Interactive Theorem Proving (ITP) Course Part XIV

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version d3875e1 of Mon Jun 5 16:28:23 2017

Part XIV

Advanced Definition Principles

Relations

- a relation is a function from some arguments to bool
- the following example types are all types of relations:

```
> : 'a -> 'a -> bool
> : 'a -> 'b -> bool
> : 'a -> 'b -> 'c -> 'd -> bool
> : ('a # 'b # 'c) -> bool
> : bool
> : 'a -> bool
```

- relations are closely related to sets
 - ► R a b c <=> (a, b, c) IN {(a, b, c) | R a b c} ► (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

Relations II

relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation $R: 'a \rightarrow 'a \rightarrow bool$ can be defined as the least relation RTC R that satisfies the following rules:

- if the rules are monoton, a least and a greatest fix point exists (Knaster-Tarski theorem)
- least fixpoints give rise to inductive relations
- greatest fixpoints give rise to coinductive relations

(Co)inductive Relations in HOL

- (Co)IndDefLib provides infrastructure for defining (co)inductive relations
- given a set of rules Hol_(co)reln defines (co)inductive relations
- 3 theorems are returned and stored in current theory
 - ▶ a rules theorem it states that the defined constant satisfies the rules
 - ▶ a cases theorem this is an equational form of the rules showing that the defined relation is indeed a fixpoint
 - ► a (co)induction theorem
- \bullet additionally a strong (co)induction theorem is stored in current theory

Example: Transitive Reflexive Closure

Example: Transitive Reflexive Closure II


```
val RTC_REL_ind = |- !R RTC_REL'.
  ((!x y. R x y ==> RTC_REL' x y) / (!x. RTC_REL' x x) / 
   (!x y z. RTC_REL' x y /\ RTC_REL' y z ==> RTC_REL' x z)) ==>
  (!a0 a1. RTC_REL R a0 a1 ==> RTC_REL' a0 a1)
> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- !R RTC_REL'.
  (!x y. R x y ==> RTC_REL' x y) / (!x. RTC_REL' x x) / 
  (!x y z.
     RTC_REL R x y /\ RTC_REL' x y /\ RTC_REL R y z /\
     RTC_REL' y z ==>
     RTC REL' x z) ==>
  ( !a0 a1. RTC_REL R a0 a1 ==> RTC_REL' a0 a1)
```

Example: EVEN


```
> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
    '(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))';

val EVEN_REL_cases =
    |- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
    |- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL'.
    (EVEN_REL_ind = |- !EVEN_REL' n ==> EVEN_REL' (n + 2))) ==>
    (!a0. EVEN REL a0 ==> EVEN_REL' a0)
```

- notice that in this example there is exactly one fixpoint
- therefore for these rule, the induction and coinductive relation coincide

Example: Dummy Relations


```
> val (DF_rules, DF_ind, DF_cases) = Hol_reln
    '(!n. DF (n+1) ==> (DF n))'
> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
    '(!n. DT (n+1) ==> (DT n))'

val DT_coind =
    |- !DT'. (!a0. DT' a0 ==> DT' (a0 + 1)) ==> !a0. DT' a0 ==> DT a0

val DF_ind =
    |- !DF'. (!n. DF' (n + 1) ==> DF' n) ==> !a0. DF a0 ==> DF' a0

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1):
val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):
```

- notice that for both DT and DF we used essentially a non-terminating recursion
- DT is always true, i.e. |- !n. DT n
- DF is always false, i. e. |- !n. ~(DF n)

Quotient Types

- quotientLib allows to define types as quotients of existing types with respect to partial equivalence relation
- each equivalence class becomes a value of the new type
- partiality allows ignoring certain types
- quotientLib allows to lift definitions and lemmata as well
- details are technical and won't be presented here

Quotient Types Example

- let's assume we have an implementation of finite sets of numbers as binary trees with
 - ▶ type binset
 - binary tree invariant WF_BINSET : binset -> bool
 - ► constant empty_binset
 - ▶ add and member functions add : num → binset → binset, mem : binset → num → bool
- we can define a partial equivalence relation by

```
binset_equiv b1 b2 := (
  WF_BINSET b1 /\ WF_BINSET b2 /\
  (!n. mem b1 n <=> mem b2 n))
```

