for higher order
logic in general.

Types ff%:’% Terms fﬁ@)&

o SML datatype for types

» Type Variables (’a, «, ’b, £, ...)
Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

» Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

» Compound Types ((o1,...,0,)0p)
op is a type operator of arity n and o1, ...,0, argument types.
Type operators denote operations for constructing types.
Examples: num list or ’a # ’b.

» Function Types (o1 — 037)
01 — 05 is the type of total functions from o7 to o».

©

SML datatype for terms

Variables (x,y,...)

Constants (c,...)

Function Application (f a)

Lambda Abstraction (\x. f x or Ax. fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

vvyVvVvyy

©

terms have to be well-typed

©

same typing rules and same type-inference as in SML take place

o terms very similar to SML expressions

©

notice: predicates are functions with return type bool, i.e. no

o in HOL, i.e. C . .
types are never empty in HOL, i. e distinction between functions and predicates, terms and formulae

for each type at least one value exists

o all HOL functions are total

31/292 32/292

Terms |l
HOL term SML expression type HOL / SML
0 0 num / int
X:’a X:’a variable of type ’a
x:bool x:bool variable of type bool
x+5 x+5 applying function + to x and 5
\x. x + 5 fn x => x + 5 anonymous (a.k. a. inline) function
of type num -> num
(5, T) (5, true) num # bool / int * bool
[5;3;2]1++[6] [5,3,2]@[6] num list / int list
33 /292
Theorems f,?%&%
Ly
o theorems are of the form [- p where

©

©

©

» [is a set of hypothesis
» p is the conclusion of the theorem
» all elements of I' and p are formulae, i.e. terms of type bool

" p records that using [the statement p has been proved
notice difference to logic: there it means can be proved
the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35/292

Free and Bound Variables / Alpha Equivalence

HOL Light Kernel

©

©

©

©

iy

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression Ax. t is said to bind the variables x in term t
variables that are guarded by a lambda expression are called bound
all other variables are free

Example: x is free and y is bound in (x =5) A (Ay. (y < x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: Ax. x and Ay. y are alpha-equivalent

Example: x and y are not alpha-equivalent

the HOL kernel is hard to explain
» for historic reasons some concepts are represented rather complicated
» for speed reasons some derivable concepts have been added
instead consider the HOL Light kernel, which is a cleaned-up version
there are two predefined constants
> ’a -> ’a -> bool

> Q :

(’a -> bool) -> ’a

there are two predefined types
» bool
» ind

the meaning of these types and constants is given by inference rules
and axioms

36 /292

HOL Light Inferences | {%“}

X not free in I’
ABS
Fs=t M= Ax.s=Ax. t
AFt=u
—— TRANS
FTUAFs=u _ BETA
F(Ax. t)x=t
Fs=t
Aru=v ASSUME
types fit COMB {p}+p
FrUAts(u)=t(v)
7 /292
HOL Light Axioms and Definition Principles g,%%s%
o 3 axioms needed
ETA_AX |— (M. tx)=t
SELECT_AX | — P x = P((Q)P))
INFINITY_AX predefined type ind is infinite
o definition principle for constants
» constants can be introduced as abbreviations
» constraint: no free vars and no new type vars
o definition principle for types
» new types can be defined as non-empty subtypes of existing types
o both principles
» lead to conservative extensions
> preserve consistency
39 /292

HOL Light Inferences Il

N-p<& A
peq p EQ.MP
TUAF g
N=p AFgqg
DEDUCT_ANTISYM_RULE
(Mr—{ghu@a—-{p)Fpeq
r . - .
[X17 7Xn] p[X17 7Xn] INST
Mt1, ..., ta] F p[t1, ..., t]
Maa, ..., o0 F plag, . ..,
o1, s anl Eploa ol o b
N TN [o] [0 T

HOL Light derived concepts

Everything else is derived from this small kernel.

(Ap. p) = (Ap. p)
Apg. (M. fpg)=(\f.fTT)

T =def
N =def

= =def \Pq- (PNg & p)
V =g AP.(P=Xx. T)
3 =ger AP. (Vq. (Vx. P(x) = q) = q)

40 /292

Multiple Kernels

o Kernel defines abstract datatypes for types, terms and theorems

o one does not need to look at the internal implementation

©

therefore, easy to exchange
there are at least 3 different kernels for HOL

» standard kernel (de Bruijn indices)
» experimental kernel (name / type pairs)
» OpenTheory kernel (for proof recording)

©

41 /292

Part V

Basic HOL Usage

by

N kY
ZKTH%

VETENSKAP %
28 OCH KONST %o

e

HOL Logic Summary

©

©

©

©

©

HOL Technical Usage Issues Pt

©

©

©

HOL theorem prover uses classical higher order logic
HOL logic is very similar to SML

> syntax
» type system
» type inference

HOL theorem prover very trustworthy because of LCF approach
» there is a small kernel
» proofs are not stored explicitly

you don't need to know the details of the kernel

usually one works at a much higher level of abstraction

practical issues are discussed in practical sessions

» how to install HOL

» which key-combinations to use in emacs-mode
» detailed signature of libraries and theories

» all parameters and options of certain tools

>

exercise sheets sometimes

» ask to read some documentation
» provide examples
» list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 /292

Installing HOL General Architecture

HOL is a collection of SML modules
starting HOL starts a SML Read-Eval-Print-Loop (REPL) with

» some HOL modules loaded
» some default modules opened
> an input wrapper to help parsing terms called unquote

©
©

webpage: https://hol-theorem-prover.org

©
©

HOL supports two SML implementations

» Moscow ML (http://mosml.org)
» PolyML (http://www.polyml.org)

©

| recommend using PolyML

©

unquote provides special quotes for terms and types

o please use emacs with » implemented as input filter
» hol-mode » ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
> sml—m(_)de _ _ » ‘‘:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]
» hol-unicode, if you want to type Unicode o main interfaces
o please install recent revision from git repo or Kananaskis 11 release » emacs (used in the course)
o documentation found on HOL webpage and with sources > vim
» bare shell
45 /292 46 /292
Filenames gﬁfb}% Directory Structure f,ﬁ%«%
o oy Ry
o *Script.sml — HOL proof script file o bin — HOL binaries

v

script files contain definitions and proof scripts

» executing them results in HOL searching and checking proofs o src — HOL sources
» this might take very long o examples — HOL examples
» resulting theorems are stored in *Theory.{sml|sig} files » interesting projects by various people

o *Theory.{sml|sig} — HOL theory » examples owned by their developer
» coding style and level of maintenance differ a lot
» auto-generated by corresponding script file

» load quickly, because they don't search/check proofs
» do not edit theory files

o help — sources for reference manual
» after compilation home of reference HTML page

. o 0 Manual — HOL manuals

o *Syntax.{sml|sig} — syntax libraries » Tutorial

» contain syntax related functions » Description

» i.e. functions to construct and destruct terms and types » Reference (PDF version)

. . . . Interaction
o *Lib.{sml|sig} — general libraries > e

{ sig} —g ST » Quick (cheat pages)
o *Simps.{sml|sig} — simplifications » Style-guide
>

o selftest.sml — selftest for current directory

Unicode

©

HOL supports both Unicode and pure ASCII input and output
advantages of Unicode compared to ASCII

» easier to read (good fonts provided)
» no need to learn special ASCII syntax

©

©

disadvanges of Unicode compared to ASCII

» harder to type (even with hol-unicode.el)
» less portable between systems

©

whether you like Unicode is highly a matter of personal taste
HOL's policy

» no Unicode in HOL's source directory src

» Unicode in examples directory examples is fine

©

o | recommend turning Unicode output off initially
» this simplifies learning the ASCII syntax
» no need for special fonts
» it is easier to copy and paste terms from HOL's output

49 /292

Part VI

Forward Proofs

hy

S,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

Where to find help?

reference manual
» available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)
mailing-list hol-info

DB.match and DB.find

*xTheory.sig and selftest.sml files

ask someone, e.g. me :-) (tuerk@kth.se)

Kernel too detailed

©

©

©

©

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators
usually one uses a much higher level of abstraction

» many operations and datatypes are defined
» high-level derived inference rules are used

let's now look at this more common abstraction level

52 /292

Common Terms and Types

Unicode ASCII Sort
type vars a, B, ... ’a, ’b, ...
type annotated term term:type term:type
true T T
false F F
negation —b ~b
conjunction bl A b2 bl /\ b2
disjunction bl V b2 bl \/ b2
implication bl = b2 bl ==> b2
equivalence bl <= b2 bl <=> b2
disequation vl # v2 vl <> v2
all-quantification Vx. P x Ix. P x
existential quantification dx. P x ?x. P x
Hilbert's choice operator @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don't start variable names with an underscore

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Syntax conventions {Z@E

o common function syntax
» prefix notation, e.g. SUC x
» infix notation, e.g. x + y
» quantifier notation, e.g. Vx. P x means (V) (Ax. P x)
o infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the sameasx + y
o quantifiers of the same type don't need to be repeated
Example: Vx y. P x yis short for vx. Vy. P x y
o there is special syntax for some functions
Example: if ¢ then vl else v2 is nice syntax for COND c v1 v2
o associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 /292

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 /292

Creating Terms |l ff%}%
Parser Syntax Funs
€¢:bool‘ mk_type ("bool", []) or bool type of Booleans
ceTes mk_const ("T", bool) or T term true
Céapt mk _neg (negation of

mk_var ("b", bool)) Boolean var b

‘¢ /N ... mkconj (..., ...) conjunction
‘e / ...¢¢ mkdisj (..., ...) disjunction
‘¢ ==> mk_imp (..., ...) implication
¢ = . mkeq (..., ...) equation
e <=> mkeq (..., ...) equivalence
‘¢ <> mk neg (mk.eq (..., ...)) negated equation

56 /292

Inference Rules for Equality {m‘}.
lFs=t
GSYM
REFL THt=s
Ft=t
Mes=
MEs—t s=t1
. AFt=u
X not free in T ABS STTNE TRANS
MF Ax. s = Ax.t UATs=u
Ml-p& A+
Mes—t P—=4d P Bq Mp
AFu=v FrUAFq
types fit
rUA ZP =t ME-COMB — BETA
s(u) = () F O, tx =t
57 /292
Inference Rules for Implication fom
lFp=—gq
AFp
—— 7 MP, MATCH_.MP I
FTUAFgq p DISCH
r—{qgtFa=0p
rFrp=gq EQ_IMP_RULE
N-p=gq - B m UNDISCH
rN-g=—np ru{qtrp
[Fp=gd TFp=F vorINTRO
AFg=— - -
297 P P ANTISYM.RULE | P
FTUAFp=gq
TP~ vor.ELIM
FEp=gq rFp=F i
AFg=r

IMP_TRANS

TUAFp=r

59 /292

Inference Rules for free Variables

F[xl,..

S Xn] Fop[x, ..

 Xn

I'[tl,..

Maa, ..., an F plag,. ..

St Foplt, ...

INST
s tn]

,Oén]
INST_TYPE

Cy1s -0 F P,y -- -

Inference Rules for Conjunction

N=p Al q
FTUAFP A g

CONJ

N=p A g
N-=p

CONJUNCT1

=p A g
N-gq

CONJUNCT?2

) ’Yn]

/ Disjunction

Fp

— DISJ1

l=p VvV g
Fq

— DISJ2
l'=p VvV q

N=-pVvag
A U{p}Fr
Ny U{q}Fr

FTUA{UA

DISJ_CASES

60 /292

Inference Rules for Quantifiers Forward Proofs

. e T I+ plu/x] EXISTS o axioms and inference rules are used to derive theorems
P X not free in GEN E3x. p o this method is called forward proof
FEvx.p » one starts with basic building blocks
E3x.p » one moves step by step forward
M=vx. p SPEC AU{plu/x]} Fr » finally the theorem one is interested in is derived
M= plu/x] u not frereLIJnAr,i_A,p and r CHOOSE o one can also implement own proof tools
r
61 /292 62 /292
Forward Proofs — Example | ff?}% Forward Proofs — Example Il f,%;%%
ey ey
Let's prove Vp. p = p.
P p-p P Let's prove VP v. (3x. (x =v) AP x) <= P v.
val IMP_REFL_THM = let val oy = vioati;
val tml = ‘‘p:bool‘‘; > val tml = “‘p‘‘: term val tm_P = ‘‘P:’a -> bool®‘;
val thml = ASSUME tmi; > val thml = [p] |- p: thm e K e e
val thm2 = DISCH tml thml; > val thm2 = |- p ==> p: thm)) S
in val thml = let
val thmla = ASSUME tm_rhs; > val thmla = [P v] |- P v: thm
GEN tml thm2 > val IMP_REFL_THM = val thmib = > val thmib =
|- 'p. p ==> p: thm CONJ (REFL tm_v) thmla; [Pv]l |- (v=v)/\Pv: thm
val thmlc = > val thmlc =
end EXISTS (tm_lhs, tm_v) thmib Pvl I-7x. (x=v) /\Px
in
_ _ DISCH tm_rhs thmlc > val thml = [] |-
fun IMP_REFL t = > val IMP_REFL = end Pv==>7x. (x=v) /\Px: thm
SPEC t IMP_REFL_THM; fn: term -> thm

63 /292 64 /292

| 2

Forward Proofs — Example Il cont. {ZTH

Part VII

val thm2 = let

val thm2a = > val thm2a = [(u = v) /\ P u] |-
ASSUME ‘‘(u:’a =1v) /\ P u‘* (u=v) /\ P u: thm
val thm2b = AP_TERM tm_P > val thm2b = [(u = v) /\ P ul |- Backward PI’OO'FS
(CONJUNCT1 thm2a); Pu<=>Pyv
val thm2c = EQ_MP thm2b > val thm2c = [(u =v) /\ P u] |-
(CONJUNCT2 thm2a) ; Pv
val thm2d = > val thm2d = [?x. (x =v) /\ P x] |-
CHOOSE (‘‘u:’a‘‘, Pv
. ASSUME tm_lhs) thm2c a{g? === S&QQ
in
DISCH tm_lhs thm2d > val thm2 = [] |- 515 KTH éf?g
end 7x. (x=v) /N\Px==>Pv VETENSKAP
289 OCH KONST 2%
] 9
@ 1°)
val thm3 = IMP_ANTISYM_RULE thm2 thmi > val thm3 = [] |- S
?x. (x=v) /\N\Px<=>Pv
val thmd = GENL [tm_P, tm_v] thm3 > val thmd = [] |- !P v.
?7x. (x=v) /N\Px<=>Pv
65 /292
Motivation | ﬁ%"g Motivation Il - thinking backwards
o let's prove 'A B. A /\ B <=>B /\ A
(+ Show |- A /\ B ==> B /\ A %) o we want to prove
val thmia = ASSUME ‘A /\ B‘¢; » '1AB. A/\B<=>B/\A
val thmib = CONJ (CONJUNCT2 thmia) (CONJUNCT1 thmia); e . , .
val thml = DISCH ‘A /\ B‘‘ thmib o all-quantifiers can easily be added later, so let's get rid of them

