
Interactive Theorem Proving (ITP) Course

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version d3875e1 of Mon Jun 5 16:28:23 2017

Part I

Introduction

Motivation

Complex systems almost certainly contain bugs.

Critical systems (e. g. avionics) need to meet very high standards.

It is infeasible in practice to achieve such high standards just by
testing.

Debugging via testing suffers from diminishing returns.

“Program testing can be used to show the presence
of bugs, but never to show their absence!”

— Edsger W. Dijkstra

3 / 292

Famous Bugs

Pentium FDIV bug (1994)
(missing entry in lookup table, $475 million damage)

Ariane V explosion (1996)
(integer overflow, $1 billion prototype destroyed)

Mars Climate Orbiter (1999)
(destroyed in Mars orbit, mixup of units pound-force and newtons)

Knight Capital Group Error in Ultra Short Time Trading (2012)
(faulty deployment, repurposing of critical flag, $440 lost in 45 min
on stock exchange)

. . .

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html

https://en.wikipedia.org/wiki/List_of_software_bugs

4 / 292

http://www.cs.tau.ac.il/~nachumd/verify/horror.html
https://en.wikipedia.org/wiki/List_of_software_bugs

Proof

proof can show absence of errors in design

but proofs talk about a design, not a real system

⇒ testing and proving complement each other

“As far as the laws of mathematics
refer to reality, they are not certain;

and as far as they are certain,
they do not refer to reality.”

— Albert Einstein

5 / 292

Mathematical vs. Formal Proof

Mathematical Proof

informal, convince other
mathematicians

checked by community of
domain experts

subtle errors are hard to find

often provide some new
insight about our world

often short, but require
creativity and a brilliant idea

Formal Proof

formal, rigorously use a
logical formalism

checkable by stupid
machines

very reliable

often contain no new ideas
and no amazing insights

often long, very tedious, but
largely trivial

We are interested in formal proofs in this lecture.

6 / 292

Detail Level of Formal Proof

In Principia Mathematica it takes 300 pages to prove 1+1=2.

This is nicely illustrated in Logicomix - An Epic Search for Truth.

7 / 292

Automated vs Manual (Formal) Proof

Fully Manual Proof

very tedious one has to grind through many trivial but detailed proofs

easy to make mistakes

hard to keep track of all assumptions and preconditions

hard to maintain, if something changes (see Ariane V)

Automated Proof

amazing success in certain areas

but still often infeasible for interesting problems

hard to get insights in case a proof attempt fails

even if it works, it is often not that automated
I run automated tool for a few days
I abort, change command line arguments to use different heuristics
I run again and iterate till you find a set of heuristics that prove it fully

automatically in a few seconds

8 / 292

Interactive Proofs

combine strengths of manual and automated proofs

many different options to combine automated and manual proofs
I mainly check existing proofs (e. g. HOL Zero)
I user mainly provides lemmata statements, computer searches proofs

using previous lemmata and very few hints (e. g. ACL 2)
I most systems are somewhere in the middle

typically the human user
I provides insights into the problem
I structures the proof
I provides main arguments

typically the computer
I checks proof
I keeps track of all use assumptions
I provides automation to grind through lengthy, but trivial proofs

9 / 292

Typical Interactive Proof Activities

provide precise definitions of concepts

state properties of these concepts
prove these properties

I human provides insight and structure
I computer does book-keeping and automates simple proofs

build and use libraries of formal definitions and proofs
I formalisations of mathematical theories like

F lists, sets, bags, . . .
F real numbers
F probability theory

I specifications of real-world artefacts like
F processors
F programming languages
F network protocols

I reasoning tools

There is a strong connection with programming.
Lessons learned in Software Engineering apply.

10 / 292

Different Interactive Provers

there are many different interactive provers, e. g.
I Isabelle/HOL
I Coq
I PVS
I HOL family of provers
I ACL2
I . . .

important differences
I the formalism used
I level of trustworthiness
I level of automation
I libraries
I languages for writing proofs
I user interface
I . . .

11 / 292

Which theorem prover is the best one? :-)

there is no best theorem prover

better question: Which is the best one for a certain purpose?

important points to consider
I existing libraries
I used logic
I level of automation
I user interface
I importance development speed versus trustworthiness
I How familiar are you with the different provers?
I Which prover do people in your vicinity use?
I your personal preferences
I . . .

In this course we use the HOL theorem prover,
because it is used by the TCS group.

12 / 292

Part II

Organisational Matters

Aims of this Course

Aims

introduction to interactive theorem proving (ITP)

being able to evaluate whether a problem can benefit from ITP

hands-on experience with HOL

learn how to build a formal model

learn how to express and prove important properties of such a model

learn about basic conformance testing

use a theorem prover on a small project

Required Prerequisites

some experience with functional programming

knowing Standard ML syntax

basic knowledge about logic (e. g. First Order Logic)

14 / 292

Dates

Interactive Theorem Proving Course takes place in Period 4 of the
academic year 2016/2017

always in room 4523 or 4532

each week

Mondays 10:15 - 11:45 lecture
Wednesdays 10:00 - 12:00 practical session
Fridays 13:00 - 15:00 practical session

no lecture on Monday, 1st of May, instead on Wednesday, 3rd May

last lecture: 12th of June

last practical session: 21st of June

9 lectures, 17 practical sessions

15 / 292

Exercises

after each lecture an exercise sheet is handed out

work on these exercises alone, except if stated otherwise explicitly

exercise sheet contains due date
I usually 10 days time to work on it
I hand in during practical sessions
I lecture Monday −→ hand in at latest in next week’s Friday session

main purpose: understanding ITP and learn how to use HOL
I no detailed grading, just pass/fail
I retries possible till pass
I if stuck, ask me or one another
I practical sessions intend to provide this opportunity

16 / 292

Practical Sessions

very informal

main purpose: work on exercises
I I have a look and provide feedback
I you can ask questions
I I might sometimes explain things not covered in the lectures
I I might provide some concrete tips and tricks
I you can also discuss with each other

attendance not required, but highly recommended
I exception: session on 21st April

only requirement: turn up long enough to hand in exercises

you need to bring your own computer

17 / 292

Handing-in Exercises

exercises are intended to be handed-in during practical sessions

attend at least one practical session each week

leave reasonable time to discuss exercises
I don’t try to hand your solution in Friday 14:55

retries possible, but reasonable attempt before deadline required

handing-in outside practical sessions
I only if you have a good reason
I decided on a case-by-case basis

electronic hand-ins
I only to get detailed feedback
I does not replace personal hand-in
I exceptions on a case-by-case basis if there is a good reason
I I recommend using a KTH GitHub repo

18 / 292

Passing the ITP Course

there is only a pass/fail mark

to pass you need to
I attend at least 7 of the 9 lectures
I pass 8 of the 9 exercises

19 / 292

Communication

we have the advantage of being a small group

therefore we are flexible

so please ask questions, even during lectures

there are many shy people, therefore
I anonymous checklist after each lecture
I anonymous background questionnaire in first practical session

further information is posted on Interactive Theorem Proving
Course group on Group Web

contact me (Thomas Tuerk) directly, e. g. via email thomas@kth.se

20 / 292

Part III

HOL 4 History and Architecture

LCF - Logic of Computable Functions

Standford LCF 1971-72 by Milner et al.

formalism devised by Dana Scott in 1969

intended to reason about recursively defined
functions

intended for computer science applications

strengths
I powerful simplification mechanism
I support for backward proof

limitations
I proofs need a lot of memory
I fixed, hard-coded set of proof commands

Robin Milner
(1934 - 2010)

22 / 292

LCF - Logic of Computable Functions II

Milner worked on improving LCF in Edinburgh

research assistants
I Lockwood Morris
I Malcolm Newey
I Chris Wadsworth
I Mike Gordon

Edinburgh LCF 1979

introduction of Meta Language (ML)

ML was invented to write proof procedures

ML become an influential functional programming language

using ML allowed implementing the LCF approach

23 / 292

LCF Approach

implement an abstract datatype thm to represent theorems

semantics of ML ensure that values of type thm can only be created
using its interface

interface is very small
I predefined theorems are axioms
I function with result type theorem are inferences

=⇒ However you create a theorem, it is valid.

together with similar abstract datatypes for types and terms, this
forms the kernel

24 / 292

LCF Approach II

Modus Ponens Example

Inference Rule

Γ ` a⇒ b ∆ ` a

Γ ∪∆ ` b

SML function

val MP : thm -> thm -> thm

MP(Γ ` a⇒ b)(∆ ` a) = (Γ∪∆ ` b)

very trustworthy — only the small kernel needs to be trusted

efficient — no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type
theorem is produced, it has been created through the small trusted
interface. Therefore the statement really holds.

