Interactive Theorem Proving (ITP) Course
Part XIV

Thomas Tuerk (tuerk@kth.se)

akp

S,
FKTHY

& veosnar

OCcH KONSY

%

Academic Year 2016/17, Period 4

version 98c9a84 of Mon Jun 5 12:14:44 2017

Part XIV

Advanced Definition Principles

ahy

N ik
EKTHY

VETENSKAP
&9 OCH KONST %%

T

Relations

@ a relation is a function from some arguments to bool

@ the following example types are all types of relations:
» : ’a -> ’a -> bool
’a -> ’b -> bool
’a => ’b -> ’c -> ’d -> bool
: CCa# ’b # ’c) -> bool
: bool
’a —> bool

@ relations are closely related to sets

»Rabc<=>(a, b, ¢) IN {(a, b, c) | R abc}
» (a, b, ¢c) INS <=> (\abec. (a, b, c) INS) abc

vV vy VY VvYYy

252 /271

Relations |l

@ relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relationR : ’a -> ’a —>
bool can be defined as the least relation RTC R that satisfies the
following rules:

Rxy RTC R x y RTC R y z
RTC R xy RICR x x RTC R x z

@ if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

@ least fixpoints give rise to inductive relations

@ greatest fixpoints give rise to coinductive relations

253 /271

(Co)inductive Relations in HOL

@ (Co)IndDefLib provides infrastructure for defining (co)inductive
relations
@ given a set of rules Hol_(co)reln defines (co)inductive relations

@ 3 theorems are returned and stored in current theory
> a rules theorem — it states that the defined constant satisfies the rules
> a cases theorem — this is an equational form of the rules showing that
the defined relation is indeed a fixpoint
» a (co)induction theorem

@ additionally a strong (co)induction theorem is stored in current theory

254 /271

Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ¢
(Ix y. Rxy ==> RTC_REL R x y) /\
('x. RTC_REL R x x) /\
(x y z. RIC_REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)°

val RTC_REL_rules = |- !R.
(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
(!'x y z. RTC_.REL R x y /\ RTC_REL R x z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 al.
RTC_REL R a0 al <=>
(R a0 a1l \/ (a1l = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R a0 al)

255 /271

Example: Transitive Reflexive Closure Il

val RTC_REL_ind = |- !'R RTC_REL’.
((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
(!x y z. RTC_LREL’ x y /\ RTC_REL’ x z ==> RTC_REL’ x z)) ==
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- !R RTC_REL’.
('x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R x z /\
RTC_REL’ x z ==>
RTC_REL’> x z) ==>

('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

256 /271

Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
¢(EVEN_REL 0) /\ (!'n. EVEN_REL n ==> (EVEN_REL (n + 2)))¢;

val EVEN_REL_cases =
|- 'a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
|- EVEN_REL O /\ 'm. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>
('a0. EVEN_REL a0 ==> EVEN_REL’ a0)

@ notice that in this example there is exactly one fixpoint

@ therefore for these rule, the induction and coinductive relation coincide

257 /271

Example: Dummy Relations
> val (DF_rules, DF_ind, DF_cases) = Hol_reln
‘(!n. DF (n+1) ==> (DF n))°

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
‘('n. DT (n+1) ==> (DT n))*

val DT_coind =
|- IDT’. (!'a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’

val DF_ind =

|- 'DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 =

val DT_cases = |- !'a0. DT a0 <=> DT (a0 + 1):
val DF_cases = |- !'a0. DF a0 <=> DF (a0 + 1):

a0 ==> DT a0

=> DF’ a0

@ notice that for both DT and DF we used essentially a non-terminating

recursion
@ DT is always true, i.e. |- !'n. DT n
@ DF is always false, i.e. |- !'n. ~(DF n)

258 /271

Quotient Types

quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

each equivalence class becomes a value of the new type
partiality allows ignoring certain types
quotientLib allows to lift definitions and lemmata as well

details are technical and won't be presented here

259 /271

Quotient Types Example

et

@ let's assume we have an implementation of finite sets of numbers as
binary trees with
> type binset
binary tree invariant WF_BINSET : binset -> bool
constant empty_binset
add and member functions add : num -> binset -> binset,
mem : binset -> num -> bool

v

v

v

@ we can define a partial equivalence relation by
binset_equiv bl b2 := (
WF_BINSET bl /\ WF_BINSET b2 /\
('n. mem bl n <=> mem b2 n))
o this allows defining a quotient type of sets of numbers
o functions empty_binset, add and mem as well as lemmata about
them can be lifted automatically