(* Show |- B /\ A ==> A /\ B %) »A/NB<=>B/\A

val thm2a ASSUME ‘‘B /\ A‘‘;
val thm2b CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 DISCH ‘B /\ A‘‘ thm2b » A /\ B==>B/\A

»B/\A==A4A/\B

o now we have an equivalence, let's show 2 implications

(* Combine to get |- A /\ B <=> B /\ A %)
val thm3 = IMP_ANTISYM_RULE thmi thm2 T iy
o we have an implication, so we can use the precondition as an
(* Add quantifiers *) assumption
val thm4 = GENL [‘‘A:bool‘‘, ‘‘B:bool‘‘] thm3 .
» using A /\ BshowB /\ A
»A/\B==>B/\A
o this is how you write down a proof

o for finding a proof it is however often useful to think backwards

67 /292 68 /292

Motivation Ill - thinking backwards

o we have a conjunction as assumption, let's split it
» using A and B show B /\ A
» A/\ B==>B/\ A
o we have to show a conjunction, so let's show both parts

» using A and B show B
» using A and B show A
» A /\B==>B/\A

o the first two proof obligations are trivial
» A/\B==>B/\A

Qo .

o we are done

HOL Implementation of Backward Proofs

o in HOL
» proof tactics / backward proofs used for most user-level proofs
» forward proofs used usually for writing automation

o backward proofs are implemented by tactics in HOL

» decomposition into subgoals implemented in SML
» SML datastructures used to keep track of all open subgoals
» forward proof used to construct theorems

o to understand backward proofs in HOL we need to look at

» goal — SML datatype for proof obligations
» goalStack — library for keeping track of goals
» tactic — SML type for functions performing backward proofs

69 /292

71/292

Motivation IV

@ common practise

» think backwards to find proof

» write found proof down in forward style

o often switch between backward and forward style within a proof
Example: induction proof

» backward step: induct on ...

» forward steps: prove base case and induction case

o whether to use forward or backward proofs depend on
» support by the interactive theorem prover you use

Goals

* HOL 4 and close family: emphasis on backward proof
* [sabelle/HOL: emphasis on forward proof
* Coq : emphasis on backward proof

» your way of thinking
» the theorem you try to prove

o goals represent proof obligations, i. e. theorems we need /want to prove

o the SML type goal is an abbreviation for term list * term

o the goal ([asm-1,

Goal

prove the theorem {asm_1, ..., asmn} |- ¢
Example Goals
Theorem
([({Al(’ l(B(l], I(A /\ Bl() {A’ B} I_ A
(LB, ““A°‘], ““A /\ B‘9) {A, B} |- A

(LB /\ A°“], ““A/\B‘Y)

(1,

““B/\ D) => (A /\B))

{B/\ A} |-A/\B

|- (B /\ A)

., asmmn], c) records that we need/want to

/\ B
/\ B

==> (A /\ B)

Tactics

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic

» decides into which subgoals to decompose the goal
» returns this list of subgoals
» returns a validation that
* given a list of theorems for the computed subgoals
* produces a theorem for the original goal

©

©

©

o special case: empty list of subgoals
» the validation (given [1) needs to produce a theorem for the goal

@ notice: a tactic might be invalid

Tactic Example — EQ_TAC gf%.%

t = 1lhs = rhs

l-p=gq aslF lhs ==> rhs
AFg=p asl k rhs ==> 1lhs
—— IMP_ANTISYM_RULE
FTUAFp=g aslkt

val EQ_TAC: tactic = fn (asl, t) =>
let
val (lhs, rhs) = dest_eq t
in
([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, lhs))],
fn [thl, th2] => IMP_ANTISYM_RULE thl th2
| _ => raise Match)
end
handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 /292

Tactic Example — CONJ_TAC

t =conjl /\ conj2
aslt conjl aslt conj2
aslkt

Ml=p At q
FTUAFpPp A g

CONJ

val CONJ_TAC: tactic = fn (asl, t) =>
let
val (conjl, conj2) = dest_conj t
in
([(asl, conj1), (asl, conj2)],
fn [thl, th2] => CONJ thl th2 | _ => raise Match)
end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 /292

proofManagerLib / goalStack

o the proofManagerLib keeps track of open goals

o it uses goalStack internally
o important commands

» g — set up new goal

» e — expand a tactic

» p — print the current status

» top_thm — get the proved thm at the end

76 /292

Tactic Proof Example |

Previous Goalstack

User Action

g “'AB. A/\B<=>B/\ A

New Goalstack
Initial goal:

'AB. A/\B<=>B/\A

: proof

Tactic Proof Example IlI

Previous Goalstack
A /\B<=>B/\A

: proof

77 /292

o

User Action
e EQ_TAC;

New Goalstack
B/\ A==>A/\B

A/\B==>B/\A

: proof

79 /292

Tactic Proof Example Il

Previous Goalstack
Initial goal:

'1AB. A/\B<=>B/\A

: proof

User Action
e GEN_TAC;
e GEN_TAC;

New Goalstack
A /\ B<=>B/\A

: proof

Tactic Proof Example IV

Previous Goalstack
B/\A==>A/\B

A /\ B==>B /\ A : proof

78 /292

Sttt

User Action
e STRIP_TAC;

New Goalstack

B /\ A
0. A
1. B

80 /292

Tactic Proof Example V %‘%} Tactic Proof Example VI {i‘%}
Previous Goalstack Previous Goalstack
B /\ A A
0. A 0. A
1. B) 1. B
. B
User Action
e CONJ_TAC; v, A
v, 1. B J
New Goalstack User Action
A e (ACCEPT_TAC (ASSUME ‘‘B:bool‘‘));
0 A e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));)
1 B
5 New Goalstack
B/\A==>4/\B
. A
1. B y : proof
81/292 82 /292
Tactic Proof Example VII]%;;a% Tactic Proof Example VIII %;;%%
i i
Previous Goalstack Previous Goalstack
B/AA==>A/B Initial goal proved.
|- 'AB. A/\ B<=>B/\A:
: proof) proot
User Action User Action
e STRIP_TAC; _ .
e (ASM_REWRITE_TAC[I);) TR, T 2 (O J
New Goalstack Result
Initial goal proved. val thn =
|- 1A B. A /\ B <=> B /\ A: L;m!AB'A/\BG)B/\A’
proof y

83 /292 84 /292

Tactic Proof Example IX

Combined Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
GEN_TAC >> GEN_TAC >>
EQ_TAC >| [
STRIP_TAC >>
STRIP_TAC >| [
ACCEPT_TAC (ASSUME ¢ ‘B:bool‘‘),
ACCEPT_TAC (ASSUME ¢ ‘A:bool‘)
1l

STRIP_TAC >>
ASM_REWRITE_TAC[]
D;

=9

Result

val thm =
|- 'AB. A/\ B<=>B/\ A:
thm

Summary Backward Proofs

o in HOL most user-level proofs are tactic-based
» automation often written in forward style
» low-level, basic proofs written in forward style
» nearly everything else is written in backward (tactic) style

©

there are many different tactics

©

in the lecture only the most basic ones will be discussed

©

you need to learn about tactics on your own
» good starting point: Quick manual
» learning finer points takes a lot of time
> exercises require you to read up on tactics

©

depends on
» personal way of thinking
» personal style and preferences
» maintainability, clarity, elegance, robustness
>

85 /292

{xuy

often there are many ways to prove a statement, which tactics to use

87 /292

Tactic Proof Example X

Cleaned-up Tactic

val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘¢,
REPEAT GEN_TAC >>
EQ_TAC >> (
REPEAT STRIP_TAC >>
ASM_REWRITE_TAC []
));

Result

val thm =
|- 'AB. A/\ B<=>B/\ A:
thm

Part VIII

Basic Tactics

&y

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

86 /292

Syntax of Tactics in HOL {ﬁ“}

Qo

Bt

originally tactics were written all in capital letters with underscores

Exa

mple: ALL_TAC

since 2010 more and more tactics have overloaded lower-case syntax

Exa

mple: all_tac

sometimes, the lower-case version is shortened

Exa

mple: REPEAT, rpt

sometimes, there is special syntax

Exa
whi
>
>
>

>

mple: THEN, \\, >>
ch one to use is mostly a matter of personal taste

all-capital names are hard to read and type

however, not for all tactics there are lower-case versions
mixed lower- and upper-case tactics are even harder to read
often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89 /292

Tacticals .

©

©

©

©

g KTHY

tacticals are SML functions that combine tactics to form new tactics

common workflow

>

vVvyVvyy

develop large tactic interactively

using goalStack and editor support to execute tactics one by one
combine tactics manually with tacticals to create larger tactics
finally end up with one large tactic that solves your goal

use prove or store_thm instead of goalStack

make sure to clearly mark proof structure by e. g.

>

>

>

use indentation
use parentheses
use appropriate connectives

> ..

goa

IStack commands like e or g should not appear in your final proof

91 /292

Some Basic Tactics

GEN_TAC
DISCH_TAC
CONJ_TAC
STRIP_TAC

DISJ1_TAC
DISJ2_TAC
EQ_TAC
ASSUME_TAC thm
EXISTS_TAC term

remove outermost all-quantifier

move antecedent of goal into assumptions

splits conjunctive goal

splits on outermost connective (combination
of GEN_TAC, CONJ_TAC, DISCH.TAC, ...)

selects left disjunct

selects right disjunct

reduce Boolean equality to implications

add theorem to list of assumptions

provide witness for existential goal

Some Basic Tacticals

tacl >> tac2

tac >| tacL

tacl >- tac2
REPEAT tac

NTAC n tac
REVERSE tac
tacl ORELSE tac2
TRY tac

ALL_TAC

NO_TAC

THEN, \\
THENL
THEN1
rpt

reverse

all_tac

90

applies tactics in sequence

applies list of tactics to subgoals
applies tac2 to the first subgoal of tacl
repeats tac until it fails

apply tac n times

reverses the order of subgoals

applies tacl only if tac2 fails

do nothing if tac fails

do nothing

fail

292

292

Basic Rewrite Tactics

©

we will discuss it in detail later

©

©

(equational) rewriting is at the core of HOL's automation

details complex, but basic usage is straightforward

» given a theorem rewr_thm of form |- P x = Q x and aterm t
» rewriting t with rewr_thm means
» replacing each occurrence of a term P ¢ for some c with Q cint

o warning: rewriting may loop

Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE_TAC thms
ASM_REWRITE_TAC thms

ONCE_REWRITE_TAC thms
ONCE_ASM_REWRITE_TAC thms

Assumption Tactics

at
B
rewrite goal using equations found
in given list of theorems
in addition use assumptions
rewrite once in goal using equations
rewrite once using assumptions
93 /292
fg%ﬁ
§ s §
St

POP_ASSUM thm-tac

PAT_ASSUM term thm-tac
also PAT_X_ASSUM term thm-tac

WEAKEN_TAC term-pred

use and remove first assumption
common usage POP_ASSUM MP_TAC

use (and remove) first
assumption matching pattern

removes first assumption
satisfying predicate

95 /292

Induct_on ‘term’
Induct

Cases_on ‘term’
Cases
MATCH_MP_TAC thm
IRULE_TAC thm

o decision procedures try to solve the current goal completely

©

©

©

TAUT_TAC
DECIDE_TAC
METIS_TAC thms
numLib.ARITH_TAC
intLib.ARITH_TAC

Case-Split and Induction Tactics

induct on term

induct on all-quantor
case-split on term
case-split on all-quantor

apply rule
generalised apply rule

Decision Procedure Tactics

they either succeed of fail
no partial progress

decision procedures vital for automation

propositional logic tautology checker
linear arithmetic for num

first order prover

Presburger arithmetic

uses Omega test

94 /292

96 /292

Subgoal Tactics Term Fragments / Term Quotations

o it is vital to structure your proofs well
> improved maintainability o notice that by and sufficies_by take term fragments
improved readability

>
» improved reusability
» saves time in medium-run o they represent (partially) unparsed terms

o term fragments are also called term quotations

o therefore, use many small lemmata o parsing takes time place during execution of tactic in context of goal
o also, use many explicit subgoals o this helps to avoid type annotations
o however, this means syntax errors show late as well

‘term-frag’ by tac show term with tac and o the library Q defines many tactics using term fragments
add it to assumptions
‘term-frag’ sufficies_by tac show it sufficies to prove term

97 /292 98 /292

Importance of Exercises g,%fb}% Tactical Proof - Example | - Slide 1 f,%%}%

o we want to prove !1. LENGTH (APPEND 1 1) = 2 = LENGTH 1
o first step: set up goal on goalStack

o here many tactics are presented in a very short amount of time o at same time start writing proof script
o there are many, many more important tactics out there :
. : : Proof Script
o few people can learn a programming language just by reading manuals
imilar f | | HOL i b di d i . val LENGTH_APPEND_SAME = prove (
o similar few people can learn just by reading and listening <11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
o you should write your own proofs and play around with these tactics
o solving the exercises is highly recommended Actions
(and actually required if you want credits for this course) orung ‘“!1. LENGTH (APPEND 1 1) = 2 % LENGTH 1°°¢
o this is done by hol-mode
© move cursor inside term and press M-h g
(menu-entry HOL - Goalstack - New goal)