25 / 292

LCF Style Systems

There are now many interactive theorem provers out there that use an
approach similar to that of Edinburgh LCF.

HOL family
I HOL theorem prover
I HOL Light
I HOL Zero
I Proof Power
I . . .

Isabelle

Nuprl

Coq

. . .

26 / 292

History of HOL

1979 Edinburgh LCF by Milner, Gordon, et al.

1981 Mike Gordon becomes lecturer in Cambridge

1985 Cambridge LCF
I Larry Paulson and Gèrard Huet
I implementation of ML compiler
I powerful simplifier
I various improvements and extensions

1988 HOL
I Mike Gordon and Keith Hanna
I adaption of Cambridge LCF to classical higher order logic
I intention: hardware verification

1990 HOL90
reimplementation in SML by Konrad Slind at University of Calgary

1998 HOL98
implementation in Moscow ML and new library and theory mechanism

since then HOL Kananaskis releases, called informally HOL 4

27 / 292

Family of HOL

ProofPower
commercial version of HOL88 by Roger
Jones, Rob Arthan et al.

HOL Light
lean CAML / OCaml port by John Harrison

HOL Zero
trustworthy proof checker by Mark Adams

Isabelle
I 1990 by Larry Paulson
I meta-theorem prover that supports

multiple logics
I however, mainly HOL used, ZF a little
I nowadays probably the most widely used

HOL system
I originally designed for software verification

Edinburgh LCF

Cambridge LCF

HOL88

hol90

ProofPower

Isabelle/HOL

HOL Light

hol98 HOL Zero

HOL4

28 / 292

Part IV

HOL’s Logic

HOL Logic

the HOL theorem prover uses a version of classical higher order logic:
classical higher order predicate calculus with
terms from the typed lambda calculus (i. e. simple type theory)

this sounds complicated, but is intuitive for SML programmers

(S)ML and HOL logic designed to fit each other

if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym HOL refers to both the HOL interactive theorem prover and
the HOL logic used by it. It’s also a common abbreviation for higher order
logic in general.

30 / 292

Types

SML datatype for types
I Type Variables (’a, α, ’b, β, . . .)

Type variables are implicitly universally quantified. Theorems
containing type variables hold for all instantiations of these. Proofs
using type variables can be seen as proof schemata.

I Atomic Types (c)
Atomic types denote fixed types. Examples: num, bool, unit

I Compound Types ((σ1, . . . , σn)op)
op is a type operator of arity n and σ1, . . . , σn argument types. Type
operators denote operations for constructing types.
Examples: num list or ’a # ’b.

I Function Types (σ1 → σ2)
σ1 → σ2 is the type of total functions from σ1 to σ2.

types are never empty in HOL, i. e.
for each type at least one value exists

all HOL functions are total

31 / 292

Terms

SML datatype for terms
I Variables (x, y, . . .)
I Constants (c, . . .)
I Function Application (f a)
I Lambda Abstraction (\x. f x or λx . fx)

Lambda abstraction represents anonymous function definition.
The corresponding SML syntax is fn x => f x.

terms have to be well-typed

same typing rules and same type-inference as in SML take place

terms very similar to SML expressions

notice: predicates are functions with return type bool, i. e. no
distinction between functions and predicates, terms and formulae

32 / 292

Terms II

HOL term SML expression type HOL / SML
0 0 num / int

x:’a x:’a variable of type ’a

x:bool x:bool variable of type bool

x + 5 x + 5 applying function + to x and 5

\x. x + 5 fn x => x + 5 anonymous (a. k. a. inline) function
of type num -> num

(5, T) (5, true) num # bool / int * bool

[5;3;2]++[6] [5,3,2]@[6] num list / int list

33 / 292

Free and Bound Variables / Alpha Equivalence

in SML, the names of function arguments does not matter (much)

similarly in HOL, the names of variables used by lambda-abstractions
does not matter (much)

the lambda-expression λx . t is said to bind the variables x in term t

variables that are guarded by a lambda expression are called bound

all other variables are free

Example: x is free and y is bound in (x = 5) ∧ (λy . (y < x)) 3

the names of bound variables are unimportant semantically

two terms are called alpha-equivalent iff they differ only in the
names of bound variables

Example: λx . x and λy . y are alpha-equivalent

Example: x and y are not alpha-equivalent

34 / 292

Theorems

theorems are of the form Γ ` p where
I Γ is a set of hypothesis
I p is the conclusion of the theorem
I all elements of Γ and p are formulae, i. e. terms of type bool

Γ ` p records that using Γ the statement p has been proved

notice difference to logic: there it means can be proved

the proof itself is not recorded

theorems can only be created through a small interface in the kernel

35 / 292

HOL Light Kernel

the HOL kernel is hard to explain
I for historic reasons some concepts are represented rather complicated
I for speed reasons some derivable concepts have been added

instead consider the HOL Light kernel, which is a cleaned-up version

there are two predefined constants
I = : ’a -> ’a -> bool
I @ : (’a -> bool) -> ’a

there are two predefined types
I bool
I ind

the meaning of these types and constants is given by inference rules
and axioms

36 / 292

HOL Light Inferences I

` t = t
REFL

Γ ` s = t
∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ ` s = t
∆ ` u = v

types fit

Γ ∪∆ ` s(u) = t(v)
COMB

Γ ` s = t
x not free in Γ

Γ ` λx . s = λx . t
ABS

` (λx . t)x = t
BETA

{p} ` p
ASSUME

37 / 292

HOL Light Inferences II

Γ ` p ⇔ q ∆ ` p

Γ ∪∆ ` q
EQ MP

Γ ` p ∆ ` q

(Γ− {q}) ∪ (∆− {p}) ` p ⇔ q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ` p[x1, . . . , xn]

Γ[t1, . . . , tn] ` p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ` p[α1, . . . , αn]

Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]
INST TYPE

38 / 292

HOL Light Axioms and Definition Principles

3 axioms needed

ETA AX | − (λx . t x) = t
SELECT AX | − P x =⇒ P((@)P))
INFINITY AX predefined type ind is infinite

definition principle for constants
I constants can be introduced as abbreviations
I constraint: no free vars and no new type vars

definition principle for types
I new types can be defined as non-empty subtypes of existing types

both principles
I lead to conservative extensions
I preserve consistency

39 / 292

HOL Light derived concepts

Everything else is derived from this small kernel.

T =def (λp. p) = (λp. p)
∧ =def λp q. (λf . f p q) = (λf . f T T)

=⇒ =def λp q. (p ∧ q ⇔ p)
∀ =def λP. (P = λx . T)
∃ =def λP. (∀q. (∀x . P(x) =⇒ q) =⇒ q)
. . .