- this allows defining a quotient type of sets of numbers
- functions empty_binset, add and mem as well as lemmata about them can be lifted automatically

Quotient Types Summary

- quotient types are sometimes very useful
 - e.g. rational numbers are defined as a quotient type
- there is powerful infrastructure for them
- many tasks are automated
- however, the details are technical and won't be discussed here

Pattern Matching / Case Expressions

- pattern matching ubiquitous in functional programming
- pattern matching is a powerful technique
- it helps to write concise, readable definitions
- very handy and frequently used for interactive theorem proving in higher-order logic (HOL)
- however, it is not directly supported by HOL's logic
- representations in HOL
 - sets of equations as produced by Define
 - decision trees (printed as case-expressions)

TFL / Define

- we have already used top-level pattern matches with the TFL package
- Define is able to handle them
 - all the semantic complexity is taken care of
 - no special syntax or functions remain
 - no special rewrite rules, reasoning tools needed afterwards
- Define produces a set of equations
- this is the recommended way of using pattern matching in HOL

```
Example
```

Case Expressions

- sometimes one does not want to use this compilation by TFL
 - ▶ one wants to use pattern-matches somewhere nested in a term
 - one might not want to introduce a new constant
 - one might want to avoid using TFL for technical reasons
- in such situations, case-expressions can be used
- their syntax is similar to the syntax used by SML

Case Expressions II

- the datatype package define case-constants for each datatype
- the parser contains a pattern compilation algorithm
- case-expressions are by the parser compiled to decision trees using case-constants
- pretty printer prints these decision trees as case-expressions again

Case Expression Issues

- using case expressions feels very natural to functional programmers
- case-expressions allow concise, well-readable definitions
- however, there are also many drawbacks
- there is large, complicated code in the parser and pretty printer
 - this is outside the kernel
 - lacktriangle parsing a pretty-printed term can result in a non lpha-equivalent one
 - ▶ there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)
- the results are hard to predict
 - heuristics involved in creating decision tree
 - results sometimes hard to predict
 - however, it is beneficial that proofs follow this internal, volatile structure

Case Expression Issues II

- technical issues
 - it is tricky to reason about decision trees
 - ▶ rewrite rules about case-constants needs to be fetched from TypeBase
 - ★ alternative srw_ss often does more than wanted
 - partially evaluated decision-trees are not pretty printed nicely any more
- underspecified functions
 - decision trees are exhaustive
 - they list underspecified cases explicitly with value ARB
 - this can be lengthy
 - Define in contrast hides underspecified cases

Case Expression Example I

Partial Proof Script

```
val _ = prove (''!11 12.
  (LENGTH 11 = LENGTH 12) ==>
  ((ZIP 11 12 = []) <=> ((11 = []) /\ (12 = [])))'',
ONCE_REWRITE_TAC [ZIP_def]
```

Current Goal

Case Expression Example IIa – partial evaluation

Partial Proof Script

```
val _ = prove (''!11 12.
  (LENGTH 11 = LENGTH 12) ==>
  ((ZIP 11 12 = []) <=> ((11 = []) /\ (12 = [])))'',

ONCE_REWRITE_TAC [ZIP_def] >>
REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC
```

Current Goal

Case Expression Example IIb — following tree structure

Partial Proof Script

```
val _ = prove (''!11 12.
  (LENGTH 11 = LENGTH 12) ==>
  ((ZIP 11 12 = []) <=> ((11 = []) /\ (12 = [])))'',

ONCE_REWRITE_TAC [ZIP_def] >>
Cases_on '11' >| [
  REWRITE_TAC[listTheory.list_case_def]
```

Current Goal

Case Expression Summary

- case expressions are natural to functional programmers
- they allow concise, readable definitions
- however, fancy parser and pretty-printer needed
 - trustworthiness issues
 - sanity check lemmata advisable
- reasoning about case expressions can be tricky and lengthy
- proofs about case expression often hard to maintain
- therefore, use top-level pattern matching via Define if easily possible