99 /292 100 /292

Tactical Proof - Example | - Slide 2 {ﬁ‘*}

Current Goal
11. LENGTH (1 ++ 1) = 2 * LENGTH 1 ’

o the outermost connective is an all-quantor
o let's get rid of it via GEN_TAC

Proof Script
val LENGTH_APPEND_SAME = prove (

€11, LENGTH (1 ++ 1) = 2 * LENGTH 1°°,
GEN_TAC

Actions
o run e GEN_TAC
o this is done by hol-mode

o mark line with GEN_TAC and press M-h e
(menu-entry HOL - Goalstack - Apply tactic)

101 /292

Tactical Proof - Example | - Slide 4 g,?%;%

Current Goal
LENGTH (1 ++ 1) = 2 % LENGTH 1

o let's rewrite with found theorem 1istTheory.LENGTH_APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°¢,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o connect the new tactic with tactical >> (THEN)

o use hol-mode to expand the new tactic

103 /292

Tactical Proof - Example | - Slide 3

Current Goal
LENGTH (1 ++ 1) = 2 % LENGTH 1

o LENGTH of APPEND can be simplified

o let's search an appropriate lemma with DB.match

Actions
o run DB.print_match []1 ¢‘LENGTH (_ ++)¢
o this is done via hol-mode

o press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

o this finds the theorem 1istTheory.LENGTH_APPEND

|- '11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

Tactical Proof - Example | - Slide 5

Current Goal
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1

o let's search a theorem for simplifying 2 * LENGTH 1

o prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

€“11. LENGTH (APPEND 1 1) = 2 * LENGTH 1°°,
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions
o DB.match finds theorem arithmeticTheory.TIMES2

o press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 /292

Tactical Proof - Example | - Slide 6 %%% Tactical Proof - Example | - Slide 7 %%%

Current Goal ’

LENGTH (1 ++ 1) = 2 % LENGTH 1 o we have a finished tactic proving our goal

o notice that GEN_TAC is not needed
o extend the previous rewrite tactic o let's polish the proof script

o finish proof
Proof Script

Proof Script
P val LENGTH_APPEND_SAME = prove (
val LENGTH_APPEND_SAME = prove (€“11. LENGTH (APPEND 1 1) = 2 % LENGTH 1°‘°¢,
¢¢11. LENGTH (APPEND 1 1) = 2 % LENGTH 1°°¢, GEN_TAC >>
GEN_TAC >> REWRITE_TAC [listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

Actions
i _ _ val LENGTH_APPEND_SAME = prove (
o add TIMES?2 to the list of theorems used by rewrite tactic <11, LENGTH (APPEND 1 1) = 2 % LENGTH 1°°,
o use hol-mode to expand the extended rewrite tactic REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

o goal is solved, so let's add closing parenthesis and semicolon

105 /292 106 / 292

Tactical Proof - Example Il - Slide 1 ﬁ%@ Tactical Proof - Example Il - Slide 2 ety

Current Goal

o let's prove something slightly more complicated 1x1 x2 x3 11 12 13.
o drop old goal by pressing M-h d (MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
(menu-entry HOL - Goalstack - Drop goal) x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
“ALL_DISTINCT (11 ++ 12 ++ 13)
o set up goal on goalStack (M-h g)
o at same time start writing proof script o let's strip the goal
Proof Script Proof Script
vEd MO L PRl iongeaitd) < jsene (08l 52 2 di 102 JE val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 11 12 13.
QUi ol A/ WO 5 U2 O W 5 9D R (MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
(Cal <= o2) /N 62 5=) O o S BlG Eel)) = ((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==
AL, DI (L s 12 e AT ~(ALL_DISTINCT (11 ++ 12 ++ 138)) ¢

REPEAT STRIP_TAC

107 / 292 108 /292

Tactical Proof - Example Il - Slide 2

Ix1 x2 x3 11 12 13.
(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==
“ALL_DISTINCT (11 ++ 12 ++ 13)

Current Goal b J

o let’s strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (
€¢11. LENGTH (APPEND 1 1) = 2 * LENGTH 1¢°¢,
REPEAT STRIP_TAC

Actions
o add REPEAT STRIP_TAC to proof script

o expand this tactic using hol-mode

4

109 /292

Tactical Proof - Example Il - Slide 4 fom
Current Goal
“ALL_DISTINCT (11 ++ 12 ++ 13)

0. MEM x1 11 3. x1 <= x2

1. MEM x2 12 4. x2 <= x3

2. MEM x3 13 5. x3 <= SUC x1
o now let’s simplify ALL_DISTINCT

o search suitable theorems with DB.match

o use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘¢...¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]

111 /292

Tactical Proof - Example Il - Slide 3

Current Goal

F
0 MEM x1 11 4., x2 <= x3
1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6. ALL_DISTINCT (11 ++ 12 ++ 13)
3 x1 <= x2

o oops, we did too much, we would like to keep ALL_ DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘¢...¢°¢,
REPEAT GEN_TAC >> STRIP_TAC

Actions
o undo REPEAT STRIP,TAC(M—h b)

o expand more fine-tuned strip tactic

Tactical Proof - Example Il - Slide 5

Current Goal

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !'e. MEM e 11 \/ MEM e 12 ==> "MEM e 13)

0. MEM x1 11 3. x1 <= x2
1. MEM x2 12 4. x2 <= x3
2. MEM x3 13 5. x3 <= SUC x1

110 /292

o from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3
o let's deduce this fact by DECIDE_TAC

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,

REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
“(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC

112 /292

Tactical Proof - Example Il - Slide 6 {E@E

Current Goals — 2 subgoals, one for each disjunct

“((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> "MEM e 12) /\
ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> “MEM e 13)

0. MEM x1 11 4, x2 <= x3

1. MEM x2 12 5. x3 <= SUC x1
2. MEM x3 13 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

o both goals are easily solved by first-order reasoning
o let's use METIS_TAC[] for both subgoals

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...¢¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (
METIS_TAC[]
));

113 /292

Part IX

Induction Proofs

hy

S,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

Tactical Proof - Example Il - Slide 7

Finished Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (
“e1x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (11 ++ 12 ++ 13))°¢°¢,
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
‘(x2 = x1) \/ (x2 = x3)¢ by DECIDE_TAC >> (

METIS_-TAC[]
));

o notice that proof structure is explicit

o parentheses and indentation used to mark new subgoals

Mathematical Induction

o mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n+ 1) for all n,
then P(n) holds for all n.

o HOL is expressive enough to encode this principle as a theorem.

|- 1P. PO /\ (ln. Pn==>P (SUC n)) ==> In. Pn

o Performing mathematical induction in HOL means applying this
theorem (e. g. via HO_MATCH_MP_TAC)

o there are many similarish induction theorems in HOL

o Example: complete induction principle
|- 'P.

(In. (!m. m<n==>Pm) ==>P n) ==

In. Pn

116 /292

Structural Induction Theorems

©

structural induction theorems are an important special form of
induction theorems

©

they describe performing induction on the structure of a datatype

©

Example: |- 1P. P [1 /\ (!t. Pt ==> th. P (h::t)) ==> !1. P 1

o structural induction is used very frequently in HOL

©

for each algabraic datatype, there is an induction theorem

117 /292

Induction (and Case-Split) Tactics Py

o the tactic Induct (or Induct_on) usually used to start induction
proofs

o it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

o this is usually what one needs

o other (non default) induction theorems can be applied via
INDUCT_THEN or HO_MATCH_MP_TAC

o similarish Cases_on picks and applies default case-split theorems

119 /292

Other Induction Theorems {i@i;

o there are many induction theorems in HOL

datatype definitions lead to induction theorems

» recursive function definitions produce corresponding induction theorems
» recursive relation definitions give rise to induction theorems

» many are manually defined

v

o Examples
- 1P, P [1/\ (11. P1==>1x. P (SNOC x 1)) ==> !1. P 1

|- 'P. P FEMPTY /\
('f. P £ ==> Ix y. x NOTIN FDOM £ ==> P (f |+ (x,y))) ==> !f. P £

- . P {} N\
(!s. FINITE s /\
!s. FINITE s ==>

. e NOTIN s ==> P (e INSERT s)) ==>

[-'RP. (xy. Rxy==>Pxy) /\ (Ixyz. Pxy/\Pyz==>Pxz)==>

luv. RPruv=>Puv

Induction Proof - Example | - Slide 1 f‘%‘é’w

o let's prove via induction
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

o we set up the goal and start and induction proof on 11

Proof Script

val REVERSE_APPEND = prove (
€¢111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°,
Induct

120 /292

Induction Proof - Example | - Slide 2

o the induction tactic produced two cases

o base case:
112. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

o induction step:

'h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)

'12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11

©

both goals can be easily proved by rewriting

Proof Script

val REVERSE_APPEND = prove (*°
111 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11°°¢,
Induct >| [
REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
D;

Induction Proof - Example Il - Slide 2

o the induction tactic produced two cases

o base case:
REVERSE (REVERSE []1) = []

o induction step:

'h. REVERSE (REVERSE (h::11)) = h::11

REVERSE (REVERSE 1) = 1

o again both goals can be easily proved by rewriting

Proof Script

val REVERSE_REVERSE = prove (
€“11. REVERSE (REVERSE 1) = 1¢°¢,
Induct >| [
REWRITE_TAC [REVERSE_DEF] ,
ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
IDH

121 /292

@,
frry

123 /292

Induction Proof - Example Il - Slide 2

o let's prove via induction
!1. REVERSE (REVERSE 1) =1

o we set up the goal and start and induction proof on 1

Proof Script

val REVERSE_REVERSE = prove (
€€11. REVERSE (REVERSE 1) = 1°°¢,
Induct

Part X

Basic Definitions

&y

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

122 /292

Oracles g@a

Definitional Extensions {@‘*}

there are conservative definition principles for types and constants

conservative means that all theorems that can be proved in extended
theory can also be proved in original one

however, such extensions make the theory more comfortable
definitions introduce no new inconsistencies

the HOL community has a very strong tradition of a purely
definitional approach

oracles are families of axioms
however, they are used differently than axioms
they are used to enable usage of external tools and knowledge

o you might want to use an external automated prover

o this external tool acts as an oracle

» it provides answers
» it does not explain or justify these answers

you don't know, whether this external tool might be buggy
all theorems proved via it are tagged with a special oracle-tag
tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

Axiomatic Extensions

axioms are a different approach

they allow postulating arbitrary properties, i.e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies

in HOL axioms are very rarely needed

using definitions is often considered more elegant

it is hard to keep track of axioms

use axioms only if you really know what you are doing

Oracles 1l

o Common oracle-tags

©

©

©

©

vy vy VvVYVvYyy

DISK_THM — theorem was written to disk and read again
HolSatLib — proved by MiniSat

HolSmtLib — proved by external SMT solver

fast_proof — proof was skipped to compile a theory rapidly
cheat — we cheated :-)

cheating via e. g. the cheat tactic means skipping proofs

it can be helpful during proof development

v

>
>
>

test whether some lemmata allow you finishing the proof
skip lengthy but boring cases and focus on critical parts first
experiment with exact form of invariants

cheats should be removed reasonable quickly

HOL warns about cheats and skipped proofs

Pitfalls of Definitional Approach {;%i? Specifications {i@i?

o definitions can't introduce new inconsistencies o HOL allows to introduce new constants with certain properties,

o they force you to state all assumed properties at one location provided the existence of such constants has been shown

o however, you still need to be careful Specification of EVEN and ODD
o Is your definition really expressing what you had in mind 7 > I DI
)) val it = |- ?even odd. even O /\ ~“odd O /\ (!n. even (SUC n) <=> odd n) /\
o Does your formalisation correspond to the real world artefact ? (In. odd (SUC n) <=> even n)
o How can you convince others that this is the case 7 > val EO_SPEC = new_specification ("EO_SPEC", ["EVEN", "ODD"], EVEN_ODD_EXISTS);
o we will discuss methods to deal with this later in this course val EO_SPEC = |- EVEN O /\ "ODD O /\ (in. EVEN (SUC n) <=> ODD n) /A
(In. ODD (SUC n) <=> EVEN n)

» formal sanity
conformance testing o new_specification is a convenience wrapper

>
» code review > it uses existential quantification instead of Hilbert's choice
» comments, good names, clear coding style » deals with pair syntax

>

» stores resulting definitions in theory

o this is highly complex and needs a lot of effort in general o new_specification captures the underlying principle nicely

129 /292 130 /292

Definitions ff%i% Restrictions for Definitions

o special case: new constant defined by equalit i i : :
P y €4 Y o all variables occurring on right-hand-side (rhs) need to be arguments

Specification with Equality » e.g. new definition (..., ““Fn =n + m‘) fails
> double_EXISTS » m is free on rhs
val it =

o all type variables occurring on rhs need to occur on lhs

» e.g. new definition ("IS_FIN_TY",

> val double_def = new_specification ("double_def", ["double"], double_EXISTS); ¢‘IS_FIN_TY = FINITE (UNIV : ’a set) ‘) fails
val double_def =

|- ?double. (!n. double n = (n + n))

» IS_FIN_TY would lead to inconsistency
|- 'n. double n = n + n
» |- FINITE (UNIV : bool set)
o there is a specialised methods for such non-recursive definitions > |- ~FINITE (UNIV : num set)
» T <=> FINITE (UNIV:bool set) <=>
Non Recursive Definitions IS FIN.TY <=>
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘¢) FINITE (UNIV:num set) <=> F
val DOUBLE_DEF = » therefore, such definitions can't be allowed

|- 'n. DOUBLE n = n + n

131 /292 132 /292

Underspecified Functions Primitive Type Definitions

o function specification do not need to define the function precisely

o multiple different functions satisfying one spec are possible o HOL allows introducing non-empty subtypes of existing types

o functions resulting from such specs are called underspecified o apredicate P : ty -> bool describes a subset of an existing type ty
o underspecified functions are still total, one just lacks knowledge o ty may contain type variables

o one common application: modelling partial functions

o only non-empty types are allowed

» functions like e. g. HD and TL are total .
o therefore a non-emptyness proof ex—thm of form 7e. P e is needed

» they are defined for empty lists
» however, it is not specified, which value they have for empty lists 0 new_type_definition (op-name, ex-thm) then introduces a new
» only known: HD [1 = HD [l and TL [] = TL [] type op-name specified by P

val MY_HD_EXISTS = prove (‘‘?hd. !'x xs. (hd (x::xs) =x)‘‘, ...);

val MY_HD_SPEC =
new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

133 /292 134 /292

Primitive Type Definitions - Example 1 g,%%i&% Primitive Type Definitions - Example 2 gﬁ,%%}%
Ly Ly
o lets try to define a type dlist of lists containing no duplicates o define new_ type_bijections can be used to define bijections
o predicate ALL_ DISTINCT : ’a list -> bool is used to define it between old and new type
o easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1 > define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",
o val dlist_TYDEF = new type_definitions("dlist", REP="rep_dlist", tyax=dlist_TY_DEF}

dlist_exists) defines a new type ’a dlist and returns a theorem val it =
|- (a. abs_dlist (rep_dlist a) = a) /\
(!'r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))
|- ?(rep :’a dlist -> ’a list).