40 / 292

Multiple Kernels

Kernel defines abstract datatypes for types, terms and theorems

one does not need to look at the internal implementation

therefore, easy to exchange

there are at least 3 different kernels for HOL
I standard kernel (de Bruijn indices)
I experimental kernel (name / type pairs)
I OpenTheory kernel (for proof recording)

41 / 292

HOL Logic Summary

HOL theorem prover uses classical higher order logic

HOL logic is very similar to SML
I syntax
I type system
I type inference

HOL theorem prover very trustworthy because of LCF approach
I there is a small kernel
I proofs are not stored explicitly

you don’t need to know the details of the kernel

usually one works at a much higher level of abstraction

42 / 292

Part V

Basic HOL Usage

HOL Technical Usage Issues

practical issues are discussed in practical sessions
I how to install HOL
I which key-combinations to use in emacs-mode
I detailed signature of libraries and theories
I all parameters and options of certain tools
I . . .

exercise sheets sometimes
I ask to read some documentation
I provide examples
I list references where to get additional information

if you have problems, ask me outside lecture (tuerk@kth.se)

covered only very briefly in lectures

44 / 292

mailto:tuerk@kth.se

Installing HOL

webpage: https://hol-theorem-prover.org

HOL supports two SML implementations
I Moscow ML (http://mosml.org)
I PolyML (http://www.polyml.org)

I recommend using PolyML

please use emacs with
I hol-mode
I sml-mode
I hol-unicode, if you want to type Unicode

please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

45 / 292

https://hol-theorem-prover.org
http://mosml.org
http://www.polyml.org

General Architecture

HOL is a collection of SML modules

starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
I some HOL modules loaded
I some default modules opened
I an input wrapper to help parsing terms called unquote

unquote provides special quotes for terms and types
I implemented as input filter
I ‘‘my-term‘‘ becomes Parse.Term [QUOTE "my-term"]
I ‘‘:my-type‘‘ becomes Parse.Type [QUOTE ":my-type"]

main interfaces
I emacs (used in the course)
I vim
I bare shell

46 / 292

Filenames

*Script.sml — HOL proof script file
I script files contain definitions and proof scripts
I executing them results in HOL searching and checking proofs
I this might take very long
I resulting theorems are stored in *Theory.{sml|sig} files

*Theory.{sml|sig} — HOL theory

I auto-generated by corresponding script file
I load quickly, because they don’t search/check proofs
I do not edit theory files

*Syntax.{sml|sig} — syntax libraries

I contain syntax related functions
I i. e. functions to construct and destruct terms and types

*Lib.{sml|sig} — general libraries

*Simps.{sml|sig} — simplifications

selftest.sml — selftest for current directory

47 / 292

Directory Structure

bin — HOL binaries

src — HOL sources

examples — HOL examples
I interesting projects by various people
I examples owned by their developer
I coding style and level of maintenance differ a lot

help — sources for reference manual
I after compilation home of reference HTML page

Manual — HOL manuals
I Tutorial
I Description
I Reference (PDF version)
I Interaction
I Quick (cheat pages)
I Style-guide
I . . .

48 / 292

Unicode

HOL supports both Unicode and pure ASCII input and output

advantages of Unicode compared to ASCII
I easier to read (good fonts provided)
I no need to learn special ASCII syntax

disadvanges of Unicode compared to ASCII
I harder to type (even with hol-unicode.el)
I less portable between systems

whether you like Unicode is highly a matter of personal taste

HOL’s policy
I no Unicode in HOL’s source directory src
I Unicode in examples directory examples is fine

I recommend turning Unicode output off initially
I this simplifies learning the ASCII syntax
I no need for special fonts
I it is easier to copy and paste terms from HOL’s output

49 / 292

Where to find help?

reference manual
I available as HTML pages, single PDF file and in-system help

description manual

Style-guide (still under development)

HOL webpage (https://hol-theorem-prover.org)

mailing-list hol-info

DB.match and DB.find

*Theory.sig and selftest.sml files

ask someone, e. g. me :-) (tuerk@kth.se)

50 / 292

https://hol-theorem-prover.org
mailto:tuerk@kth.se

Part VI

Forward Proofs

Kernel too detailed

we already discussed the HOL Logic

the kernel itself does not even contain basic logic operators

usually one uses a much higher level of abstraction
I many operations and datatypes are defined
I high-level derived inference rules are used

let’s now look at this more common abstraction level

52 / 292

Common Terms and Types
Unicode ASCII

type vars α, β, . . . ’a, ’b, . . .
type annotated term term:type term:type

true T T

false F F

negation ¬b ~b
conjunction b1 ∧ b2 b1 /\ b2

disjunction b1 ∨ b2 b1 \/ b2

implication b1 =⇒ b2 b1 ==> b2

equivalence b1 ⇐⇒ b2 b1 <=> b2

disequation v1 6= v2 v1 <> v2

all-quantification ∀x. P x !x. P x

existential quantification ∃x. P x ?x. P x

Hilbert’s choice operator @x. P x @x. P x

There are similar restrictions to constant and variable names as in SML.
HOL specific: don’t start variable names with an underscore

53 / 292

Syntax conventions

common function syntax
I prefix notation, e. g. SUC x
I infix notation, e. g. x + y
I quantifier notation, e. g. ∀x. P x means (∀) (λx. P x)

infix and quantifier notation functions can turned into prefix notation
Example: (+) x y and $+ x y are the same as x + y

quantifiers of the same type don’t need to be repeated
Example: ∀x y. P x y is short for ∀x. ∀y. P x y

there is special syntax for some functions
Example: if c then v1 else v2 is nice syntax for COND c v1 v2

associative infix operators are usually right-associative
Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore
use plenty of parenthesis.

54 / 292

Creating Terms

Term Parser

Use special quotation provided by unquote.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions
(usually defined in *Syntax.sml files) to create them.

55 / 292

Creating Terms II

Parser Syntax Funs
‘‘:bool‘‘ mk type ("bool", []) or bool type of Booleans
‘‘T‘‘ mk const ("T", bool) or T term true
‘‘~b‘‘ mk neg (negation of

mk var ("b", bool)) Boolean var b
‘‘... /\ ...‘‘ mk conj (..., ...) conjunction
‘‘... \/ ...‘‘ mk disj (..., ...) disjunction
‘‘... ==> ...‘‘ mk imp (..., ...) implication
‘‘... = ...‘‘ mk eq (..., ...) equation
‘‘... <=> ...‘‘ mk eq (..., ...) equivalence
‘‘... <> ...‘‘ mk neg (mk eq (..., ...)) negated equation

56 / 292

Inference Rules for Equality

` t = t
REFL

Γ ` s = t
x not free in Γ

Γ ` λx . s = λx .t
ABS

Γ ` s = t
∆ ` u = v

types fit

Γ ∪∆ ` s(u) = t(v)
MK COMB

Γ ` s = t

Γ ` t = s
GSYM

Γ ` s = t
∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ ` p ⇔ q ∆ ` p

Γ ∪∆ ` q
EQ MP

` (λx . t)x = t
BETA

57 / 292

Inference Rules for free Variables

Γ[x1, . . . , xn] ` p[x1, . . . , xn]

Γ[t1, . . . , tn] ` p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ` p[α1, . . . , αn]

