
Interactive Theorem Proving (ITP) Course
Part XIV

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version d3875e1 of Mon Jun 5 16:28:23 2017



Part XIV

Advanced Definition Principles



Relations

a relation is a function from some arguments to bool

the following example types are all types of relations:
I : ’a -> ’a -> bool
I : ’a -> ’b -> bool
I : ’a -> ’b -> ’c -> ’d -> bool
I : (’a # ’b # ’c) -> bool
I : bool
I : ’a -> bool

relations are closely related to sets
I R a b c <=> (a, b, c) IN {(a, b, c) | R a b c}
I (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

252 / 271



Relations II

relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R : ’a -> ’a ->

bool can be defined as the least relation RTC R that satisfies the
following rules:

R x y

RTC R x y RTC R x x

RTC R x y RTC R y z

RTC R x z

if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

least fixpoints give rise to inductive relations

greatest fixpoints give rise to coinductive relations

253 / 271



(Co)inductive Relations in HOL

(Co)IndDefLib provides infrastructure for defining (co)inductive
relations

given a set of rules Hol (co)reln defines (co)inductive relations

3 theorems are returned and stored in current theory
I a rules theorem — it states that the defined constant satisfies the rules
I a cases theorem — this is an equational form of the rules showing that

the defined relation is indeed a fixpoint
I a (co)induction theorem

additionally a strong (co)induction theorem is stored in current theory

254 / 271



Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ‘

(!x y. R x y ==> RTC_REL R x y) /\

(!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)‘

val RTC_REL_rules = |- !R.

(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 a1.

RTC_REL R a0 a1 <=>

(R a0 a1 \/ (a1 = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R y a1)

255 / 271



Example: Transitive Reflexive Closure II

val RTC_REL_ind = |- !R RTC_REL’.

((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z. RTC_REL’ x y /\ RTC_REL’ y z ==> RTC_REL’ x z)) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"

val RTC_REL_strongind = |- !R RTC_REL’.

(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R y z /\

RTC_REL’ y z ==>

RTC_REL’ x z) ==>

( !a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

256 / 271



Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln

‘(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))‘;

val EVEN_REL_cases =

|- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =

|- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>

(!a0. EVEN_REL a0 ==> EVEN_REL’ a0)

notice that in this example there is exactly one fixpoint

therefore for these rule, the induction and coinductive relation coincide

257 / 271



Example: Dummy Relations

> val (DF_rules, DF_ind, DF_cases) = Hol_reln

‘(!n. DF (n+1) ==> (DF n))‘

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln

‘(!n. DT (n+1) ==> (DT n))‘

val DT_coind =

|- !DT’. (!a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’ a0 ==> DT a0

val DF_ind =

|- !DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1):

val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):

notice that for both DT and DF we used essentially a non-terminating
recursion

DT is always true, i. e. |- !n. DT n

DF is always false, i. e. |- !n. ~(DF n)

258 / 271



Quotient Types

quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

each equivalence class becomes a value of the new type

partiality allows ignoring certain types

quotientLib allows to lift definitions and lemmata as well

details are technical and won’t be presented here

259 / 271



Quotient Types Example

let’s assume we have an implementation of finite sets of numbers as
binary trees with

I type binset
I binary tree invariant WF BINSET : binset -> bool
I constant empty binset
I add and member functions add : num -> binset -> binset,

mem : binset -> num -> bool

we can define a partial equivalence relation by
binset equiv b1 b2 := (

WF BINSET b1 /\ WF BINSET b2 /\

(!n. mem b1 n <=> mem b2 n))

this allows defining a quotient type of sets of numbers

functions empty binset, add and mem as well as lemmata about
them can be lifted automatically

260 / 271



Quotient Types Summary

quotient types are sometimes very useful
I e. g. rational numbers are defined as a quotient type

there is powerful infrastructure for them

many tasks are automated

however, the details are technical and won’t be discussed here

261 / 271



Pattern Matching / Case Expressions

pattern matching ubiquitous in functional programming

pattern matching is a powerful technique

it helps to write concise, readable definitions

very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)

however, it is not directly supported by HOL’s logic

representations in HOL
I sets of equations as produced by Define
I decision trees (printed as case-expressions)

262 / 271



TFL / Define

we have already used top-level pattern matches with the TFL package

Define is able to handle them
I all the semantic complexity is taken care of
I no special syntax or functions remain
I no special rewrite rules, reasoning tools needed afterwards

Define produces a set of equations

this is the recommended way of using pattern matching in HOL

Example
> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP [] [] = [])‘

val ZIP_def = |- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(ZIP [] [] = [])

263 / 271



Case Expressions

sometimes one does not want to use this compilation by TFL
I one wants to use pattern-matches somewhere nested in a term
I one might not want to introduce a new constant
I one might want to avoid using TFL for technical reasons

in such situations, case-expressions can be used

their syntax is similar to the syntax used by SML

Example
> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| ([], []) => []‘

val ZIP_def = |- !ys xs. ZIP xs ys =

case (xs,ys) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’

264 / 271



Case Expressions II

the datatype package define case-constants for each datatype

the parser contains a pattern compilation algorithm

case-expressions are by the parser compiled to decision trees using
case-constants

pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =

pair_CASE (xs,ys)

(\v v1.

list_CASE v (list_CASE v1 [] (\v4 v5. ARB))

(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):

265 / 271



Case Expression Issues

using case expressions feels very natural to functional programmers

case-expressions allow concise, well-readable definitions

however, there are also many drawbacks

there is large, complicated code in the parser and pretty printer
I this is outside the kernel
I parsing a pretty-printed term can result in a non α-equivalent one
I there are bugs in this code (see e. g. Issue #416 reported 8 May 2017)

the results are hard to predict
I heuristics involved in creating decision tree
I results sometimes hard to predict
I however, it is beneficial that proofs follow this internal, volatile

structure

266 / 271



Case Expression Issues II

technical issues
I it is tricky to reason about decision trees
I rewrite rules about case-constants needs to be fetched from TypeBase

F alternative srw ss often does more than wanted

I partially evaluated decision-trees are not pretty printed nicely any more

underspecified functions
I decision trees are exhaustive
I they list underspecified cases explicitly with value ARB
I this can be lengthy
I Define in contrast hides underspecified cases

267 / 271



Case Expression Example I

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def]

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case (l1,l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

268 / 271



Case Expression Example IIa – partial evaluation

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case l1 of

[] => (case l2 of [] => [] | v4::v5 => ARB)

| x::xs’ => case l2 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

269 / 271



Case Expression Example IIb — following tree structure

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

Cases_on ‘l1‘ >| [

REWRITE_TAC[listTheory.list_case_def]

Current Goal
!l2.

(LENGTH [] = LENGTH l2) ==>

(((case ([],l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l2 = []))

270 / 271



Case Expression Summary

case expressions are natural to functional programmers

they allow concise, readable definitions

however, fancy parser and pretty-printer needed
I trustworthiness issues
I sanity check lemmata advisable

reasoning about case expressions can be tricky and lengthy

proofs about case expression often hard to maintain

therefore, use top-level pattern matching via Define if easily possible

271 / 271


	Advanced Definition Principles
	Inductive and Coinductive Relations
	Quotient Types
	Case Expressions