TYPE_DEFINITION ALL_DISTINCT rep o other useful theorems can be automatically proved by
» prove_abs_fn_one_one

» prove_abs_fn_onto

» prove_rep_fn_one_one

» prove_rep_fn_onto

o rep is a function taking a >a dlist to the list representing it
> rep is injective
» a list satisfies ALL_DISTINCT iff there is a corresponding dlist

135 /292 136 /292

Primitive Definition Principles Summary {;%;? Functional Programming {i%}

o primitive definition principles are easily explained o the Datatype package allows to define datatypes conveniently
o they lead to conservative extensions o the TFL package allows to define (mutually recursive) functions
o however, they are cumbersome to use o the EVAL conversion allows evaluating those definitions
o LCF approach allows implementing more convenient definition tools o this gives many HOL developments the feeling of a functional program
» Datatype package o there is really a close connection between functional programming a
» TFL (Total Functional Language) package definitions in HOL
» IndDef (Inductive I?efinition) pgckage » functional programming design principles apply
> quotientLib Quotient Types Library » EVAL is a great way to test quickly, whether your definitions are
> . working as intended
137 /292 138 /292
Functional Programming Example gﬁfb}% Datatype Package f,ﬁ%«%
Ry Ny
o the Datatype package allows to define SML style datatypes easily
o there is support for

v

algebraic datatypes
record types

> Datatype ‘mylist = E | L ’a mylist® >
» mutually recursive types
>

val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))°¢

Definition has been stored under "mylen_def" . .
© many constants are automatically introduced

val it =
|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs): » constructors
thm » case-split constant
> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))*‘¢ > s.|ze function .
val it = » field-update and accessor functions for records
|- mylen (L 2 (L 3 (L 1E))) = 3: >
thm

©

many theorems are derived and stored in current theory
» injectivity and distinctness of constructors
» nchotomy and structural induction theorems
» rewrites for case-split, size and record update functions
>

139 /292 140 /292

Datatype Package - Example |

Tree Datatype in SML

datatype (’a,’b) btree = Leaf of ’a
| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL

Datatype ‘btree = Leaf ’a
| Node btree ’b btree®

Tree Datatype in HOL — Deprecated Syntax

Hol_datatype ‘btree = Leaf of ’a
| Node of btree => ’b => btreef

=9

141 /292
Datatype Package - Example | - Derived Theorems 2 gf%;%%
B
btree_size def
|- ('f f1 a. btree_size f f1 (Leaf a) =1 + f a) /\
('f f1 a0 al a2.
btree_size f f1 (Node a0 al a2) =
1 + (btree_size f f1 a0 + (f1 al + btree_size f f1 a2))))
bbtree_case_def
|- ('a £ f1. btree_CASE (Leaf a) f f1 = f a) /\
('a0 al a2 f f1. btree_CASE (Node a0 al a2) f f1 = f1 a0 al a2)
btree_case_cong
|- 'M M’ f f1.
M=M) /\ (la. (M’ = Leaf a) ==> (f a = £’ a)) /\
('a0 al a2.
(M’ = Node a0 al a2) ==> (f1 a0 al a2 = f1’ a0 al a2)) ==>
(btree_CASE M f f1 = btree_CASE M’ f’ f1’))
143 /292

Datatype Package - Example | - Derived Theorems 1

btree_distinct

|- 1'a2 al a0 a. Leaf a <> Node a0 al a2

iy

btree_11

|- ('a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\
('a0 al a2 a0’ al’ a2’.
(Node a0 al a2 = Node a0’ al’ a2’) <=>
(a0 = a0’) /\ (a1l = a1’) /\ (a2 = a2’))

btree_nchotomy
|- 'bb. (?7a. bb = Leaf a) \/ (?b bl b0. bb = Node b bl b0)

btree_induction

|- 'P. (la. P (Leaf a)) /\
('b 0. P b /\ P b0 ==> !bl. P (Node b bl b0)) ==>
1b. P b

Datatype Package - Example Il

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

142 /292

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3¢

144 /292

Datatype Package - Example Il - Derived Theorems {i@i%

my_enum_nchotomy
|- 'P. PE1 /\ PE2 /\ PE3 ==>1!a.Pa

my_enum_distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3

2)

my_enum2num_num2my_enum

|- !'r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

Datatype Package - Example Il - Derived Theorems gﬁ%’%

KIH
rgb_component_equality
|- 'r1 r2. (r1 = r2) <=>
(ri.r = r2.r) /\ (r1.g = r2.g) /\ (r1.b = r2.b)
rgb_nchotomy
|- !'rr. ?n n0 nl. rr = rgb n n0 ni
rgb_r_fupd
|- 'f n n0O nl. rgb n n0 nl with r updated_by f = rgb (f n) nO ni
i
rgb_updates_eq_literal
|- 'r n1 nO n.
r with <|r :=nl; g := n0; b := n|> = <|r :=nl; g := n0; b := n|>
i
147 /292

Datatype Package - Example Il

Record type in SML

type rgb = { r : int, g : int, b : int }
Record type in HOL
Datatype ‘rgb = <| r : num; g : num; b : num |>¢

Datatype Package - Example IV

o nested record types are not allowed
o however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML

datatype file = Text of string
| Dir of {owner : string ,
files : (string * file) list}

Not Supported Nested Record Type Example in HOL

Datatype ‘file = Text string
| Dir <| owner :
files :

string ;
(string # file) list |>¢

Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string

| Dir directory

H
directory = <| owner :
files :

string ;
(string # file) list [|>¢

v

148 /292

K

Datatype Package - No support for Co-Algebraic Typesg‘g‘ ,

%;:

e

o there is no support for co-algebraic types
o the Datatype package could be extended to do so

o other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists

datatype ’a lazylist = Nil
| Cons of (’a * (unit -> ’a lazylist))

149 /292

Total Functional Language (TFL) package g,%%i&%
o TFL package implements support for terminating functional definitions

o Define defines functions from high-level descriptions

©

there is support for pattern matching
look and feel is like function definitions in SML

©

©

based on well-founded recursion principle

©

Define is the most common way for definitions in HOL

151 /292

Datatype Package - Discussion

©

Datatype package allows to define many useful datatypes
however, there are many limitations

©

» some types cannot be defined in HOL, e. g. empty types

» some types are not supported, e. g. co-algebraic types

» there are bugs (currently e.g. some trouble with certain mutually
recursive definitions)

©

biggest restrictions in practice (in my opinion and my line of work)

» no support for co-algebraic datatypes
» no nested record datatypes

©

depending on datatype, different sets of useful lemmata are derived
most important ones are added to TypeBase

» tools like Induct_on, Cases_on use them
» there is support for pattern matching

©

150 /292

Well-Founded Relations

o arelationR : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. In. R (f (SUC n)) (f n)

o Example: $< : num -> num -> bool is well-founded

o if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

o this is the essence of termination proofs

152 /292

Well-Founded Recursion {;%i? Define - Initial Examples {i‘%i?

©

a well-founded relation R can be used to define recursive functions

o this recursion principle is called WFREC in HOL
o idea of WFREC

Define discussion

» if arguments get smaller according to R, perform recursive call
» otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

Define feels like a function definition in HOL
it can be used to define "terminating” recursive functions
Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

o outcome of Define sometimes hard to predict

o the input descriptions are only hints

» the produced function and the definitional theorem might be different
» in simple examples, quantifiers added

» pattern compilation takes place

» earlier “conjuncts” have precedence

Simple Definitions

> val DOUBLE_def = Define
val DOUBLE_def =
|- 'n. DOUBLE n = n + n:
thm

‘DOUBLE n = n + nf

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs)) ¢
val MY_LENGTH_def =
|- (MY_LENGTH []

thm

0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys)) ¢
val MY_APPEND_def =
|- (lys. MY_APPEND [] ys = ys) /\
(!'x xs ys. MY_APPEND (x::xs) ys =
thm

x::MY_APPEND xs ys):

Define - More Examples

> val MY_HD_def = Define ‘MY_HD (x :: xs) x¢
val MY_HD_def = |- !x xs. MY_HD (x::xs) =

¢

xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\

> val IS_SORTED_def = Define
(IS_SORTED (x1 :: x2 ::
(IS_SORTED _ =T)¢
val IS_SORTED_def =
|- ('xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)
> val EVEN_def = Define ‘(EVEN O = T) /\ (ODD O = F) /\
(EVEN (SUC n) = 0DD n) /\ (ODD (SUC n) = EVEN n) ¢
val EVEN_def =
|- (EVEN O <=> T) /\ (ODD 0 <=> F) /\ (!'n. EVEN (SUC n) <=> 0ODD n) /\
('n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIP _ _ = [1)°¢
val ZIP_def =
|- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

('vi. ZIP [0 v1 = [1) /\ ('v4 v3. ZIP (v3::v4) [] = [1) : thm

156 / 292

Primitive Definitions {‘g’?
o Define introduces (if needed) the function using WFREC
o intended definition derived as a theorem
o the theorems are stored in current theory

o usually, one never needs to look at it

Examples

val IS_SORTED_primitive_def =
|- IS_SORTED =
WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::x8))
(\IS_SORTED a.

case a of
0=>1IT
| [x11 =>1IT

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- 'R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
- 'f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)

Define failing g‘%’%

o Define might fail for various reasons to define a function

» such a function cannot be defined in HOL

» such a function can be defined, but not via the methods used by TFL

» TFL can define such a function, but its heuristics are too weak and
user guidance is required

» there is a bug :-)

o termination is an important concept for Define
0 it is easy to misunderstand termination in the context of HOL

o we need to understand what is meant by termination

159 /292

Induction Theorems {i%}
o Define automatically defines induction theorems
o these theorems are stored in current theory with suffix ind
o use DB.fetch "-" "something ind" to retrieve them
o these induction theorems are useful to reason about corresponding
recursive functions
Example
val IS_SORTED_ind = |- !P.
(('x1 x2 xs. P (x2::x8) ==> P (x1::x2::x8)) /\
P [1/\
(tv. P [v])) ==>
'v. P v
158 /292
Termination in HOL f,ﬁ%«%
Ly

o in SML it is natural to talk about termination of functions
o in the HOL logic there is no concept of execution

o thus, there is no concept of termination in HOL

3 characterisations of a function £ : num -> num

|- 'n. £n=20
|- (£ 0=0) /\ 'n. (f (SUC n) = f n)
|- (£ 0=0) /\ 'n. (£fn=£F (SUC n))

Is £ terminating? All 3 theorems are equivalent.

160 /292

Termination in HOL 1l {ﬁ“}

o it is useful to think in terms of termination

o the TFL package implements heuristics to define functions that would
terminate in SML

o the TFL package uses well-founded recursion
o the required well-founded relation corresponds to a termination proof

o therefore, it is very natural to think of Define searching a
termination proof

o important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

161 /292

Manual Termination Proofs |

o TFL uses various heuristics to find a well-founded relation

o however, these heuristics may not be strong enough

o in such cases the user can provide a well-founded relation manually
o the most common well-founded relations are measures

© measures map values to natural numbers and use the less relation
|- !'(f:’a -> num) x y. measure f x y <=> (f x < £ y)

o all measures are well-founded: |- !'f. WF (measure f)

o moreover, existing well-founded relations can be combined

» lexicographic order LEX

» list lexicographic order LLEX
> ..

163 /292

Termination in HOL 11l {Z‘%‘}

o one can define "non-terminating” functions in HOL

o however, one cannot do so (easily) with Define

Definition of WHILE in HOL

|- 'P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no "execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1l) in 0)

Unsound Definitions

A function £ : num -> num with the following property cannot be defined in HOL unless HOL
has an inconsistancy:

'n. £ n=((fn) +1)

Such a function would allow to prove 0 = 1.

Manual Termination Proofs Il f,%%j%

o if Define fails to find a termination proof, Hol_defn can be used

o Hol_defn defers termination proofs

o it derives termination conditions and sets up the function definitions
o all results are packaged as a value of type defn

o after calling Hol_defn the defined function(s) can be used

o however, the intended definition theorem has not been derived yet
o to derive it, one needs to

» provide a well-founded relation
» show that termination conditions respect that relation

o Defn.tprove and Defn.tgoal are intended for this

o proofs usually start by providing relation via tactic WF_REL_TAC

164 /292

Manual Termination Proof Example 1

> val gsort_defn = Hol_defn "gsort" ¢
(gsort ord [1 = [1) /\
(gsort ord (x::rst) =
(gsort ord (FILTER ($~ o ord x) rst)) ++
[x] ++
(gsort ord (FILTER (ord x) rst)))®

val gsort_defn = HOL function definition (recursive)

Equation(s) :
[...1 |- gsort ord [1 = []
[...] |- gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst)
Induction : ...