Γ[γ1, . . . , γn] ` p[γ1, . . . , γn]
INST TYPE

58 / 292

Inference Rules for Implication

Γ ` p =⇒ q
∆ ` p

Γ ∪∆ ` q
MP, MATCH MP

Γ ` p = q

Γ ` p =⇒ q
Γ ` q =⇒ p

EQ IMP RULE

Γ ` p =⇒ q
∆ ` q =⇒ p

Γ ∪∆ ` p = q
IMP ANTISYM RULE

Γ ` p =⇒ q
∆ ` q =⇒ r

Γ ∪∆ ` p =⇒ r
IMP TRANS

Γ ` p

Γ− {q} ` q =⇒ p
DISCH

Γ ` q =⇒ p

Γ ∪ {q} ` p
UNDISCH

Γ ` p =⇒ F

Γ ` ~p
NOT INTRO

Γ ` ~p
Γ ` p =⇒ F

NOT ELIM

59 / 292

Inference Rules for Conjunction / Disjunction

Γ ` p ∆ ` q

Γ ∪∆ ` p ∧ q
CONJ

Γ ` p ∧ q

Γ ` p
CONJUNCT1

Γ ` p ∧ q

Γ ` q
CONJUNCT2

Γ ` p

Γ ` p ∨ q
DISJ1

Γ ` q

Γ ` p ∨ q
DISJ2

Γ ` p ∨ q
∆1 ∪ {p} ` r
∆2 ∪ {q} ` r

Γ ∪∆1 ∪∆2 ` r
DISJ CASES

60 / 292

Inference Rules for Quantifiers

Γ ` p x not free in Γ

Γ ` ∀x . p
GEN

Γ ` ∀x . p
Γ ` p[u/x]

SPEC

Γ ` p[u/x]

Γ ` ∃x . p
EXISTS

Γ ` ∃x . p
∆ ∪ {p[u/x]} ` r

u not free in Γ,∆, p and r

Γ ∪∆ ` r
CHOOSE

61 / 292

Forward Proofs

axioms and inference rules are used to derive theorems

this method is called forward proof
I one starts with basic building blocks
I one moves step by step forward
I finally the theorem one is interested in is derived

one can also implement own proof tools

62 / 292

Forward Proofs — Example I

Let’s prove ∀p. p =⇒ p.

val IMP_REFL_THM = let

val tm1 = ‘‘p:bool‘‘;

val thm1 = ASSUME tm1;

val thm2 = DISCH tm1 thm1;

in

GEN tm1 thm2

end

fun IMP_REFL t =

SPEC t IMP_REFL_THM;

> val tm1 = ‘‘p‘‘: term

> val thm1 = [p] |- p: thm

> val thm2 = |- p ==> p: thm

> val IMP_REFL_THM =

|- !p. p ==> p: thm

> val IMP_REFL =

fn: term -> thm

63 / 292

Forward Proofs — Example II

Let’s prove ∀P v . (∃x . (x = v) ∧ P x)⇐⇒ P v .

val tm_v = ‘‘v:’a‘‘;

val tm_P = ‘‘P:’a -> bool‘‘;

val tm_lhs = ‘‘?x. (x = v) /\ P x‘‘

val tm_rhs = mk_comb (tm_P, tm_v);

val thm1 = let

val thm1a = ASSUME tm_rhs;

val thm1b =

CONJ (REFL tm_v) thm1a;

val thm1c =

EXISTS (tm_lhs, tm_v) thm1b

in

DISCH tm_rhs thm1c

end

> val thm1a = [P v] |- P v: thm

> val thm1b =

[P v] |- (v = v) /\ P v: thm

> val thm1c =

[P v] |- ?x. (x = v) /\ P x

> val thm1 = [] |-

P v ==> ?x. (x = v) /\ P x: thm

64 / 292

Forward Proofs — Example II cont.

val thm2 = let

val thm2a =

ASSUME ‘‘(u:’a = v) /\ P u‘‘

val thm2b = AP_TERM tm_P

(CONJUNCT1 thm2a);

val thm2c = EQ_MP thm2b

(CONJUNCT2 thm2a);

val thm2d =

CHOOSE (‘‘u:’a‘‘,

ASSUME tm_lhs) thm2c

in

DISCH tm_lhs thm2d

end

val thm3 = IMP_ANTISYM_RULE thm2 thm1

val thm4 = GENL [tm_P, tm_v] thm3

> val thm2a = [(u = v) /\ P u] |-

(u = v) /\ P u: thm

> val thm2b = [(u = v) /\ P u] |-

P u <=> P v

> val thm2c = [(u = v) /\ P u] |-

P v

> val thm2d = [?x. (x = v) /\ P x] |-

P v

> val thm2 = [] |-

?x. (x = v) /\ P x ==> P v

> val thm3 = [] |-

?x. (x = v) /\ P x <=> P v

> val thm4 = [] |- !P v.

?x. (x = v) /\ P x <=> P v

65 / 292

Part VII

Backward Proofs

Motivation I

let’s prove !A B. A /\ B <=> B /\ A

(* Show |- A /\ B ==> B /\ A *)

val thm1a = ASSUME ‘‘A /\ B‘‘;

val thm1b = CONJ (CONJUNCT2 thm1a) (CONJUNCT1 thm1a);

val thm1 = DISCH ‘‘A /\ B‘‘ thm1b

(* Show |- B /\ A ==> A /\ B *)

val thm2a = ASSUME ‘‘B /\ A‘‘;

val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);

val thm2 = DISCH ‘‘B /\ A‘‘ thm2b

(* Combine to get |- A /\ B <=> B /\ A *)

val thm3 = IMP_ANTISYM_RULE thm1 thm2

(* Add quantifiers *)

val thm4 = GENL [‘‘A:bool‘‘, ‘‘B:bool‘‘] thm3

this is how you write down a proof

for finding a proof it is however often useful to think backwards

67 / 292

Motivation II - thinking backwards

we want to prove
I !A B. A /\ B <=> B /\ A

all-quantifiers can easily be added later, so let’s get rid of them

I A /\ B <=> B /\ A

now we have an equivalence, let’s show 2 implications

I A /\ B ==> B /\ A
I B /\ A ==> A /\ B

we have an implication, so we can use the precondition as an
assumption

I using A /\ B show B /\ A
I A /\ B ==> B /\ A

68 / 292

Motivation III - thinking backwards

we have a conjunction as assumption, let’s split it
I using A and B show B /\ A
I A /\ B ==> B /\ A

we have to show a conjunction, so let’s show both parts
I using A and B show B
I using A and B show A
I A /\ B ==> B /\ A

the first two proof obligations are trivial
I A /\ B ==> B /\ A

. . .

we are done

69 / 292

Motivation IV

common practise
I think backwards to find proof
I write found proof down in forward style

often switch between backward and forward style within a proof
Example: induction proof

I backward step: induct on . . .
I forward steps: prove base case and induction case

whether to use forward or backward proofs depend on
I support by the interactive theorem prover you use

F HOL 4 and close family: emphasis on backward proof
F Isabelle/HOL: emphasis on forward proof
F Coq : emphasis on backward proof

I your way of thinking
I the theorem you try to prove

70 / 292

HOL Implementation of Backward Proofs

in HOL
I proof tactics / backward proofs used for most user-level proofs
I forward proofs used usually for writing automation

backward proofs are implemented by tactics in HOL
I decomposition into subgoals implemented in SML
I SML datastructures used to keep track of all open subgoals
I forward proof used to construct theorems

to understand backward proofs in HOL we need to look at
I goal — SML datatype for proof obligations
I goalStack — library for keeping track of goals
I tactic — SML type for functions performing backward proofs

71 / 292

Goals

goals represent proof obligations, i. e. theorems we need/want to prove

the SML type goal is an abbreviation for term list * term

the goal ([asm 1, ..., asm n], c) records that we need/want to
prove the theorem {asm 1, ..., asm n} |- c

