Interactive Theorem Proving (ITP) Course
Part XV

Thomas Tuerk (tuerk@kth.se)

ady

FEoy
£ZKTHY

$ verewsca &

38 OCH KONST &

Yot

Academic Year 2016/17, Period 4

version 98c9a84 of Mon Jun 5 12:14:44 2017

Motivation ffﬁ%%

o proofs are hopefully still used in a few weeks, months or even years

o often the environment changes slightly during the lifetime of a proof

>

>
>
>

your definitions change slightly

your own lemmata change (e.g. become more general)
used libraries change

HOL changed

automation became more powerful

rewrite rules in certain simpsets changed

definition packages produce slightly different theorems
autogenerated variable-names change

* L.

* % % %

o even if HOL and used libraries are stable, proofs often go through
several iterations

o often they are adapted by someone else than the original author

o therefore it is important that proofs are easily maintainable

273 /292

Part XIV

Maintainable Proofs

by

N kY
ZKTH%

VETENSKAP
28 OCH KONST %o

e

Nice Properties of Proofs Py
et
© maintainability is closely linked to other desirable properties of proofs

©

©

» easily understandable
» well-structured
> robust

* they should be able to scope with minor changes to environment
* if they fail they should do so at sensible points

» reusable
How can one write proofs with such properties?
as usual, there are no easy answers but plenty of good advice

| recommend following the advice of ProofStyle manual

274 /292

Formatting

format your proof such that it easily understandable

©

o make the structure of the proof very clear

o show clearly where subgoals start and stop

o use indentation to mark proofs of subgoals

o use empty lines to separate large proofs of subgoals

o use comments where appropriate

Formatting Example Il

Bad Example Subgoals

prove (111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°¢¢,
Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals

At least show when a subgoal starts and ends

prove (<111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))‘¢,
Cases >> (

REWRITE_TAC[]
) >>
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

Formatting Example | gzl;m“:;

Bad Example Term Formatting

prove (€111 12. 11 <> [] ==> LENGTH 12 <
LENGTH (11 ++ 12)°¢¢,
00)

Good Example Term Formatting

prove (€111 12. 11 <> [] ==>
(LENGTH 12 < LENGTH (11 ++ 12))°¢,

.

Formatting Example Il 2

Good Example Subgoals

Make sure REWRITE_TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (‘‘!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°,
Cases >- (

REWRITE_TAC[] >>
)
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)

278 /292

KTH

Formatting Example |l 3 {@‘*}

Alternative Good Example Subgoals
Alternative good formatting using THENL

prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [
REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Another Bad Example Subgoals
Bad formatting using THENL

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°¢,
Cases >| [REWRITE_TACI[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >> DECIDE_TAC])

279 /292

KISS and Premature Optimisation g«a‘%

©

follow standard design principles
» KISS principle
» “premature optimization is the root of all evil’ (Donald Knuth)

©

don't try to be overly clever

©

simple proofs are preferable

©

proof-checking-speed mostly unimportant

©

conciseness not a value in itself but desirable if it helps

» readability
» maintainability

©

abstraction is often declarable, but also has a price
» don't use too complex, artificial definitions and lemmata

N
»
@
2
S

Some basic advice g@‘}

o use semicoli after each declaration
» if exception is raised during interactive processing (e.g. by a failing
proof), previous successful declarations are kept
» it sometimes leads to better error messages in case of parsing errors

o use plenty of parentheses to make structure very clear
o don't ignore parser warnings
» especially multiple possible parse trees are likely to lead to unstable
proofs
» understand why such warnings occur and make sure there is no problem
o format your development well

» use indentation

» use linebreaks at sensible points
» don't use overlong lines

>

o don't use open in middle of files

©

personal opinion: avoid unicode in source files

Too much abstraction Pt

Too much abstraction Example

val ABSTRACT_LEMMA = prove (‘¢

!(size :’a -> num) (P : ’a -> bool) (combine :
('x. P x ==> (0 < size x)) /\
('x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

a => ’a -> ’a).

(1x1 x2. P x1 ==> (size x2 < size (combine x1 x2))) ‘¢,

L)

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
some proof using ABSTRACT_LEMMA
)

N
@
o
n
IN]

Too clever tactics

o a common mistake is to use too clever tactics

» intended to work on many (sub)goals
» using TRY and other fancy trial and error mechanisms
» intended to replace multiple simple, clear tactics

o typical case: a tactic containing TRY applied to many subgoals

©

it is often hard to see why such tactics work

©

if something goes wrong, they are hard to debug

©

general advice: don't factor with tactics, instead use definitions and
lemmata

Too Clever Tactics Example Il

Bad Example

val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (nl + n2))) /\

(oadd _ _ = NONE) ¢;

val osub_def = Define ‘(osub (SOME nl1) (SOME n2) = (SOME (n1 - n2))) /\
(osub _ _ = NONE) ¢;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (nl * n2))) /\