Termination conditions :
0. 'rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)
2. WF R

Manual Termination Proof Example 3

> val (gsort_def, gsort_ind) =
Defn.tprove (gsort_defn,
WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)‘) >> ...)

val gsort_def =

|- (gsort ord [1 = [1) /\
(gsort ord (x::rst) =
gsort ord (FILTER ($~ o ord x) rst) ++ [x] ++
gsort ord (FILTER (ord x) rst))

val gsort_ind =
|- 'P. (lord. P ord [1) /\
(lord x rst.
P ord (FILTER (ord x) rst) /\
P ord (FILTER ($~ o ord x) rst) ==>
P ord (x::rst)) ==>
'v vi. P v vl

=9

165 /292

b,
{xuny

Sttt

Manual Termination Proof Example 2

> Defn.tgoal gsort_defn

Initial goal:

7R.
WF R /\
(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\
(!'rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(_, 1). LENGTH 1)°¢)

1 subgoal :

('rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\
('rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

Part Xl

Good Definitions

&y

ST,
EFKTHE

VETENSKAP
28 OCH KONST 2%

NG

166 /292

Importance of Good Definitions Importance of Good Definitions — Clarity |

©

using good definitions is very important

» good definitions are vital for clarity
» proofs depend a lot on the form of definitions

©

HOL guarantees that theorems do indeed hold

©

However, does the theorem mean what you think it does?

o o © you can separate your development in
o unluckily, it is hard to state what a good definition is » main theorems you care for
o even harder to come up with good definitions » auxiliary stuff used to derive your main theorems
o let's look at it a bit closer anyhow 0 it is essential to understand your main theorems
169 /292 170 /292
Importance of Good Definitions — Clarity |l g,%%;% Importance of Good Definitions — Clarity |ll ff%j%
e § e §
et St
o it is essential to understand your main theorems
» you need to understand all the definitions directly used
» you need to understand the indirectly used ones as well
» you need to convince others that you express the intended statement
Guarded by HOL Manual review needed for » therefore, it is vital to use very simple, clear definitions
o proofs checked o meaning of main theorems o defining concepts is often the main development task
o internal, technical definitions o meaning of definitions used o checking resulting model against real artefact is vital

. > testing via e.g. EVAL
o technical lemmata > formal sanity

o proof tools ° mefaning of types used by » conformance testing
main theorems

by main theorems

©

wrong models are main source of error when using HOL

©

proofs, auxiliary lemmata and auxiliary definitions

» can be as technical and complicated as you like
» correctness is guaranteed by HOL
» reviewers don't need to care

171 /292 172 /292

Importance of Good Definitions — Proofs

©

good definitions can shorten proofs significantly

©

they improve maintainability

©

they can improve automation drastically

©

©

this contradicts clarity aims

Good Definitions in Functional Programming

Objectives
o clarity (readability, maintainability)

o performance (runtime speed, memory usage, ...)

unluckily for proofs definitions often need to be technical

General Advice
o use the powerful type-system
o use many small function definitions

o encode invariants in types and function signatures

How to come up with good definitions {i@‘}

o unluckily, it is hard to state what a good definition is

o it is even harder to come up with them
» there are often many competing interests
» a lot of experience and detailed tool knowledge is needed
» much depends on personal style and taste

o general advice: use more than one definition

» in HOL you can derive equivalent definitions as theorems
» define a concept as clearly and easily as possible
» derive equivalent definitions for various purposes

* one very close to your favourite textbook
* one nice for certain types of proofs

* another one good for evaluation
*x L.

o lessons from functional programming apply

Good Definitions — no number encodings f‘%

o many programmers familiar with C encode everything as a number
© enumeration types are very cheap in SML and HOL
o use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER;

val compare_def = Define ¢

(compare LESS 1t eq gt = 1t)
/\ (compare EQUAL 1t eq gt = eq)
/\ (compare GREATER 1t eq gt = gt) *;

val list_compare_def = Define ¢
(list_compare cmp [] [1 = EQUAL) /\ (list_compare cmp [] 12 = LESS)
/\ (list_compare cmp 11 [] = GREATER)
/\ (list_compare cmp (x::11) (y::12) = compare (cmp (x:’a) y)
(* x<y *) LESS
(* x=y *) (list_compare cmp 11 12)
(* x>y *) GREATER) ¢;

176 / 292

Good Definitions — Isomorphic Types {;%i}

o the type-checker is your friend

» it helps you find errors
» code becomes more robust
» using good types is a great way of writing self-documenting code

o therefore, use many types

o even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val

val

Datatype ‘vaddr = VAddr num®;
Datatype ‘paddr = PAddr num®;

¢

val virt_to_phys_addr_def = Define
virt_to_phys_addr (VAddr a) = PAddr(translation of a)¢;

177 /292

Good Definitions — Record Types Il g,?%%

o using records

» introduces field names
» provides automatically defined accessor and update functions
» leads to better type-checking error messages

o records improve readability

» accessors and update functions lead to shorter code
» field names act as documentation

o records improve maintainability

» improved error messages
» much easier to add extra fields

179 /292

Good Definitions — Record Types | {f;}

o often people use tuples where records would be more appropriate
o using large tuples quickly becomes awkward
» it is easy to mix up order of tuple entries
* often types coincide, so type-checker does not help
» no good error messages for tuples

* hard to decipher type mismatch messages for long product types
* hard to figure out which entry is missing at which position

* non-local error messages

* variable in last entry can hide missing entries

o records sometimes require slightly more proof effort

o however, records have many benefits

Good Definitions — Encoding Invariants

©

try to encode as many invariants as possible in the types

©

this allows the type-checker to ensure them for you

©

you don't have to check them manually any more

©

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.
datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {
state : connection_state,
server : inet_address,
last_ping_time : time option,
last_ping_id : int option,
session_id : string option,
when_initiated : time option,
when_disconnected : time option

180 /292

Good Definitions — Encoding Invariants ||

Network Connections (Example by Yaron Minsky from Jane Street) I

The following definition of connection_info makes the invariants explicit:

type connected = { last_ping : (time * int) option,
session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =
Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {
state : connection_state,
server : inet_address

}

Good Definitions in HOL I

Technical Issues
o write definition such that they work well with HOL's tools

©

this requires you to know HOL well

©

a lot of experience is required

©

general advice

avoid explicit case-expressions
prefer curried functions

Example

val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ziPp _ _ = [1)°

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

[, 2 =>[°

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\

(zIp _ = [

Good Definitions in HOL

Objectives

o clarity (readability)
o good for proofs

o performance (good for automation, easily evaluatable, ...)

General Advice

o same advice as for functional programming applies
o use even smaller definitions

introduce auxiliary definitions for important function parts
use extra definitions for important constants

o tiny definitions
allow keeping proof state small by unfolding only needed ones
allow many small lemmata
improve maintainability

Good Definitions in HOL IlI

Multiple Equivalent Definitions

o satisfy competing requirements by having multiple equivalent
definitions

o derive them as theorems

o initial definition should be as clear as possible

clarity allows simpler reviews
simplicity reduces the likelihood of errors

Example - ALL_DISTINCT
|- (ALL_DISTINCT [] <=> T) /\

('h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- '1. ALL_DISTINCT 1 <=>

('x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))

|- !'1s. ALL_DISTINCT 1s <=> (CARD (set 1ls) = LENGTH 1s):

Formal Sanity {;%i?

Formal Sanity
o to ensure correctness test your definitions via e. g. EVAL
o in HOL testing means symbolic evaluation, i.e. proving lemmata

o formally proving sanity check lemmata is very beneficial

they should express core properties of your definition

thereby they check your intuition against your actual definitions
these lemmata are often useful for following proofs

using them improves robustness and maintainability of your
development

o | highly recommend using formal sanity checks

Formal Sanity Example Il 1 it

> val ZIP_def = Define ¢
(ZIP [1 ys = [1) /\ (ZIP xs [1 = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))°¢

val ZIP_def =
|- (lys. ZIP [1 ys = [1) /\ (!v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

o above definition of ZIP looks straightforward

o small changes cause heuristics to produce different theorems

o use formal sanity lemmata to compensate

> val ZIP_def = Define °
(ziP xs [= [1) /\ (ZIP [1 ys = [1) /\
(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))*¢

val ZIP_def =
I- (txs. ZIP xs [1 = [1) /\ (!v3 v2. ZIP [1 (v2::v3) = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ysO

Formal Sanity Example | {Z‘%‘}
e
> val ALL_DISTINCT = Define ¢
(ALL_DISTINCT [1 = T) /\

(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)*;

Example Sanity Check Lemmata

|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
|- 'x. ALL_DISTINCT [x]

|- 'x xs. ~(ALL_DISTINCT (x::x::Xs))

|- 11. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1

|- !'x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1

|- 111 12. ALL_DISTINCT (11 ++ 12) <=>
ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ 'e. MEM e 11 ==> ~MEM e 12

Formal Sanity Example Il 2

val ZIP_def =
|- (tys. ZIP [1 ys = [1) /\ ('v3 v2. ZIP (v2::v3) [1 = [1) /\
(lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata
|- (lxs. ZIP xs [1 = [1) /\ (lys. ZIP [1 ys = [1) /\
(ly ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
|- !xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
|- 'x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)
|- 'xs1 xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1 ==>
(ZIP (xsl++xs2) (ysl++ys2) = (ZIP xsl ysl ++ ZIP xs2 ys2))

o in your proofs use sanity lemmata, not original definition
o this makes your development robust against

» small changes to the definition required later
» changes to Define and its heuristics
» bugs in function definition package

Part XlI

Deep and Shallow Embeddings

by

Sy,
$KTHE

VETENSKAP %
&9 OCH KONST ¢

) 9

TR

Example: Embedding of Propositional Logic |

o propositional logic is a subset of HOL

o a shallow embedding is therefore trivial

val sh_true_def = Define ‘sh_true = T¢;

val sh_var_def Define ‘sh_var (v:bool) = v°;

val sh_not_def Define ‘sh_not b = ~b‘;

val sh_and_def Define ‘sh_and bl b2 = (bl /\ b2)¢;

val sh_or_def Define ‘sh_or bl b2 = (bl \/ b2)°;

val sh_implies_def = Define ‘sh_implies bl b2 = (bl ==> b2)‘;

191 /292

Deep and Shallow Embeddings

©

©

©

©

©

often one models some kind of formal language

important design decision: use deep or shallow embedding
in a nutshell:

» shallow embeddings just model semantics

» deep embeddings model syntax as well
a shallow embedding directly uses the HOL logic

a deep embedding

» defines a datatype for the syntax of the language
» provides a function to map this syntax to a semantic

Example: Embedding of Propositional Logic Il

Q

Q

we can also define a datatype for propositional logic

this leads to a deep embedding

val _ = Datatype ‘bvar = BVar num¢

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop
| d_and prop prop | d_or prop prop
| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)‘

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)°¢

val PROP_SEM_def = Define ¢

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and p1 p2) = (PROP_SEM a pl /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or pl p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\
a

(PROP_SEM a (d_implies pl p2) = (PROP_SEM a pl ==> PROP_SEM a p2))°

190 /292

192 /292

Shallow vs. Deep Embeddings {;%;? Example: Embedding of Propositional Logic Ill {i%}
o s
o with deep embedding one can easily formalise syntactic properties like
Shallow Deep » Which variables does a propositional formula contain?
o quick and easy to build o can reason about syntax » Is a formula in negation-normal-form (NNF)?
o extensions are simple o allows verified o with shallow embeddings
implementations » syntactic concepts can't be defined in HOL
o sometimes tricky to define » however, they can be defined in SML
y) » no proofs about them possible
e. g. bound variables

val _ = Define ¢

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\

Important Questions for Deciding (IS_NNF (d_not) =F) /A

Do | dt bout tax? (IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
DO EF=ei e (LRl EllOliie Synebe (IS_NNF (d_and p1 p2) = (IS_NNF pi /\ IS_NNF p2)) /\
o Do | have hard to define syntax like bound variables? (IS_NNF (d_or pl p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
(IS_NNF (d_implies pl p2) = (IS_NNF p1 /\ IS_NNF p2))°‘

o How much time do | have?

193 /292 194 /292

Verified vs. Verifying Program ff?}% Summary Deep vs. Shallow Embeddings f,%ﬁa%
ey ey

Verified Programs Verifying Programs) _
.. . . o deep embeddings require more work
o are formalised in HOL o are written in meta-language .
_ _ o they however allow reasoning about syntax

o their properties have been o they produce a separate > induction and case-splits possible

proven once and for all proof for each run » a semantic subset can be carved out syntactically
o all runs have proven o only certain that current run o syntax sometimes hard to define for deep embeddings

pofpelEs has properties o combinatations of deep and shallow embeddings common
o are usually less sophisticated, o allow more flexibility, e. g. » certain parts are deeply embedded

since they need verification fancy heuristics » others are embedded shallowly
o is what one wants ideally o good pragmatic solution
o often require deep embedding o shallow embedding fine

195 /292 196 / 292

Rewriting in HOL %@}

Part XI ” o simplification via rewriting was already a strength of Edinburgh LCF
o it was further improved for Cambridge LCF
Rewriting o HOL inherited this powerful rewriter

©

equational reasoning is still the main workhorse
o there are many different equational reasoning tools in HOL

m » Rewrite library
inherited from Cambridge LCF

=
g‘?ﬁ? %&;’% you have seen it in the form of REWNRITE_TAC
o% KTH s » computeLib — fast evaluation

% BeH KoNST Q% build for speed, optimised for ground terms
o & seen in the form of EVAL
RIS » simpLib — Simplification
sophisticated rewrite engine, HOL's main workhorse
not discussed in this lecture, yet

>
198 /292
Semantic Foundations gf%;%% Conversions Py
A L’

o we have seen primitive inference rules for equality before o in HOL, equality reasoning is implemented by conversions

o a conversion is a SML function of type term -> thm

[— o given a term t, a conversion
AFu=v Ms=t » produces a theorem of the form |- t = ¢’
types fit x not free in T » raises an UNCHANGED exception or
COMB ABS » fails, i.e. raises an HOL_ERR exception
Fr'UAF s(u) =t(v) NEAx.s=Ax. t
Example
rs=t REFL ; A\)
B I > BETACONV ¢‘(\x. SUC x) y‘°¢
Abt=u TRANS Ft=t val it = |- (\x. SUC x) y = SUC y
FTUAFs=u