Example Goals

Goal Theorem
([‘‘A‘‘, ‘‘B‘‘], ‘‘A /\ B‘‘) {A, B} |- A /\ B

([‘‘B‘‘, ‘‘A‘‘], ‘‘A /\ B‘‘) {A, B} |- A /\ B

([‘‘B /\ A‘‘], ‘‘A /\ B‘‘) {B /\ A} |- A /\ B

([], ‘‘(B /\ A) ==> (A /\ B)‘‘) |- (B /\ A) ==> (A /\ B)

72 / 292

Tactics

the SML type tactic is an abbreviation for
the type goal -> goal list * validation

validation is an abbreviation for thm list -> thm

given a goal, a tactic
I decides into which subgoals to decompose the goal
I returns this list of subgoals
I returns a validation that

F given a list of theorems for the computed subgoals
F produces a theorem for the original goal

special case: empty list of subgoals
I the validation (given []) needs to produce a theorem for the goal

notice: a tactic might be invalid

73 / 292

Tactic Example — CONJ TAC

Γ ` p ∆ ` q

Γ ∪∆ ` p ∧ q
CONJ

t ≡ conj1 /\ conj2

asl ` conj1 asl ` conj2
asl ` t

val CONJ_TAC: tactic = fn (asl, t) =>

let

val (conj1, conj2) = dest_conj t

in

([(asl, conj1), (asl, conj2)],

fn [th1, th2] => CONJ th1 th2 | _ => raise Match)

end

handle HOL_ERR _ => raise ERR "CONJ_TAC" ""

74 / 292

Tactic Example — EQ TAC

Γ ` p =⇒ q
∆ ` q =⇒ p

Γ ∪∆ ` p = q
IMP ANTISYM RULE

t ≡ lhs = rhs

asl ` lhs ==> rhs

asl ` rhs ==> lhs

asl ` t

val EQ_TAC: tactic = fn (asl, t) =>

let

val (lhs, rhs) = dest_eq t

in

([(asl, mk_imp (lhs, rhs)), (asl, mk_imp (rhs, lhs))],

fn [th1, th2] => IMP_ANTISYM_RULE th1 th2

| _ => raise Match)

end

handle HOL_ERR _ => raise ERR "EQ_TAC" ""

75 / 292

proofManagerLib / goalStack

the proofManagerLib keeps track of open goals

it uses goalStack internally

important commands
I g — set up new goal
I e — expand a tactic
I p — print the current status
I top thm — get the proved thm at the end

76 / 292

Tactic Proof Example I

Previous Goalstack
-

User Action

g ‘!A B. A /\ B <=> B /\ A‘;

New Goalstack
Initial goal:

!A B. A /\ B <=> B /\ A

: proof

77 / 292

Tactic Proof Example II

Previous Goalstack
Initial goal:

!A B. A /\ B <=> B /\ A

: proof

User Action
e GEN_TAC;

e GEN_TAC;

New Goalstack

A /\ B <=> B /\ A

: proof

78 / 292

Tactic Proof Example III

Previous Goalstack

A /\ B <=> B /\ A

: proof

User Action
e EQ_TAC;

New Goalstack

B /\ A ==> A /\ B

A /\ B ==> B /\ A

: proof

79 / 292

Tactic Proof Example IV

Previous Goalstack

B /\ A ==> A /\ B

A /\ B ==> B /\ A : proof

User Action
e STRIP_TAC;

New Goalstack

B /\ A

0. A

1. B

80 / 292

Tactic Proof Example V

Previous Goalstack
B /\ A

0. A

1. B

User Action
e CONJ_TAC;

New Goalstack
A

0. A

1. B

B

0. A

1. B

81 / 292

Tactic Proof Example VI

Previous Goalstack
A

0. A

1. B

B

0. A

1. B

User Action
e (ACCEPT_TAC (ASSUME ‘‘B:bool‘‘));

e (ACCEPT_TAC (ASSUME ‘‘A:bool‘‘));

New Goalstack
B /\ A ==> A /\ B

: proof

82 / 292

Tactic Proof Example VII

Previous Goalstack
B /\ A ==> A /\ B

: proof

User Action
e STRIP_TAC;

e (ASM_REWRITE_TAC[]);

New Goalstack
Initial goal proved.

|- !A B. A /\ B <=> B /\ A:

proof

83 / 292

Tactic Proof Example VIII

Previous Goalstack
Initial goal proved.

|- !A B. A /\ B <=> B /\ A:

proof

User Action
val thm = top_thm();

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

84 / 292

Tactic Proof Example IX

Combined Tactic
val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘‘,

GEN_TAC >> GEN_TAC >>

EQ_TAC >| [

STRIP_TAC >>

STRIP_TAC >| [

ACCEPT_TAC (ASSUME ‘‘B:bool‘‘),

ACCEPT_TAC (ASSUME ‘‘A:bool‘‘)

],

STRIP_TAC >>

ASM_REWRITE_TAC[]

]);

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

85 / 292

Tactic Proof Example X

Cleaned-up Tactic
val thm = prove (‘‘!A B. A /\ B <=> B /\ A‘‘,

REPEAT GEN_TAC >>

EQ_TAC >> (

REPEAT STRIP_TAC >>

ASM_REWRITE_TAC []

));

Result
val thm =

|- !A B. A /\ B <=> B /\ A:

thm

86 / 292

Summary Backward Proofs

in HOL most user-level proofs are tactic-based
I automation often written in forward style
I low-level, basic proofs written in forward style
I nearly everything else is written in backward (tactic) style

there are many different tactics

in the lecture only the most basic ones will be discussed

you need to learn about tactics on your own
I good starting point: Quick manual
I learning finer points takes a lot of time
I exercises require you to read up on tactics

often there are many ways to prove a statement, which tactics to use
depends on

I personal way of thinking
I personal style and preferences
I maintainability, clarity, elegance, robustness
I . . .

87 / 292

Part VIII

Basic Tactics

Syntax of Tactics in HOL

originally tactics were written all in capital letters with underscores
Example: ALL TAC

since 2010 more and more tactics have overloaded lower-case syntax
Example: all tac

sometimes, the lower-case version is shortened
Example: REPEAT, rpt

sometimes, there is special syntax
Example: THEN, \\, >>

which one to use is mostly a matter of personal taste
I all-capital names are hard to read and type
I however, not for all tactics there are lower-case versions
I mixed lower- and upper-case tactics are even harder to read
I often shortened lower-case name is not speaking

In the lecture we will use mostly the old-style names.

89 / 292

Some Basic Tactics

GEN TAC remove outermost all-quantifier
DISCH TAC move antecedent of goal into assumptions
CONJ TAC splits conjunctive goal
STRIP TAC splits on outermost connective (combination

of GEN TAC, CONJ TAC, DISCH TAC, . . .)
DISJ1 TAC selects left disjunct
DISJ2 TAC selects right disjunct
EQ TAC reduce Boolean equality to implications
ASSUME TAC thm add theorem to list of assumptions
EXISTS TAC term provide witness for existential goal

90 / 292

Tacticals

tacticals are SML functions that combine tactics to form new tactics

common workflow
I develop large tactic interactively
I using goalStack and editor support to execute tactics one by one
I combine tactics manually with tacticals to create larger tactics
I finally end up with one large tactic that solves your goal
I use prove or store thm instead of goalStack

make sure to clearly mark proof structure by e. g.
I use indentation
I use parentheses
I use appropriate connectives
I . . .

goalStack commands like e or g should not appear in your final proof

91 / 292

Some Basic Tacticals

tac1 >> tac2 THEN, \\ applies tactics in sequence
tac >| tacL THENL applies list of tactics to subgoals
tac1 >- tac2 THEN1 applies tac2 to the first subgoal of tac1
REPEAT tac rpt repeats tac until it fails
NTAC n tac apply tac n times
REVERSE tac reverse reverses the order of subgoals
tac1 ORELSE tac2 applies tac1 only if tac2 fails
TRY tac do nothing if tac fails
ALL TAC all tac do nothing
NO TAC fail

