Interactive Theorem Proving (ITP) Course
Part XIV

Thomas Tuerk (tuerk@kth.se)

ady

FEoy
£ZKTHY

$ verewsca &

38 OCH KONST 9%
L) &
e

Academic Year 2016/17, Period 4

Relations

version d3875el of Mon Jun 5 16:28:23 2017

o a relation is a function from some arguments to bool

o the following example types are all types of relations:

» : ’a -> ’a -> bool
’a => ’b -> bool

’a => ’b => ’c -> ’d -> bool

: bool

>
>
» : (Ca# ’b # ’c) —> bool
>
> ’a -> bool

o relations are closely related to sets

»Rabec<=>(a, b, c) IN {(a, b, &) | Rab c}

» (a, b, ¢) IN S <=> (\a b c.

(a, b, ¢) INS) abec

@,
frry

252 /271

Part XIV

Advanced Definition Principles

by

Sy,
$KTHE

VETENSKAP
&9 OCH KONST o%

) 9

TR

Relations I

o relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R :

)a _>)a _>

bool can be defined as the least relation RTC R that satisfies the

following rules:

Rxy RTC R x y

RTCR y z

RTCR xy RICR x x RTC R x z

{xuy

ey

o if the rules are monoton, a least and a greatest fix point exists

(Knaster-Tarski theorem)
o least fixpoints give rise to inductive relations

o greatest fixpoints give rise to coinductive relations

253 /271

(Co)inductive Relations in HOL {i‘%i?

©

(Co) IndDefLib provides infrastructure for defining (co)inductive
relations

o given a set of rules Hol_(co)reln defines (co)inductive relations

©

3 theorems are returned and stored in current theory
> a rules theorem — it states that the defined constant satisfies the rules
» a cases theorem — this is an equational form of the rules showing that
the defined relation is indeed a fixpoint
» a (co)induction theorem

©

additionally a strong (co)induction theorem is stored in current theory

Example: Transitive Reflexive Closure Il

val RTC_REL_ind = |- !'R RTC_REL’.
(('x y. R x y ==> RTC_REL’ x y) /\ ('x. RTC_REL’ x x) /\
('x y z. RTC_REL’ x y /\ RTC_REL’ y z ==> RTC_REL’ x z)) ==>
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"
val RTC_REL_strongind = |- 'R RTC_REL’.
(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\
('x y z.
RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R y z /\
RTC_REL’ y z ==

RTC_REL’ x z) ==>
('a0 al. RTC_REL R a0 al ==> RTC_REL’ a0 al)

256 /271

Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ¢
('xy. Rxy ==> RTC_REL R x y) /\
(Ix. RTC_REL R x x) /\
('x y z. RTCLRELR x y /\ RTC_REL R y z ==> RTC_REL R x z)°

val RTC_REL_rules = |- !R.
('x y. R xy ==>RTC_REL R x y) /\ (!x. RTC_REL R x x) /\
(!x y z. RTC_LREL R x y /\ RTC_REL R y z ==> RTC_REL R x z)

val RTC_REL_cases

= |
RTC_REL R a0 al <=>
(R a0 a1 \/ (al =

Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
¢(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))¢;

val EVEN_REL_cases =
|- 'a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
|- EVEN_REL O /\ 'nm. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !'EVEN_REL’.

(EVEN_REL’> 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>
('a0. EVEN_REL a0 ==> EVEN_REL’ a0)

o notice that in this example there is exactly one fixpoint

o therefore for these rule, the induction and coinductive relation coincide

257 /271

Example: Dummy Relations

> val (DF_rules, DF_ind, DF_cases) = Hol_reln
‘(!n. DF (n+1) ==> (DF n))*

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
‘(!'n. DT (n+1) ==> (DT n))*

val DT_coind =
|- 'DT’. ('a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !'a0. DT’ a0 ==> DT a0

val DF_ind =
|- 'DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

|- 1a0. DT a0 <=> DT (a0 + 1):
|- 'a0. DF a0 <=> DF (a0 + 1):

val DT_cases
val DF_cases

o notice that for both DT and DF we used essentially a non-terminating

recursion
o DT is always true, i.e. |- 'n. DT n
o DF is always false, i.e. |- !n. ~(DF n)

Quotient Types Example

o let's assume we have an implementation of finite sets of numbers as
binary trees with

type binset

binary tree invariant WF_BINSET :
constant empty_binset

add and member functions add :
mem : binset -> num -> bool

binset -> bool

vVvyVvVvyy

num -> binset -> binset,

o we can define a partial equivalence relation by
binset_equiv bl b2 := (
WF_BINSET bl /\ WF_BINSET b2 /\
('n. mem bl n <=> mem b2 n))
o this allows defining a quotient type of sets of numbers

o functions empty_binset, add and mem as well as lemmata about
them can be lifted automatically