> BETA_ CONV “‘SUC y**
. Exception-HOL_ERR ... raised
o these rules allow us to replace any subterm with an equal one
> REPEATC BETA_CONV ©¢SUC y*°
Exception- UNCHANGED raised

o this is the core of rewriting

199 /292 200 /292

Conversionals {;%;? Depth Conversionals {Z%;}
g}@“ X&’“

. o for rewriting depth-conversionals are important
o similar to tactics and tacticals there are conversionals for conversions g dep P

. . . . o a depth-conversional applies a conversion to all subterms
o conversionals allow building conversions from simpler ones

o there are many different ones

o there are many of them)))
» ONCE_DEPTH_CONV ¢ — top down, applies c once at highest possible

» THENC . L
> ORELSEC positions in distinct subterms
> REPEATC » TOP_SWEEP_CONV ¢ — top down, like ONCE_DEPTH_CONV, but continues
> TRY_CONV processing rewritten terms
. RAN]S CONV » TOP_DEPTH_CONV ¢ — top down, like TOP_SWEEP_CONV, but try
. RATOI% CONV top-level again after change
> ABS CdNV » DEPTH_CONV ¢ — bottom up, recurse over subterms, then apply ¢
. h repeatedly at top-level
» REDEPTH_CONV c¢ — bottom up, like DEPTH_CONV, but revisits subterms
201 /292 202 /292
REWR_CONV gﬁfb}% Term Matching f,ﬁ%«%
oy Ry
o it remains to rewrite terms at top-level . .
P o given term t_org and a term t_goal try to find
o this is achieved by REWR_CONV > type substitution ty_s
o given a term t and a theorem |- t1 = t2, REWR_CONV t thm » term substitution tm_s
» searches an instantiation of term and type variables such that t1 o such that subst tm_s (inst ty.s t_org) 2 t_goal

becomes a-equivalent to t
» fails, if no instantiation is found
» otherwise, instantiate the theorem and get |- t1’ = t2’

o this can be easily implemented by a recursive search

» return theorem |- t = 2’ torg t_goal action
tlorg t2.org tl_goal t2_goal recurse
Example tl org t2_org otherwise fail
term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs) \x. toorg x \y. t-goal y match types of x, y and recurse
found type instantiation: [““:’a‘¢ |-> “‘:num‘‘] \x. toorg x otherwise fail
found term instantiation: [‘‘x:num‘‘¢ |-> €€1¢¢; “‘xs‘‘ |-> <<[2;3]°¢] const same const match types
returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3]) const otherwise fail
h ik i< findi he | .o var anything try to bind var,
o the tricky part Is finding the instantiation take care of existing bindings

o this problem is called the (term) matching problem

203 /292 204 /292

Examples Term Matching {;%i? Higher Order Term Matching {i‘%i?

o term matching searches for substitutions such that t_org becomes

t_org t_goal substs a-equivalent to t_goal

IE]EIF?EHIE:::’E‘)“XS) IE]EB:I?IT)HM[:;Q;“Q’] :Z : I,‘Em x = hoxs = (23] o higher order term matching searches for substitutions such that

0 0 empty substitution t_org becomes t_subst such that the Sn-normalform of t_subst is
E ;t g ;PX(’X’;);:) VAT E - g : =\ a-equivalent equivalent to 8n-normalform of t_goal, i.e.

b /\b Px/\Py fail higher order term matching is aware of the semantics of A
'x:num. P x /\ Q x lyinum. P’y /\ Q’ y P—-P,Q = Q

eSS L A T freduction (vx.) y = ly/

n-conversion (Ax. f x) = f where x is not free in f

o it is often very annoying that the last match fails o the HOL implementation expects t_org to be a higher-order

o it prevents us for example rewriting !'y. (2 = y) /\ Q yto pattern
(ty. (2=y)) /\ (ly. Q y) » t_org is 3-reduced
o Can we do better? Yes, with higher order (term) matching » if X is a variable that should be instantiated, then all arguments should

be distinct variables
o for other forms of t_org, HOL's implementation might fail
o higher order matching is used by HO_REWR_CONV

206 /292
Examples Higher Order Term Matching g,%fb}% Rewrite Library f,%%}%
B e
o the rewrite library combines REWR_CONV with depth conversions
t_org t_goal substs : : :
rmem. PxAQx 1y (y=2 AQy P (g, y =205 @ o there are many different conversions, rules and tactics
'x. Px /\ Q x 'x. Px /NQx/\Zx Q= \x. Qx/\Zx o at they core, they all work very similarly
k. Px /A Q . Px /A Qx fails » given a list of theorems, a set of rewrite theorems is derived
Ix. P (x, x) Ix. Q x fails . .)
'x. P (x, %) 'x. FST (x,x) = SND (x,x) P — \xx. FST xx = SND xx * split conjunctions
* remove outermost universal quantification
Don’t worry, it might look complicated, but * introduce equations by adding = T (or = F) if needed
in practice it is easy to get a feeling for higher order matching. > REWR_CONV is applied to all the resulting rewrite theorems

» a depth-conversion is used with resulting conversion
o for performance reasons an efficient indexing structure is used

o by default implicit rewrites are added

N
o
~
2
S

Rewrite Library Il

o REWRITE_CONV

o REWRITE_RULE

o REWRITE_TAC

o ASM_REWRITE_TAC

o ONCE_REWRITE_TAC

o PURE_REWRITE_TAC

o PURE_ONCE_REWRITE_TAC

Examples Rewrite and Ho Rewrite Library

> REWRITE_CONV [LENGTH] °‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE_REWRITE_CONV [LENGTH] ¢‘LENGTH [1;2]¢¢
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE.CONV [1 ‘A /\ A /\ ~A“¢
Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] “‘A /\ A /\ ~A‘¢
val it = |- A /\ A /\ ~A<=> A /\F

> REWRITE_CONV [NOT_AND] ‘‘A /\ A /\ ~A¢¢
val it = |- A /\ A /\ ~A <=>F

> REWRITE_CONV [FORALL_AND_THM] ‘“!x. P x /\ Q@ x /\ R x*°¢
Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q@ x /\ R x“°¢
val it = |- 'x. Px /AN Qx /\ R x <=> ('x. Px) /\ (!x. Q x) /\ ('x. R x)

o

209 /292

o similar to Rewrite lib, but uses higher order matching

{f“‘} Ho_Rewrite Library

o internally uses HO_REWR_CONV

o similar conversions, rules and tactics as Rewrite lib

.REWRITE_CONV
.REWRITE_RULE
.REWRITE_TAC
.ASM_REWRITE_TAC
.ONCE_REWRITE_TAC
.PURE_REWRITE_TAC
.PURE_ONCE_REWRITE_TAC

Summary Rewrite and Ho Rewrite Library

©

©

Ho Rewrite
Ho Rewrite
Ho Rewrite
Ho Rewrite
Ho_Rewrite
Ho_Rewrite
Ho_Rewrite

VY Y VY VY VY VvYY

the Rewrite and Ho Rewrite library provide powerful infrastructure
for term rewriting

thanks to clever implementations they are reasonably efficient

basics are easily explained

however, efficient usage needs some experience

212 /292

Term Rewriting Systems {;%;? Term Rewriting Systems — Termination %;@E

Theory
o to use rewriting efficiently, one needs to understand about term

< o choose well-founded order <
rewriting systems

o] o for each rewrite theorem |- t1 = t2 ensure t2 < t1
o this is a large topic

o one can easily give whole course just about term rewriting systems Practice
o however, in practise you quickly get a feeling
o important points in practise

o informally define for yourself what simpler means
o ensure each rewrite makes terms simpler
» ensure termination of your rewrites

/ o good heuristics
» make sure they work nicely together

subterms are simpler than whole term
use an order on functions

213 /292 214 /292
Termination — Subterm examples 53%% Termination — use simpler terms f,%;%%
Ly St
o a proper subterm is always simpler
» 11. APPEND [] 1 = 1 o it is useful to consider some functions simple and other complicated
» In.n+0=n o replace complicated ones with simple ones
> !1. REVERSE (REVERSE 1) =1 o never do it in the opposite direction
» 1t1 t2. if T then tl else t2 <=> t1l PP
» In.n*0=0 o clear examples
» |- 'mn. MEM m (COUNT_LIST n) <=> (m < n)
o the right hand side should not use extra vars, throwing parts away is » |- !1s n. (DROP n 1s = []1) <=> (n >= LENGTH 1ls)
usually simpler
» Ix xs. (SNOC x xs = []) = F o unclear example
» !x xs. LENGTH (x::xs) = SUC (LENGTH xs) » |- 'L. REVERSE L = REV L []

» 'n x xs. DROP (SUC n) (x::xs) = DROP n xs

216 /292

Termination — Normalforms Termination — Problematic rewrite rules

o some equations immediately lead to non-termination, e. g.

» |- 'mn. m+n=n+mn
o some equations can be used in both directions > |- 'm.m=m+0
o one should decide on one direction Q S||ght|y more subtle are rules like
o this implicitly defined a normalform one wants terms to be in » |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)
o examples o _ o
» |- If 1. MAP f (REVERSE 1) = REVERSE (MAP £ 1) ° of'Fer? comblpatlon of multl_ple rules Ieads to non-termination
> |- 111 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13 this is especially problematic when adding to predefined set of
rewrites
» [-mnp. m+ (m+p)=(@m+n) + pand
[-'mnp. m+n) +p=m+ (n+ p)
217 /292 218 /292
Rewrites working together g,%%i&% Rewrites working together I gﬁ,%%}%
Ry Ny
o rewrite rules should not complete with each other
o if a term ta can be rewritten to tal and ta2 applying different
rewrite rules, then the tal and ta2 should be further rewritten to a o to design rewrite systems that work well, normalforms are vital
common tb o a term is in normalform, if it cannot be rewritten any further
o this can often be achieved by adding extra rewrite rules o one should have a clear idea what the normalform of common terms

looks like

Example o all rules should work together to establish this normalform

Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to
o Tor
o EVEN (2 + 2).
To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

o the right-hand-side of each rule should be in normalform
o the left-hand-side should not be simplifiable by any other rule

o the order in which rules are applied should not influence the final
result

219 /292 220 /292

computeLib %%%
ey
o computeLib is the library behind EVAL
o it is a rewriting library designed for evaluating ground terms (i.e.
terms without variables) efficiently
o it uses a call-by-value strategy similar to SML's
o it uses first order term matching
o it performs 3 reduction in addition to rewrites
221 /292
@,
EVAL frriy
Ly

o EVAL uses the_compset

o tools like the Datatype of TFL automatically extend the_compset
o this way, EVAL knows about (nearly) all types and functions

o one can extended the_compset manually as well

o rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

o zDefine prevents TFL from automatically extending the_compset

N
N
w

3/292

compset

o computeLib uses compsets to store its rewrites
0 a compset stores
» rewrite rules
» extra conversions
o the extra conversions are guarded by a term pattern for efficiency
o users can define their own compsets

o however, computeLib maintains one special compset called
the_compset

o the_compset is used by EVAL

simpLib

o simpLib is a sophisticated rewrite engine

o it is HOL's main workhorse
o it provides
» higher order rewriting
usage of context information
conditional rewriting
arbitrary conversions
support for decision procedures
simple heuristics to avoid non-termination
fancier preprocessing of rewrite theorems

vV VY VY VY VY VvYY

o it is very powerful, but compared to Rewrite lib sometimes slow

Basic Usage | {Z‘%‘} Basic Usage |l gzi%?}
Sy 2
0 simpLib uses simpsets
o simpsets are special datatypes storing o a call to the simplifier takes as arguments
rewrite rules > asimpset

>
» conversions

» decision procedures
» congruence rules

>

o in addition there are simpset-fragments

o simpset-fragments contain similar information as simpsets

©

fragments can be added to and removed from simpsets
o common usage: basic simpset combined with one or more
simpset-fragments, e. g.

» list_ss ++ pairSimps.gen_beta_ss

» std_ss ++ QI_ss

| S
225 /292
Basic Simplifier Examples g,%f}%

> SIMP_CONV bool_ss [LENGTH] ‘‘LENGTH [1;2]°°¢
val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ¢‘LENGTH [1;2]°¢¢
val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ‘‘LENGTH [1;2]¢¢
val it = |- LENGTH [1; 2] = 2

N
N
N
N
©
N

|

a list of rewrite theorems

o common high-level entry points are

>

vVvyVvyy

SIMP_CONV ss thmL — conversion

SIMP RULE ss thmL — rule

SIMP_TAC ss thmL — tactic without considering assumptions
ASM_SIMP_TAC ss thmL — tactic using assumptions to simplify goal
FULL_SIMP_TAC ss thmL — tactic simplifying assumptions with each
other and goal with assumptions

REV_FULL_SIMP_TAC ss thmL — similar to FULL_SIMP_TAC but with
reversed order of assumptions

o there are many derived tools not discussed here

FULL_SIMP_TAC Example

Current
P (SUC (S

GoalStack

UC x0)) (SUC (SUC y0))

w N - O
~<
e

Action

FULL_SIMP_TAC std_ss []

Resulting GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC y0) = y2
1. x1 = SUC x0
2. yl = SUC yO
3. SUC x1 = x2

N
N
@

292

REV_FULL_SIMP_TAC Example {i‘%i? Common simpsets {Z‘%E

Current GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC yO) = y2

1. x1 = SUC xO

2. yi = SUC yO

3. SUC x1 = x2
Action

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack

P x2 y2
0. SUC (SUC yO) = y2
1. x1 = SUC x0
2. yl1 = SUC yO
3. SUC (SUC x0) = x2
229 /292
Common simpset-fragments g,%f}%

many theories and libraries provide their own simpset-fragments
PRED_SET_ss — simplify sets

STRING_ss — simplify strings

QI_ss — extra quantifier instantiations

gen beta_ss — [reduction for pairs

ETA_ss — 17 conversion

EQUIV_EXTRACT_ss — extract common part of equivalence

CONJ_ss — use conjunctions for context

Build-In Conversions and Decision Procedures ﬁ%ﬁ%

pure_ss — empty simpset
bool_ss — basic simpset
std_ss — standard simpset
arith_ss — arithmetic simpset
list_ss — list simpset

real_ss — real simpset

in contrast to Rewrite lib the simplifier can run arbitrary conversions

most useful is probably £ reduction

o std_ss has support for basic arithmetic and numerals
o it also has simple, syntactic conversions for instantiating quantifiers