260/271

Quotient Types Summary

@ quotient types are sometimes very useful
> e.g. rational numbers are defined as a quotient type

@ there is powerful infrastructure for them
@ many tasks are automated

@ however, the details are technical and won't be discussed here

261 /271

Pattern Matching / Case Expressions

pattern matching ubiquitous in functional programming
pattern matching is a powerful technique
it helps to write concise, readable definitions

very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)
however, it is not directly supported by HOL's logic

@ representations in HOL

» sets of equations as produced by Define
» decision trees (printed as case-expressions)

262 /271

TFL / Define

@ we have already used top-level pattern matches with the TFL package
@ Define is able to handle them

> all the semantic complexity is taken care of
» no special syntax or functions remain
> no special rewrite rules, reasoning tools needed afterwards

@ Define produces a set of equations

@ this is the recommended way of using pattern matching in HOL

Example

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(ZIp 1 00 =[D°
val ZIP_def = |- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(zip [1 00 = [D

263 /271

Case Expressions

@ sometimes one does not want to use this compilation by TFL

> one wants to use pattern-matches somewhere nested in a term
» one might not want to introduce a new constant
» one might want to avoid using TFL for technical reasons

@ in such situations, case-expressions can be used

@ their syntax is similar to the syntax used by SML

Example

> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)

[,) = 0°

val ZIP_def = |- !ys xs. ZIP xs ys =
case (xs,ys) of
(0,0H = 0

| ([1,v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs?,y::y8’) => (x,y)::ZIP xs’ ys’

v

264 /271

Case Expressions |l

@ the datatype package define case-constants for each datatype
@ the parser contains a pattern compilation algorithm

@ case-expressions are by the parser compiled to decision trees using
case-constants

@ pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =
pair_CASE (xs,ys)
(\v vi.

list_CASE v (list_CASE v1 [] (\v4 v5. ARB))
(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):

265 /271

Case Expression Issues

using case expressions feels very natural to functional programmers
case-expressions allow concise, well-readable definitions
however, there are also many drawbacks

there is large, complicated code in the parser and pretty printer

> this is outside the kernel
> parsing a pretty-printed term can result in a non a-equivalent one
» there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)

the results are hard to predict

> heuristics involved in creating decision tree

> results sometimes hard to predict

> however, it is beneficial that proofs follow this internal, volatile
structure

266 /271

Case Expression Issues |l

@ technical issues

> it is tricky to reason about decision trees
> rewrite rules about case-constants needs to be fetched from TypeBase

* alternative srw_ss often does more than wanted
> partially evaluated decision-trees are not pretty printed nicely any more
@ underspecified functions
> decision trees are exhaustive
> they list underspecified cases explicitly with value ARB
> this can be lengthy
» Define in contrast hides underspecified cases

267 /271

Case Expression Example |

Partial Proof Script

val _ = prove (¢‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (11 = [1) /\ Q2 = [1)))“*,

ONCE_REWRITE_TAC [ZIP_def]

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case (11,12) of
(0,000 => 01

| ([1,v4::v5) => ARB
| (x::xs’,[1) => ARB
| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =
[1) <=> 11 = [/\ 12 = [1))

268 /271

Case Expression Example lla — partial evaluation

Partial Proof Script

val _ = prove (‘‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (A1 = [1) /\ A2 = [,

ONCE_REWRITE_TAC [ZIP_def] >>
REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case 11 of
[1 => (case 12 of [1 => [1 | v4::v5 => ARB)
| x::x8” => case 12 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =
[1) <=> (11 = [/\ 12 = [1))

269 /271

Case Expression Example IIb — following tree

Partial Proof Script

val _ = prove (‘‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (11 = [1) /\ Q2 = [D)) ‘",

ONCE_REWRITE_TAC [ZIP_def] >>
Cases_on ‘11¢ >| [
REWRITE_TAC[1listTheory.list_case_def]

ap
structu reg’g

et

Current Goal

112.
(LENGTH [] = LENGTH 12) ==>
(((case ([1,12) of
aa,m = 0

| ([],v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs’,y::y8’) => (x,y)::ZIP xs’ ys’) =
[1) <=> (12 = [1))

270/271

Case Expression Summary

case expressions are natural to functional programmers

they allow concise, readable definitions
@ however, fancy parser and pretty-printer needed

» trustworthiness issues
» sanity check lemmata advisable

reasoning about case expressions can be tricky and lengthy

proofs about case expression often hard to maintain

o therefore, use top-level pattern matching via Define if easily possible

271 /271

	Advanced Definition Principles
	Inductive and Coinductive Relations
	Quotient Types
	Case Expressions