(omul _ _ = NONE) ¢;
val onum_NONE_TAC =
Cases_on ‘ol¢ >> Cases_on ‘02°¢ >>

SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (

““101 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘°,
onum_NONE_TAC) ;

val osub_NULL = prove (
“¢101 02. (osub ol 02 = NONE) <=> (ol = NONE) \/ (02 = NONE)“°¢,
onum_NONE_TAC) ;

val omul_NULL = prove (
““101 02. (omul ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE) ‘¢,

onum_NONE_TAC) ;

Too Clever Tactics Example |

Bad Example Subgoals

prove (‘€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >> (
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC
))

Alternative Good Example Subgoals Il

prove (€111 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘°¢,
Cases >> SIMP_TAC list_ss [])
prove (¢€!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))°‘¢,
Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC

D

Too Clever Tactics Example Il

Good Example

(SOME (op nl n2))) /\
NONE) ¢;

val obin_def = Define ‘(obin op (SOME n1) (SOME n2)
(obin _ _ _

‘oadd = obin $+°¢;

‘osub = obin $-°;

‘omul = obin $*°¢;

val oadd_def Define
val osub_def Define
val omul_def = Define

val obin_NULL = prove (
‘“lop ol 02. (obin op ol 02 = NONE) <=> (ol = NONE) \/ (o2 = NONE)‘‘,
Cases_on ‘0l1‘ >> Cases_on ‘02¢ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (
““101 02. (oadd ol 02 = NONE) <=> (ol = NONE) \/ (02
REWRITE_TAC[oadd_def, obin_NULL]);
val osub_NULL = prove (
‘101 02. (osub ol 02 = NONE) <=> (ol
REWRITE_TAC[osub_def, obin_NULL]);
val omul_NULL = prove (
‘1ol 02. (omul ol 02 = NONE) <=> (o1l
REWRITE_TAC[omul_def, obin_NULL]);

NONE) “ ¢,

NONE) \/ (o2 = NONE) ‘¢,

NONE) \/ (o2

NONE) “ ¢,

N
&»
&
2
S

Use many subgoals and lemmata Subgoal Example

o the following example is taken from exercise 5
o often it is beneficial to use subgoals

» they structure long proofs well First Version

» they help keeping the proof state clean val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

» they mark clearly what one tries to proof and provide points where €€11. IS_WEAK_SUBLIST_FILTER 1 1°¢°¢,

proofs can break sensibly REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
Induct_on ‘1¢ >- (
o general subgoals should often become lemmata Q.EXISTS_TAC ‘[1¢ >>
» this improves reusability) SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]
. >>

» proof scripts become shorter FULL_SIMP_TAC std_ss [] >>

» proofs are disentangled GEN_TAC >> -
Q.EXISTS_TAC ‘T::bl¢ >>
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

Subgoal Example Il Subgoal Example I

Subgoal Version Lemma Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL", val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",
€¢11. IS_WEAK_SUBLIST_FILTER 1 1°¢, €¢11. FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢°¢,
GEN_TAC >> Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);
REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
‘FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1¢ suffices_by (val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
METIS_TAC[LENGTH_REPLICATE] ¢¢11. IS_WEAK_SUBLIST_FILTER 1 1°¢¢,
) >> GEN_TAC >>
Induct_on ‘1¢ >> (REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE] Q.EXISTS_TAC ‘REPLICATE (LENGTH 1) T¢ >>
)) SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

289 /292 290 /292

Avoid Autogenerated Names {;@’}

o many HOL-tactics introduce new variable names

» Induct
» Cases
> .

o the new names are often very artificial
o even worse, generated names might change in future

o proof scripts using autogenerated names are therefore
» hard to read
» potentially fragile

o therefore rename variables after they have been introduced
o HOL has multiple tactics supporting renaming

o most useful is renamel ‘pat®, it searches for pattern and renames
vars accordingly

Autogenerated Names Example

Bad Example

prove (‘€!1. 1 < LENGTH 1 ==> (7x1 x2 1°. 1

GEN_TAC >>
Cases_on ‘1¢ >> SIMP_TAC list_ss [] >>
Cases_on ‘t¢ >> SIMP_TAC list_ss [])

x1::x2::1°) ¢,

Good Example

prove (‘¢!1. 1 < LENGTH 1 ==> (7x1 x2 1°. 1

GEN_TAC >>

Cases_on ‘1° >> SIMP_TAC list_ss [] >>
renamel ‘LENGTH 12¢ >>

Cases_on ‘12¢ >> SIMP_TAC list_ss [])

x1::x2::1%) ¢,

Proof State before renamel
1 < SUC (LENGTH t) ==> ?x2 1’. t = x2::1°

Proof State after renamel

1 < SUC (LENGTH 12) ==> 7x2 1’. 12 = x2::1°