» Ix. ... /N (x=¢c¢)/\ ... => ...
» Ix. ... \/ ~&x=¢c)\/ ...
» ?x. ... /\ (x=¢) /\ ...

besides very useful conversions, there are decision procedures as well

the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE

232 /292

Examples |

> SIMP_CONV std_ss [1 “‘(\x. x + 2) 5¢¢
val it = |- (\x. x + 2) 5 =7

> SIMP_CONV std_ss [1 ““!x. Q x /\ (x =7) ==>P x“¢
val it = |- ('x. Q x /\ (x =7) ==>P x) <=> (Q 7 ==>P 7)‘¢

> SIMP_CONV std_ss [1 ““?x. Q x /\ (x=7) /\ P x“¢
val it = |- (?x. Q@ x /\ (x=7) /\Px) <=> Q7 /\PT7T)“

> SIMP_CONV std_ss [] “‘x > 7 ==> x > 5¢¢
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] “‘x > 7 ==> x > 5°¢

val it = |- (x > 7 ==> x > 5) <=> T
233 /292
Context g;%f.%
s §
St
o a great feature of the simplifier is that it can use context information

©

by default simple context information is used like
» the precondition of an implication
» the condition of if-then-else
o one can configure which context to use via congruence rules

» by using CONJ_ss one can easily use context of conjunctions
» warning: using CONJ_ss can be slow
» using other contexts is outside the scope of this lecture

©

using context often simplifies proofs drastically
» using Rewrite lib, often a goal needs to be split and a precondition
moved to the assumptions
» then ASM REWRITE_TAC can be used
» with SIMP_TAC there is no need to split the goal

Higher Order Rewriting {ZTH“:;

o the simplifier supports higher order rewriting
o this is often very handy

o for example it allows moving quantifiers around easily

Examples

> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x°¢
val it = |- (!x. P x /\ Q /\ R x) <=>
('x. P x) /\ Q/\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]
‘9. (Py /\ (?x. y = SUC x)) ==>Q y**
val it = |- (ly. Py /\ (?x. y = SUC x) ==> Q y) <=>
'x. P (SUC x) ==> Q (SUC x)

Context Examples

1=10])==>P1) /\ Q1
P1) /NQ1l<=>
P[/\NQ1

> SIMP_CONV std_ss [1 “‘((
val it = |- (1 [>
@a=1

> SIMP_CONV arith_ss [] “‘if (¢ /\ x < 5) then (P ¢ /\ x < 6) else Q c¢
val it = |- (if ¢ /\ x < 5 then P ¢ /\ x < 6 else Q c) <=>
if ¢ /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [1 ‘P x /\ (Q x /\ P x ==>17Z x)¢¢
Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [1 ‘P x /\ (@ x /\ P x ==> Z x) ‘¢
val it = [-Px /\ (@ x /\Px==>2Zx) <=>Px/\ (Qx==>2Zx)

236 /292

Conditional Rewriting | {ﬁ“}

o perhaps the most powerful feature of the simplifier is that it supports
conditional rewriting

o this means it allows conditional rewrite theorems of the form
|- cond ==> (t1 = t2)
o if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2’, it
tries to discharge the assumption cond’
o for this, it calls itself recursively on cond’
» all the decision procedures and all context information is used

» conditional rewriting can be used
» to prevent divergence, there is a limit on recursion depth

o if cond’ = T can be shown, t1’ is rewritten to t2’

o otherwise t1’ is not modified

Conditional Rewriting Example fom

Proof with Rewrite

prove (““(DROP 7 [1;2;3;4]1) ++ [5;6;7] = [5;6;7]1°¢,
‘DROP 7 [1;2;3;4] = [1°¢ by (
MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
REWRITE_TAC[LENGTH] >>
DECIDE_TAC
) >>
ASM_REWRITE_TAC [APPEND])

Proof with Simplifier

prove (““(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]1¢°¢,
ASM_SIMP_TAC list_ss [1)

239 /292

Conditional Rewriting Example {i%;}

Conditional Rewriting Il f‘%‘é’w

consider the conditional rewrite theorem
11 n. LENGTH 1 <= n ==> (DROP n 1 = [])

let's assume we want to prove

(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]

we can without conditional rewriting
» show |- LENGTH [1;2;3;4] <=7
» use this to discharge the precondition of the rewrite theorem
» use the resulting theorem to rewrite the goal

with conditional rewriting, this is all automated

> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]
““(DROP 7 [1;2;3;4]) ++ [5;6;7]1“¢
val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 71 = [5; 6; 7]

conditional rewriting often shortens proofs considerably

conditional rewriting is a very powerful technique

decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

it provides a powerful search for theorems that apply
however, if used naively, it can be slow

moreover, to work well, rewrite theorems need to of a special form

240 /292

Conditional Rewriting Pitfalls | {fi}

o if the pattern is too general, the simplifier becomes very slow
o consider the following, trivial but hopefully useful example
Looping example
> val my_thm = prove (‘‘"P ==> (P = F)‘‘, PROVE_TAC[])
> time (SIMP_CONV std_ss [my_thm]) ¢‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.
Exception- UNCHANGED raised
> time (SIMP_CONV std_ss [1) ‘‘P1 /\ P2 /\ P3 /\ ... /\ P10‘¢
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.
Exception- UNCHANGED raised
» notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)
» notice that each backchaining triggers many more backchainings
» each has to be aborted to prevent diverging
» as a result, the simplifier becomes very slow
» incidentally, the conditional rewrite is useless
241 /292
Conditional Rewriting Pitfalls I g,%fb}%

o let's look in detail why SIMP_CONV did not make progress above

> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [my_thm] ‘P 2 3 /\ P 3 4 ==>P 2 4‘¢

[468000] : more context: |- !x yz. Pxy==>Pyz==>Pxz

[468000]: New rewrite: |- (?y. Pxy /\ Py 2z) ==> (P x 2z <=>T)
[684000]: more context: [.]J |[-P 23 /\P 34

[684000]: New rewrite: [.] |[-P 23 <=>T

[684000]: New rewrite: [.] |- P 34 <=>T

[688000]: rewriting P 2 4 with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
[588000]: trying to solve: ?y. P2y /\ Py 4

[688000]: rewriting P 2 y with |- (?y. Pxy /\ Py z) ==> (P x z <=>T)
[692000]: trying to solve: ?y’. P 2y’ /\ Py’ y

[696000]: looping - cut

[608000] : looping - stack limit reached

[640000] : couldn’t solve: ?y. P2y /\ Py 4

Exception- UNCHANGED raised

Conditional Rewriting Pitfalls [l gﬁ%é

o good conditional rewrites |- ¢ ==> (1 = r) should mention only
variables in ¢ that appear in 1

o if c contains extra variables x1 xn, the conditional rewrite
engine has to search instantiations for them

o this mean that conditional rewriting is trying discharge the
precondition ?x1 ... xn. ¢

o the simplifier is usually not able to find such instances

Transitivity

> val P_def = Define ‘P x y = x < y*;
> val my_thm = prove (‘‘!x y z. Px y
> SIMP_CONV arith_ss [my_thm] ‘‘P 2 3
Exception- UNCHANGED raised

==>Pyz==>Pxz ...)
/\ P34 ==>P 24

(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ‘P 2 3 /\ P 3 4 ==>P 2 4‘¢
val it = |- P 23 /\ P34 ==>P 24 <=>T:

Conditional vs. Unconditional Rewrite Rules

o conditional rewrite rules are often much more powerful
o however, Rewrite lib does not support them

o for this reason there are often two versions of rewrite theorems

drop example

o DROP_LENGTH_NIL is a useful rewrite rule:
[- '1. DROP (LENGTH 1) 1 = []
o in proofs, one needs to be careful though to preserve exactly this form
one should not (partly) evaluate LENGTH 1 or modify 1 somehow

o with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does
not need to be as careful
|- 11 n. LENGTH 1 <= n ==> (DROP n 1 = [])
the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

244 /292

Special Rewrite Forms {ﬁ“}

o some theorems given in the list of rewrites to the simplifier are used
for special purposes
o there are marked functions that mark these theorems

» Once : thm -> thm use given theorem at most once

» Ntimes : thm -> int -> thm use given theorem at most the given
number of times

» AC : thm -> thm -> thm use given associativity and commutativity
theorems for AC rewriting

» Cong : thm -> thm use given theorem as a congruence rule

o these special forms are easy ways to add this information to a simpset

o it can be directly set in a simpset as well

245 /292

Stateful Simpset g‘%

o the simpset srw_ss() is maintained by the system

» it is automatically extended by new type-definitions
» theories can extend it via export_rewrites
» libs can augment it via augment_srw_ss

o the stateful simpset contains many rewrites

o it is very powerful and easy to use

Example
> SIMP_CONV (srw_ss()) [] “‘case [] of [1 => (2 + 4)“¢
val it = |- (case [J of [J] => 2 + 4 | v::vl => ARB) = 6

a,
Example Once %;THE
et
> SIMP_CONV pure_ss [Once ADD_COMM] ‘‘a + b = c + d¢¢
val it = |- (@a+Db=c+d) <=> (b+a=c+d)
> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ‘‘a + b = c + 4¢¢
val it = |- (a+b=c+d) <=> (a+Db=c +d)
> SIMP_CONV pure_ss [ADD_COMM] ‘‘a + b =c + d¢
Exception- UNCHANGED raised
> ONCE_REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d‘°¢
val it = |- (a+b=c+d) <=> (b+a=4d+ c)
> REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d‘°¢
. diverges ...
246 /292

Discussion on Stateful Simpset

o the stateful simpset is very powerful and easy to use
o however, results are hard to predict

o proofs using it unwisely are hard to maintain
o the stateful simpset can expand too much

» bigger, harder to read proof states
» high level arguments become hard to see

o whether to use the stateful simpset depends on personal proof style
o | advise at the beginning to not use srw_ss

o once you got a good intuition on how the simplifier works, make your
own choice

TH

Adding Own Conversions {Z‘@‘}

o it is complicated to add arbitrary decision procedures to a simpset

o however, adding simple conversions is straightforward

o a conversion is described by a stdconvdata record

type stdconvdata = {
name: string, (* name for debugging *)
pats: term list, (x list of patterns, when to try conv *)
conv: conv (* the conversion *)

}

o use std_conv_ss to create simpset-fragement

Example

val WORD_ADD_ss =
simpLib.std_conv_ss
{conv = CHANGED_CONV WORD_ADD_CANON_CONV,
name = "WORD_ADD_CANON_CONV",
pats = [‘‘words$word_add (w:’a word) y‘‘1}

Summary Simplifier %@j}

o the simplifier is HOL's main workhorse for automation
o it is very powerful

o conditional rewriting very powerful
» here only simple examples were presented
» experiment with it to get a feeling
o many advanced features not discussed here at all

» using congruence rules
» writing own decision procedures
» rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in
control when using it. Otherwise your proofs easily become lengthy,
convoluted and hard to maintain.

249 /292

Part XIV

Advanced Definition Principles

by

N kY
ZKTH%

VETENSKAP %
28 OCH KONST %o

e

Relations 5,5@&

o a relation is a function from some arguments to bool
o the following example types are all types of relations:
» : ’a -> ’a -> bool

’a => ’b -> bool

’a => ’b -> ’c -> ’d -> bool

(’a # ’b # ’c) —> bool
: bool

’a -> bool

v vy vYVvyy

o relations are closely related to sets
»Rabc<=>(a, b, c) IN {(a, b, &) | Rab c}
» (a, b, c) INS <=> (\abec. (a, b, c) INS) abc

252 /292

Relations I

o relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R ‘a => ’a —>
bool can be defined as the least relation RTC R that satisfies the
following rules:

RTCR x y RICR y z
RIC R x z

Rxy
RICR x y

RTC R x x

o if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

o least fixpoints give rise to inductive relations

o greatest fixpoints give rise to coinductive relations

Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ¢
('xy. Rxy ==> RTC_REL R x y) /\
(I'x. RTC_REL R x x) /\
(!x y z. RTC.REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)°

val RTC_REL_rules = |- !R.
(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
(!x y z. RTC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)

val RTC_REL_cases = |- 'R a0 al.
RTC_REL R a0 al <=>
(R a0 a1l \/ (al = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R a0 al)

N
&
&
3
N}

(Co)inductive Relations in HOL {i%;}

(Co) IndDefLib provides infrastructure for defining (co)inductive
relations

©

o given a set of rules Hol_(co)reln defines (co)inductive relations
3 theorems are returned and stored in current theory

©

> a rules theorem — it states that the defined constant satisfies the rules

» a cases theorem — this is an equational form of the rules showing that
the defined relation is indeed a fixpoint

» a (co)induction theorem

©

additionally a strong (co)induction theorem is stored in current theory

Example: Transitive Reflexive Closure Il

val RTC_REL_ind = |- 'R RTC_REL’.
(('x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z. RTC_REL’ x y /\ RTC_REL’ x z ==> RTC_REL’ x z)) ==>
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- 'R RTC_REL’.
(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R x z /\
RTC_REL’ x z ==>
RTC_REL’ x z) ==>

('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

Example: EVEN {ﬁ“}

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
“(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))°;

val EVEN_REL_cases =
|- 'a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
|- EVEN_REL O /\ !'m. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.
(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>
('a0. EVEN_REL a0 ==> EVEN_REL’ a0)

o notice that in this example there is exactly one fixpoint

o therefore for these rule, the induction and coinductive relation coincide

Quotient Types gf%.%

o quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

o each equivalence class becomes a value of the new type
o partiality allows ignoring certain types
o quotientLib allows to lift definitions and lemmata as well

o details are technical and won't be presented here

259 /292

Quotient Types Example

Example: Dummy Relations {i@i;

> val (DF_rules, DF_ind, DF_cases) = Hol_reln
‘(!n. DF (n+1) ==> (DF n))*

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
‘(!'n. DT (n+1) ==> (DT n))*

val DT_coind =
|- 'DT’. ('a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’ a0 ==> DT a0

val DF_ind =
|- 'DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

|- 1a0. DT a0 <=> DT (a0 + 1):
|- 'a0. DF a0 <=> DF (a0 + 1):

val DT_cases
val DF_cases

o notice that for both DT and DF we used essentially a non-terminating

recursion
o DT is always true, i.e. |- 'n. DT n
o DF is always false, i.e. |- !n. ~(DF n)

o let's assume we have an implementation of finite sets of numbers as
binary trees with