92 / 292

Basic Rewrite Tactics

(equational) rewriting is at the core of HOL’s automation

we will discuss it in detail later

details complex, but basic usage is straightforward
I given a theorem rewr thm of form |- P x = Q x and a term t
I rewriting t with rewr thm means
I replacing each occurrence of a term P c for some c with Q c in t

warning: rewriting may loop
Example: rewriting with theorem |- X <=> (X /\ T)

REWRITE TAC thms rewrite goal using equations found
in given list of theorems

ASM REWRITE TAC thms in addition use assumptions
ONCE REWRITE TAC thms rewrite once in goal using equations
ONCE ASM REWRITE TAC thms rewrite once using assumptions

93 / 292

Case-Split and Induction Tactics

Induct on ‘term‘ induct on term

Induct induct on all-quantor
Cases on ‘term‘ case-split on term

Cases case-split on all-quantor
MATCH MP TAC thm apply rule
IRULE TAC thm generalised apply rule

94 / 292

Assumption Tactics

POP ASSUM thm-tac use and remove first assumption
common usage POP ASSUM MP TAC

PAT ASSUM term thm-tac use (and remove) first
also PAT X ASSUM term thm-tac assumption matching pattern

WEAKEN TAC term-pred removes first assumption
satisfying predicate

95 / 292

Decision Procedure Tactics

decision procedures try to solve the current goal completely

they either succeed of fail

no partial progress

decision procedures vital for automation

TAUT TAC propositional logic tautology checker
DECIDE TAC linear arithmetic for num
METIS TAC thms first order prover
numLib.ARITH TAC Presburger arithmetic
intLib.ARITH TAC uses Omega test

96 / 292

Subgoal Tactics

it is vital to structure your proofs well
I improved maintainability
I improved readability
I improved reusability
I saves time in medium-run

therefore, use many small lemmata

also, use many explicit subgoals

‘term-frag‘ by tac show term with tac and
add it to assumptions

‘term-frag‘ sufficies by tac show it sufficies to prove term

97 / 292

Term Fragments / Term Quotations

notice that by and sufficies by take term fragments

term fragments are also called term quotations

they represent (partially) unparsed terms

parsing takes time place during execution of tactic in context of goal

this helps to avoid type annotations

however, this means syntax errors show late as well

the library Q defines many tactics using term fragments

98 / 292

Importance of Exercises

here many tactics are presented in a very short amount of time

there are many, many more important tactics out there

few people can learn a programming language just by reading manuals

similar few people can learn HOL just by reading and listening

you should write your own proofs and play around with these tactics

solving the exercises is highly recommended
(and actually required if you want credits for this course)

99 / 292

Tactical Proof - Example I - Slide 1

we want to prove !l. LENGTH (APPEND l l) = 2 * LENGTH l

first step: set up goal on goalStack

at same time start writing proof script

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

Actions

run g ‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘

this is done by hol-mode

move cursor inside term and press M-h g

(menu-entry HOL - Goalstack - New goal)

100 / 292

Tactical Proof - Example I - Slide 2

Current Goal
!l. LENGTH (l ++ l) = 2 * LENGTH l

the outermost connective is an all-quantor

let’s get rid of it via GEN TAC

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (l ++ l) = 2 * LENGTH l‘‘,

GEN_TAC

Actions
run e GEN TAC

this is done by hol-mode

mark line with GEN TAC and press M-h e

(menu-entry HOL - Goalstack - Apply tactic)

101 / 292

Tactical Proof - Example I - Slide 3

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

LENGTH of APPEND can be simplified

let’s search an appropriate lemma with DB.match

Actions

run DB.print match [] ‘‘LENGTH (++)‘‘

this is done via hol-mode

press M-h m and enter term pattern
(menu-entry HOL - Misc - DB match)

this finds the theorem listTheory.LENGTH APPEND

|- !l1 l2. LENGTH (l1 ++ l2) = LENGTH l1 + LENGTH l2

102 / 292

Tactical Proof - Example I - Slide 4

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

let’s rewrite with found theorem listTheory.LENGTH APPEND

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND]

Actions

connect the new tactic with tactical >> (THEN)

use hol-mode to expand the new tactic

103 / 292

Tactical Proof - Example I - Slide 5

Current Goal
LENGTH l + LENGTH l = 2 * LENGTH l

let’s search a theorem for simplifying 2 * LENGTH l

prepare for extending the previous rewrite tactic

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND]

Actions

DB.match finds theorem arithmeticTheory.TIMES2

press M-h b and undo last tactic expansion
(menu-entry HOL - Goalstack - Back up)

104 / 292

Tactical Proof - Example I - Slide 6

Current Goal
LENGTH (l ++ l) = 2 * LENGTH l

extend the previous rewrite tactic

finish proof

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

Actions

add TIMES2 to the list of theorems used by rewrite tactic

use hol-mode to expand the extended rewrite tactic

goal is solved, so let’s add closing parenthesis and semicolon

105 / 292

Tactical Proof - Example I - Slide 7

we have a finished tactic proving our goal

notice that GEN TAC is not needed

let’s polish the proof script

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

GEN_TAC >>

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

Polished Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

REWRITE_TAC[listTheory.LENGTH APPEND, arithmeticTheory.TIMES2]);

106 / 292

Tactical Proof - Example II - Slide 1

let’s prove something slightly more complicated

drop old goal by pressing M-h d

(menu-entry HOL - Goalstack - Drop goal)

set up goal on goalStack (M-h g)

at same time start writing proof script

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

107 / 292

Tactical Proof - Example II - Slide 2

Current Goal
!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (l1 ++ l2 ++ l3)

let’s strip the goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

REPEAT STRIP TAC

108 / 292

Tactical Proof - Example II - Slide 2

Current Goal
!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (l1 ++ l2 ++ l3)

let’s strip the goal

Proof Script

val LENGTH_APPEND_SAME = prove (

‘‘!l. LENGTH (APPEND l l) = 2 * LENGTH l‘‘,

REPEAT STRIP TAC

Actions

add REPEAT STRIP TAC to proof script

expand this tactic using hol-mode

109 / 292

Tactical Proof - Example II - Slide 3

Current Goal
F

0. MEM x1 l1 4. x2 <= x3

1. MEM x2 l2 5. x3 <= SUC x1

2. MEM x3 l3 6. ALL_DISTINCT (l1 ++ l2 ++ l3)

3. x1 <= x2

oops, we did too much, we would like to keep ALL DISTINCT in goal

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC

Actions

undo REPEAT STRIP TAC (M-h b)

expand more fine-tuned strip tactic

110 / 292

Tactical Proof - Example II - Slide 4

Current Goal
~ALL_DISTINCT (l1 ++ l2 ++ l3)

0. MEM x1 l1 3. x1 <= x2

1. MEM x2 l2 4. x2 <= x3

2. MEM x3 l3 5. x3 <= SUC x1

now let’s simplify ALL DISTINCT

search suitable theorems with DB.match

use them with rewrite tactic

Proof Script

val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND]

111 / 292

Tactical Proof - Example II - Slide 5

Current Goal
~((ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2) /\

ALL_DISTINCT l3 /\ !e. MEM e l1 \/ MEM e l2 ==> ~MEM e l3)

0. MEM x1 l1 3. x1 <= x2

1. MEM x2 l2 4. x2 <= x3

2. MEM x3 l3 5. x3 <= SUC x1

from assumptions 3, 4 and 5 we know x2 = x1 \/ x2 = x3

let’s deduce this fact by DECIDE TAC

Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC

112 / 292

Tactical Proof - Example II - Slide 6

Current Goals — 2 subgoals, one for each disjunct
~((ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2) /\