260 /271

Quotient Types {i@mi%
o quotientLib allows to define types as quotients of existing types

with respect to partial equivalence relation

o each equivalence class becomes a value of the new type
o partiality allows ignoring certain types
o quotientLib allows to lift definitions and lemmata as well
o details are technical and won't be presented here
259 /271
Quotient T S @,
uotient Types Summary fery
et

o quotient types are sometimes very useful
» e.g. rational numbers are defined as a quotient type

o there is powerful infrastructure for them
o many tasks are automated

o however, the details are technical and won't be discussed here

261 /271

Pattern Matching / Case Expressions {;%i?
st
o pattern matching ubiquitous in functional programming
o pattern matching is a powerful technique
o it helps to write concise, readable definitions
o very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)
o however, it is not directly supported by HOL's logic
o representations in HOL
» sets of equations as produced by Define
» decision trees (printed as case-expressions)
262 /271
Case Expressions f,?%&%
Ny

o sometimes one does not want to use this compilation by TFL

» one wants to use pattern-matches somewhere nested in a term
» one might not want to introduce a new constant
» one might want to avoid using TFL for technical reasons

o in such situations, case-expressions can be used

o their syntax is similar to the syntax used by SML

Example

> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of
(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| €01,) => 0°¢
val ZIP_def = |- !ys xs. ZIP xs ys =
case (xs,ys) of
aa,m => 11

| ([1,v4::v5) => ARB
| (x::xs”,[1) => ARB
| (x::xs?,y::ys’) => (x,y)::ZIP xs’ ys’

264 /271

TFL / Define 5:1;‘%13

o we have already used top-level pattern matches with the TFL package
o Define is able to handle them

» all the semantic complexity is taken care of
» no special syntax or functions remain
» no special rewrite rules, reasoning tools needed afterwards

o Define produces a set of equations

o this is the recommended way of using pattern matching in HOL

Example

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\
(Zip 0 [0 = [
val ZIP_def = |- (lys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\
(Z1p [1 [1 = [

Case Expressions |l

o the datatype package define case-constants for each datatype
o the parser contains a pattern compilation algorithm

o case-expressions are by the parser compiled to decision trees using
case-constants

o pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =
pair_CASE (xs,ys)
(v vi.

list_CASE v (1ist_CASE vi [] (\v4 v5. ARB))
(\x xs’. 1list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):

265 /271

Case Expression Issues {ﬁ“}

o using case expressions feels very natural to functional programmers

o case-expressions allow concise, well-readable definitions

©

however, there are also many drawbacks

©

there is large, complicated code in the parser and pretty printer
» this is outside the kernel
» parsing a pretty-printed term can result in a non a-equivalent one
» there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)
o the results are hard to predict
» heuristics involved in creating decision tree
» results sometimes hard to predict
» however, it is beneficial that proofs follow this internal, volatile

structure
266 /271
Case Expression Example | g,%f’?}%

Partial Proof Script

val _ = prove (¢¢!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = [1) <=> (A1 = [1) /\ Q2 = [1)))“",

ONCE_REWRITE_TAC [ZIP_def]

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case (11,12) of
aa,m = 0
| ([1,v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =
[1) <=> @11 =1[1) /\ 12 = [1))

268 /271

. a,
Case Expression Issues |l {Z “:;

o technical issues

» it is tricky to reason about decision trees
» rewrite rules about case-constants needs to be fetched from TypeBase
* alternative srw_ss often does more than wanted
» partially evaluated decision-trees are not pretty printed nicely any more
o underspecified functions
» decision trees are exhaustive
they list underspecified cases explicitly with value ARB
this can be lengthy
Define in contrast hides underspecified cases

vYyy

Case Expression Example lla — partial evaluation f‘%

Partial Proof Script

val _ = prove (‘‘!11 12.
(LENGTH 11 = LENGTH 12) ==>
((zIP 11 12 = [1) <=> (11 = [1) /\ (A2 = [,

ONCE_REWRITE_TAC [ZIP_def] >>
REWRITE_TAC [pairTheory.pair_case_def] >> BETA_TAC

Current Goal

111 12.
(LENGTH 11 = LENGTH 12) ==>
(((case 11 of
[1 => (case 12 of [] => [] | v4::v5 => ARB)
| x::xs’ => case 12 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =
[1) <=> @11 =[1) /\ 12 = [1))

269 /271

TH

Case Expression Example b — following tree structure{i@?

Partial Proof Script

val _ = prove (¢¢!11 12.
(LENGTH 11 = LENGTH 12) ==>
((ZIP 11 12 = []) <=> (11 = [1) /\ (A2 = [",

ONCE_REWRITE_TAC [ZIP_def] >>
Cases_on ‘11°¢ >| [
REWRITE_TAC[listTheory.list_case_def]

Current Goal

112.
(LENGTH [] = LENGTH 12) ==>
(((case ([]1,12) of
aa,m =11

| ([1,v4::v5) => ARB
| (x::xs’,[]) => ARB
| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =
[<=> (12 = [1))

Case Expression Summary

©

©

©

©

©

case expressions are natural to functional programmers
they allow concise, readable definitions

however, fancy parser and pretty-printer needed
» trustworthiness issues
» sanity check lemmata advisable

reasoning about case expressions can be tricky and lengthy
proofs about case expression often hard to maintain

therefore, use top-level pattern matching via Define if easily possible