» type binset

binary tree invariant WF_BINSET :
constant empty_binset

add and member functions add : num -> binset -> binset,
mem : binset -> num -> bool

v

binset -> bool

v

v

o we can define a partial equivalence relation by
binset_equiv bl b2 := (
WF_BINSET bl /\ WF_BINSET b2 /\
('n. mem bl n <=> mem b2 n))
o this allows defining a quotient type of sets of numbers
o functions empty_binset, add and mem as well as lemmata about
them can be lifted automatically

260 /292

Quotient Types Summary {m‘}.

o quotient types are sometimes very useful

» e.g. rational numbers are defined as a quotient type
o there is powerful infrastructure for them
o many tasks are automated

o however, the details are technical and won't be discussed here

TFL / Define gf%i%

o we have already used top-level pattern matches with the TFL package
o Define is able to handle them

» all the semantic complexity is taken care of
» no special syntax or functions remain
» no special rewrite rules, reasoning tools needed afterwards

o Define produces a set of equations

o this is the recommended way of using pattern matching in HOL

Example

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(zip [0 [0 = [
val ZIP_def = |- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(zip [1 11 = D

263 /292

Pattern Matching / Case Expressions

o pattern matching ubiquitous in functional programming
o pattern matching is a powerful technique
o it helps to write concise, readable definitions

o very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)

o however, it is not directly supported by HOL's logic

o representations in HOL

» sets of equations as produced by Define
» decision trees (printed as case-expressions)

Case Expressions

o sometimes one does not want to use this compilation by TFL

» one wants to use pattern-matches somewhere nested in a term
» one might not want to introduce a new constant
» one might want to avoid using TFL for technical reasons

o in such situations, case-expressions can be used

o their syntax is similar to the syntax used by SML

Example
> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| (01, [=> 0¢
val ZIP_def = |- !ys xs. ZIP xs ys =
case (xs,ys) of
., = 0
| ([],v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs?,y::ys’) => (x,y)::ZIP xs’ ys’

264 /292

Case Expressions Il {ﬁ“}

o the datatype package define case-constants for each datatype
o the parser contains a pattern compilation algorithm

o case-expressions are by the parser compiled to decision trees using
case-constants

o pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =
pair_CASE (xs,ys)
(v vi.

list_CASE v (list_CASE vi [1 (\v4 v5. ARB))

(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):
265 /292
Case Expression Issues |l g,%f’?}%

o technical issues

» it is tricky to reason about decision trees
> rewrite rules about case-constants needs to be fetched from TypeBase

* alternative srw_ss often does more than wanted
» partially evaluated decision-trees are not pretty printed nicely any more
o underspecified functions
» decision trees are exhaustive
they list underspecified cases explicitly with value ARB
this can be lengthy
Define in contrast hides underspecified cases

vYyy

292

N
S

Case Expression Issues {Z%?:;

o using case expressions feels very natural to functional programmers

o case-expressions allow concise, well-readable definitions

o however, there are also many drawbacks
o there is large, complicated code in the parser and pretty printer
» this is outside the kernel
» parsing a pretty-printed term can result in a non a-equivalent one
» there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)
o the results are hard to predict
» heuristics involved in creating decision tree
» results sometimes hard to predict
» however, it is beneficial that proofs follow this internal, volatile
structure
266 /292
Case Expression Example | gﬁ,%}%
et

Partial Proof Script

val _ = prove (¢‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (A1 = [1) /\ Q2 = [1))) ",

ONCE_REWRITE_TAC [ZIP_def]

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case (11,12) of
aa,mm = 0

| ([],v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =
[1) <=> 11 =1[1) /\ A2 = [1))

Case Expression Example lla — partial evaluation {Z‘% Case Expression Example b — following tree structureﬁfg}?

Partial Proof Script
Partial Proof Script

val _ = prove (‘111 12.
val _ = prove (‘‘!11 12. (LENGTH 11 = LENGTH 12) ==>
(LENGTH 11 = LENGTH 12) ==> ((ZIP 11 12 = []1) <=> (11 = [1) /\ Q2 = [1)))“°,
((zIP 11 12 = [1) <=> (11 = [1) /\ Q2 = [1)))*“*,
ONCE_REWRITE_TAC [ZIP_def] >>
ONCE_REWRITE_TAC [ZIP_def] >> Cases_on ‘11°¢ >| [
REWRITE_TAC [pairTheory.pair_case_def] >> BETA_TAC REWRITE_TAC[listTheory.list_case_def])
Current Goal Current Goal
111 12. 112.
(LENGTH 11 = LENGTH 12) ==> (LENGTH [] = LENGTH 12) ==>
(((case 11 of (((case ([1,12) of
[0 => (case 12 of [1 => [1 | v4::v5 => ARB) (01,00 = 00
| x::xs’ => case 12 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) = | ([],v4::v5) => ARB
[1) <=> Q1 =1[1) /\ A2 =[N | (x::xs’,[1) => ARB

| (x::xs?,y::ys’) => (x,y)::ZIP xs’ ys’) =
[1> <=> Q2 = [1))

269 /292 270 /292

Case Expression Summary fr%%

Part XV

o case expressions are natural to functional programmers Maintainable Proofs
o they allow concise, readable definitions

o however, fancy parser and pretty-printer needed
» trustworthiness issues m}
» sanity check lemmata advisable

: . . o T R
o reasoning about case expressions can be tricky and lengthy éZ}QKTHQ%
LYe] XYY

o proofs about case expression often hard to maintain VETENSKAP
28 OCH KONST %%

NG

o therefore, use top-level pattern matching via Define if easily possible

271 /292

Motivation

o proofs are hopefully still used in a few weeks, months or even years

o often the environment changes slightly during the lifetime of a proof

>

>
>
>

your definitions change slightly
your own lemmata change (e.g. become more general)

used libraries change
HOL changed

* % % %

automation became more powerful

rewrite rules in certain simpsets changed

definition packages produce slightly different theorems
autogenerated variable-names change

* L.

o even if HOL and used libraries are stable, proofs often go through
several iterations

o often they are adapted by someone else than the original author

o therefore it is important that proofs are easily maintainable

273 /292
Formatting gli%%
Ly
o format your proof such that it easily understandable
o make the structure of the proof very clear
o show clearly where subgoals start and stop
o use indentation to mark proofs of subgoals
o use empty lines to separate large proofs of subgoals
o use comments where appropriate
275 / 292

Nice Properties of Proofs %;@E

o maintainability is closely linked to other desirable properties of proofs

» easily understandable

» well-structured

» robust
* they should be able to scope with minor changes to environment
* if they fail they should do so at sensible points

» reusable

©

How can one write proofs with such properties?

©

as usual, there are no easy answers but plenty of good advice

o | recommend following the advice of ProofStyle manual

Formatting Example | f‘%

Bad Example Term Formatting

prove (“¢!11 12. 11 <> [] ==> LENGTH 12 <
LENGTH (11 ++ 12)°¢¢,
)

Good Example Term Formatting

prove (“!11 12. 11 <> [] ==>
(LENGTH 12 < LENGTH (11 ++ 12))°¢,

50)

276 /292

Formatting Example Il

Bad Example Subgoals

prove (““!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢,
Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals
At least show when a subgoal starts and ends

prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >> (

REWRITE_TAC[]
) >>
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

Formatting Example |l 3

Alternative Good Example Subgoals
Alternative good formatting using THENL

prove (‘€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [
REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Another Bad Example Subgoals
Bad formatting using THENL

prove (€¢!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))‘¢,
Cases >| [REWRITE_TACI[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >> DECIDE_TAC])

N
~
©
N
N

Formatting Example Il 2

Good Example Subgoals

Make sure REWRITE_TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >- (

REWRITE_TAC[] >>
)
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

Some basic advice

o use semicoli after each declaration
» if exception is raised during interactive processing (e.g. by a failing
proof), previous successful declarations are kept
» it sometimes leads to better error messages in case of parsing errors

o use plenty of parentheses to make structure very clear
o don't ignore parser warnings
» especially multiple possible parse trees are likely to lead to unstable
proofs
» understand why such warnings occur and make sure there is no problem
o format your development well

» use indentation

» use linebreaks at sensible points
» don't use overlong lines

>

o don't use open in middle of files

o personal opinion: avoid unicode in source files

N
»
o
2
S

KISS and Premature Optimisation {;%i? Too much abstraction g;%;‘}

o follow standard design principles

» KISS principle Too much abstraction Example

» ‘“premature optimization is the root of all evil’ (Donald Knuth) val ABSTRACT_LEMMA = prove (‘¢

o don't try to be overIy clever !(size :’a -> num) (P : ’a -> bool) (combine : ’a -> ’a -> ’a).
('x. P x ==> (0 < size x)) /\
o simple proofs are preferable (1x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>
o proof-checking-speed mostly unimportant (1x1 x2. P x1 ==> (size x2 < size (combine x1 x2))) ‘¢,
o conciseness not a value in itself but desirable if it helps)
» readability prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢,
» maintainability some proof using ABSTRACT_LEMMA

)

o abstraction is often declarable, but also has a price
» don't use too complex, artificial definitions and lemmata

Too clever tactics g,%fb}% Too Clever Tactics Example |
Ny
Bad Example Subgoals
prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))‘°,
. . . Cases >> (
o a common mistake is to use too clever tactics REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
» intended to work on many (sub)goals REPEAT STRIP_TAC >>
: . . DECIDE_TAC
» using TRY and other fancy trial and error mechanisms 3
» intended to replace multiple simple, clear tactics
o typical case: a tactic containing TRY applied to many subgoals Alternative Good Example Subgoals Il
o it is often hard to see why such tactics work prove (¢¢!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°°,
. . Cases >> SIMP_TAC list_ss [])
o if something goes wrong, they are hard to debug
o general advice: don't factor with tactics, instead use definitions and gz‘s";: il'[ll L2 Ll I == CLBUEE 12« LEUE (. o 12077,
lemmata REWRITE_TAC[],
REWRITE_TAC[1listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC
D

N
&
&
2
S
N
»
S
by

Too Clever Tactics Example Il

Bad Example

val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (nl + n2))) /\

(oadd _ _ = NONE) ¢;

val osub_def = Define ‘(osub (SOME n1) (SOME n2) = (SOME (nl - n2))) /\
(osub _ _ = NONE) ¢;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (n1 * n2))) /\

(omul _ = NONE) ¢;

val onum_NONE_TAC =
Cases_on ‘ol‘ >> Cases_on ‘02°¢ >>
SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (

‘101 02. (oadd ol 02 = NONE) <=> (o1l = NONE) \/ (02 = NONE)‘°,
onum_NONE_TAC) ;

val osub_NULL = prove (
““101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE)“‘,
onum_NONE_TAC) ;

val omul_NULL = prove (
‘101 02. (omul ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,

onum_NONE_TAC) ;

Use many subgoals and lemmata

o often it is beneficial to use subgoals
» they structure long proofs well
» they help keeping the proof state clean
» they mark clearly what one tries to proof and provide points where
proofs can break sensibly

o general subgoals should often become lemmata

» this improves reusability
» proof scripts become shorter
» proofs are disentangled

N
]
=

2
S

Too Clever Tactics Example Il

Good Example

val obin_def = Define ‘(obin op (SOME n1) (SOME n2) = (SOME (op n1 n2))) /\

(obin _ _ _ = NONE) ¢;
val oadd_def = Define ‘oadd = obin $+°¢;
val osub_def = Define ‘osub = obin $-¢;
val omul_def = Define ‘omul = obin $*°;

val obin_NULL = prove (
‘“lop ol 02. (obin op ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,
Cases_on ‘ol‘ >> Cases_on ‘02¢ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (

““101 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘°,
REWRITE_TAC[oadd_def, obin_NULL]);

val osub_NULL = prove (
“¢101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)“°¢,
REWRITE_TAC [osub_def, obin_NULL]);

val omul_NULL = prove (
‘101 02. (omul ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE) ‘¢,

REWRITE_TAC [omul_def, obin_NULL]) ;

Subgoal Example

o the following example is taken from exercise 5

First Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°°¢,
REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
Induct_on ‘1°¢ >- (
Q.EXISTS_TAC ‘[]°¢ >>
SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]
) >>
FULL_SIMP_TAC std_ss [] >>
GEN_TAC >>
Q.EXISTS_TAC ‘T::bl¢ >>
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

N
@
©
2
]

Subgoal Example Il

Subgoal Version

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°°¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢ suffices_by (
METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘1¢ >> (
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))

Subgoal Example Il

Lemma Version

val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",
€¢11. FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1°°¢,
Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°¢¢,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH 1) T¢ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

Avoid Autogenerated Names

o many HOL-tactics introduce new variable names

» Induct
» Cases
>

o the new names are often very artificial
o even worse, generated names might change in future

o proof scripts using autogenerated names are therefore

» hard to read
» potentially fragile

o therefore rename variables after they have been introduced
o HOL has multiple tactics supporting renaming

o most useful is renamel ‘pat®, it searches for pattern and renames
vars accordingly

Autogenerated Names Example

Bad Example

prove (‘“!1. 1 < LENGTH 1 ==> (?x1 x2 1°. 1 = x1::x2::1°)°¢,
GEN_TAC >>

Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>

Cases_on ‘t¢ >> SIMP_TAC list_ss [])

Good Example

prove (‘“!1. 1 < LENGTH 1 ==> (?7x1 x2 1’. 1 = x1::x2::1°)°¢,

GEN_TAC >>

Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>
renamel ‘LENGTH 12¢ >>

Cases_on ‘12¢ >> SIMP_TAC list_ss [])

Proof State before renamel

1 < SUC (LENGTH t) ==> ?x2 1’. t = x2::1°
Proof State after renamel
1 < SUC (LENGTH 12) ==> ?x2 1’. 12 = x2::1°

N
©
N

292