ALL_DISTINCT l3 /\ !e. MEM e l1 \/ MEM e l2 ==> ~MEM e l3)

0. MEM x1 l1 4. x2 <= x3

1. MEM x2 l2 5. x3 <= SUC x1

2. MEM x3 l3 6a. x2 = x1

3. x1 <= x2 6b. x2 = x3

both goals are easily solved by first-order reasoning

let’s use METIS TAC[] for both subgoals

Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (‘‘...‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS TAC[]

));

113 / 292

Tactical Proof - Example II - Slide 7

Finished Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (

‘‘!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

((x1 <= x2) /\ (x2 <= x3) /\ x3 <= SUC x1) ==>

~(ALL_DISTINCT (l1 ++ l2 ++ l3))‘‘,

REPEAT GEN TAC >> STRIP TAC >>

REWRITE TAC[listTheory.ALL_DISTINCT APPEND, listTheory.MEM APPEND] >>

‘(x2 = x1) \/ (x2 = x3)‘ by DECIDE_TAC >> (

METIS TAC[]

));

notice that proof structure is explicit

parentheses and indentation used to mark new subgoals

114 / 292

Part IX

Induction Proofs

Mathematical Induction

mathematical (a. k. a. natural) induction principle:
If a property P holds for 0 and P(n) implies P(n + 1) for all n,
then P(n) holds for all n.

HOL is expressive enough to encode this principle as a theorem.

|- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> !n. P n

Performing mathematical induction in HOL means applying this
theorem (e. g. via HO MATCH MP TAC)

there are many similarish induction theorems in HOL

Example: complete induction principle

|- !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n

116 / 292

Structural Induction Theorems

structural induction theorems are an important special form of
induction theorems

they describe performing induction on the structure of a datatype

Example: |- !P. P [] /\ (!t. P t ==> !h. P (h::t)) ==> !l. P l

structural induction is used very frequently in HOL

for each algabraic datatype, there is an induction theorem

117 / 292

Other Induction Theorems

there are many induction theorems in HOL
I datatype definitions lead to induction theorems
I recursive function definitions produce corresponding induction theorems
I recursive relation definitions give rise to induction theorems
I many are manually defined

Examples

|- !P. P [] /\ (!l. P l ==> !x. P (SNOC x l)) ==> !l. P l

|- !P. P FEMPTY /\

(!f. P f ==> !x y. x NOTIN FDOM f ==> P (f |+ (x,y))) ==> !f. P f

|- !P. P {} /\

(!s. FINITE s /\ P s ==> !e. e NOTIN s ==> P (e INSERT s)) ==>

!s. FINITE s ==> P s

|- !R P. (!x y. R x y ==> P x y) /\ (!x y z. P x y /\ P y z ==> P x z) ==>

!u v. R+ u v ==> P u v

118 / 292

Induction (and Case-Split) Tactics

the tactic Induct (or Induct on) usually used to start induction
proofs

it looks at the type of the quantifier (or its argument) and applies the
default induction theorem for this type

this is usually what one needs

other (non default) induction theorems can be applied via
INDUCT THEN or HO MATCH MP TAC

similarish Cases on picks and applies default case-split theorems

119 / 292

Induction Proof - Example I - Slide 1

let’s prove via induction
!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1

we set up the goal and start and induction proof on l1

Proof Script

val REVERSE_APPEND = prove (

‘‘!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1‘‘,

Induct

120 / 292

Induction Proof - Example I - Slide 2

the induction tactic produced two cases

base case:
!l2. REVERSE ([] ++ l2) = REVERSE l2 ++ REVERSE []

induction step:

!h l2. REVERSE (h::l1 ++ l2) = REVERSE l2 ++ REVERSE (h::l1)

!l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1

both goals can be easily proved by rewriting

Proof Script
val REVERSE_APPEND = prove (‘‘

!l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1‘‘,

Induct >| [

REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],

ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]

]);

121 / 292

Induction Proof - Example II - Slide 2

let’s prove via induction
!l. REVERSE (REVERSE l) = l

we set up the goal and start and induction proof on l

Proof Script

val REVERSE_REVERSE = prove (

‘‘!l. REVERSE (REVERSE l) = l‘‘,

Induct

122 / 292

Induction Proof - Example II - Slide 2

the induction tactic produced two cases

base case:
REVERSE (REVERSE []) = []

induction step:

!h. REVERSE (REVERSE (h::l1)) = h::l1

--

REVERSE (REVERSE l) = l

again both goals can be easily proved by rewriting

Proof Script
val REVERSE_REVERSE = prove (

‘‘!l. REVERSE (REVERSE l) = l‘‘,

Induct >| [

REWRITE_TAC[REVERSE_DEF],

ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]

]);

123 / 292

Part X

Basic Definitions

Definitional Extensions

there are conservative definition principles for types and constants

conservative means that all theorems that can be proved in extended
theory can also be proved in original one

however, such extensions make the theory more comfortable

definitions introduce no new inconsistencies

the HOL community has a very strong tradition of a purely
definitional approach

125 / 292

Axiomatic Extensions

axioms are a different approach

they allow postulating arbitrary properties, i. e. extending the logic
with arbitrary theorems

this approach might introduce new inconsistencies

in HOL axioms are very rarely needed

using definitions is often considered more elegant

it is hard to keep track of axioms

use axioms only if you really know what you are doing

126 / 292

Oracles

oracles are families of axioms

however, they are used differently than axioms

they are used to enable usage of external tools and knowledge

you might want to use an external automated prover

this external tool acts as an oracle
I it provides answers
I it does not explain or justify these answers

you don’t know, whether this external tool might be buggy

all theorems proved via it are tagged with a special oracle-tag

tags are propagated

this allows keeping track of everything depending on the correctness
of this tool

127 / 292

Oracles II

Common oracle-tags
I DISK THM — theorem was written to disk and read again
I HolSatLib — proved by MiniSat
I HolSmtLib — proved by external SMT solver
I fast proof — proof was skipped to compile a theory rapidly
I cheat — we cheated :-)

cheating via e. g. the cheat tactic means skipping proofs

it can be helpful during proof development
I test whether some lemmata allow you finishing the proof
I skip lengthy but boring cases and focus on critical parts first
I experiment with exact form of invariants
I . . .

cheats should be removed reasonable quickly

HOL warns about cheats and skipped proofs

128 / 292

Pitfalls of Definitional Approach

definitions can’t introduce new inconsistencies

they force you to state all assumed properties at one location

however, you still need to be careful

Is your definition really expressing what you had in mind ?

Does your formalisation correspond to the real world artefact ?

How can you convince others that this is the case ?

we will discuss methods to deal with this later in this course
I formal sanity
I conformance testing
I code review
I comments, good names, clear coding style
I . . .

this is highly complex and needs a lot of effort in general

129 / 292

Specifications

HOL allows to introduce new constants with certain properties,
provided the existence of such constants has been shown

Specification of EVEN and ODD
> EVEN ODD EXISTS

val it = |- ?even odd. even 0 /\ ~odd 0 /\ (!n. even (SUC n) <=> odd n) /\

(!n. odd (SUC n) <=> even n)

> val EO SPEC = new specification ("EO SPEC", ["EVEN", "ODD"], EVEN ODD EXISTS);

val EO SPEC = |- EVEN 0 /\ ~ODD 0 /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n)

new specification is a convenience wrapper
I it uses existential quantification instead of Hilbert’s choice
I deals with pair syntax
I stores resulting definitions in theory

new specification captures the underlying principle nicely

130 / 292

Definitions

special case: new constant defined by equality

Specification with Equality
> double_EXISTS

val it =

|- ?double. (!n. double n = (n + n))

> val double_def = new_specification ("double_def", ["double"], double_EXISTS);

val double_def =

|- !n. double n = n + n

there is a specialised methods for such non-recursive definitions

Non Recursive Definitions
> val DOUBLE_DEF = new_definition ("DOUBLE_DEF", ‘‘DOUBLE n = n + n‘‘)

val DOUBLE_DEF =

|- !n. DOUBLE n = n + n

131 / 292

Restrictions for Definitions

all variables occurring on right-hand-side (rhs) need to be arguments
I e. g. new definition (..., ‘‘F n = n + m‘‘) fails
I m is free on rhs

all type variables occurring on rhs need to occur on lhs
I e. g. new definition ("IS FIN TY",

‘‘IS FIN TY = FINITE (UNIV : ’a set)‘‘) fails
I IS FIN TY would lead to inconsistency
I |- FINITE (UNIV : bool set)
I |- ~FINITE (UNIV : num set)
I T <=> FINITE (UNIV:bool set) <=>

IS FIN TY <=>

FINITE (UNIV:num set) <=> F
I therefore, such definitions can’t be allowed

132 / 292

Underspecified Functions

function specification do not need to define the function precisely

multiple different functions satisfying one spec are possible

functions resulting from such specs are called underspecified

underspecified functions are still total, one just lacks knowledge

one common application: modelling partial functions
I functions like e. g. HD and TL are total
I they are defined for empty lists
I however, it is not specified, which value they have for empty lists
I only known: HD [] = HD [] and TL [] = TL []

val MY_HD_EXISTS = prove (‘‘?hd. !x xs. (hd (x::xs) = x)‘‘, ...);

val MY_HD_SPEC =

new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

133 / 292

Primitive Type Definitions

HOL allows introducing non-empty subtypes of existing types

a predicate P : ty -> bool describes a subset of an existing type ty

ty may contain type variables

only non-empty types are allowed

therefore a non-emptyness proof ex-thm of form ?e. P e is needed

new type definition (op-name, ex-thm) then introduces a new
type op-name specified by P

134 / 292

Primitive Type Definitions - Example 1

lets try to define a type dlist of lists containing no duplicates

predicate ALL DISTINCT : ’a list -> bool is used to define it

easy to prove theorem dlist exists: |- ?l. ALL DISTINCT l

val dlist TY DEF = new type definitions("dlist",

dlist exists) defines a new type ’a dlist and returns a theorem

|- ?(rep :’a dlist -> ’a list).

TYPE_DEFINITION ALL_DISTINCT rep

rep is a function taking a ’a dlist to the list representing it
I rep is injective
I a list satisfies ALL DISTINCT iff there is a corresponding dlist

135 / 292

Primitive Type Definitions - Example 2

define new type bijections can be used to define bijections
between old and new type

> define_new_type_bijections {name="dlist_tybij", ABS="abs_dlist",

REP="rep_dlist", tyax=dlist_TY_DEF}

val it =

|- (!a. abs_dlist (rep_dlist a) = a) /\

(!r. ALL_DISTINCT r <=> (rep_dlist (abs_dlist r) = r))

other useful theorems can be automatically proved by
I prove abs fn one one
I prove abs fn onto
I prove rep fn one one
I prove rep fn onto

136 / 292

Primitive Definition Principles Summary

primitive definition principles are easily explained

they lead to conservative extensions

however, they are cumbersome to use

LCF approach allows implementing more convenient definition tools
I Datatype package
I TFL (Total Functional Language) package
I IndDef (Inductive Definition) package
I quotientLib Quotient Types Library
I ...

137 / 292

Functional Programming

the Datatype package allows to define datatypes conveniently

the TFL package allows to define (mutually recursive) functions

the EVAL conversion allows evaluating those definitions

this gives many HOL developments the feeling of a functional program

there is really a close connection between functional programming a
definitions in HOL

I functional programming design principles apply
I EVAL is a great way to test quickly, whether your definitions are

working as intended

138 / 292

Functional Programming Example

> Datatype ‘mylist = E | L ’a mylist‘

val it = (): unit

> Define ‘(mylen E = 0) /\ (mylen (L x xs) = SUC (mylen xs))‘

Definition has been stored under "mylen def"

val it =

|- (mylen E = 0) /\ !x xs. mylen (L x xs) = SUC (mylen xs):

thm

> EVAL ‘‘mylen (L 2 (L 3 (L 1 E)))‘‘

val it =

|- mylen (L 2 (L 3 (L 1 E))) = 3:

thm

139 / 292

Datatype Package

the Datatype package allows to define SML style datatypes easily

there is support for
I algebraic datatypes
I record types
I mutually recursive types
I ...

many constants are automatically introduced
I constructors
I case-split constant
I size function
I field-update and accessor functions for records
I ...

many theorems are derived and stored in current theory
I injectivity and distinctness of constructors
I nchotomy and structural induction theorems
I rewrites for case-split, size and record update functions
I ...

140 / 292

Datatype Package - Example I

Tree Datatype in SML
datatype (’a,’b) btree = Leaf of ’a

| Node of (’a,’b) btree * ’b * (’a,’b) btree

Tree Datatype in HOL
Datatype ‘btree = Leaf ’a

| Node btree ’b btree‘

Tree Datatype in HOL — Deprecated Syntax
Hol_datatype ‘btree = Leaf of ’a

| Node of btree => ’b => btree‘

141 / 292

Datatype Package - Example I - Derived Theorems 1

btree distinct
|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree 11
|- (!a a’. (Leaf a = Leaf a’) <=> (a = a’)) /\

(!a0 a1 a2 a0’ a1’ a2’.

(Node a0 a1 a2 = Node a0’ a1’ a2’) <=>

(a0 = a0’) /\ (a1 = a1’) /\ (a2 = a2’))

btree nchotomy

|- !bb. (?a. bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)

btree induction
|- !P. (!a. P (Leaf a)) /\

(!b b0. P b /\ P b0 ==> !b1. P (Node b b1 b0)) ==>

!b. P b

142 / 292

Datatype Package - Example I - Derived Theorems 2

btree size def
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\

(!f f1 a0 a1 a2.

btree_size f f1 (Node a0 a1 a2) =

1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))

bbtree case def
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\

(!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)

btree case cong

|- !M M’ f f1.

(M = M’) /\ (!a. (M’ = Leaf a) ==> (f a = f’ a)) /\

(!a0 a1 a2.

(M’ = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1’ a0 a1 a2)) ==>

(btree_CASE M f f1 = btree_CASE M’ f’ f1’)

143 / 292

Datatype Package - Example II

Enumeration type in SML
datatype my_enum = E1 | E2 | E3

Enumeration type in HOL
Datatype ‘my_enum = E1 | E2 | E3‘

144 / 292

Datatype Package - Example II - Derived Theorems

my enum nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my enum distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my enum2num thm

|- (my_enum2num E1 = 0) /\ (my_enum2num E2 = 1) /\ (my_enum2num E3 = 2)

my enum2num num2my enum

|- !r. r < 3 <=> (my_enum2num (num2my_enum r) = r)

145 / 292

Datatype Package - Example III

Record type in SML
type rgb = { r : int, g : int, b : int }

Record type in HOL
Datatype ‘rgb = <| r : num; g : num; b : num |>‘

146 / 292

Datatype Package - Example III - Derived Theorems

rgb component equality

|- !r1 r2. (r1 = r2) <=>

(r1.r = r2.r) /\ (r1.g = r2.g) /\ (r1.b = r2.b)

rgb nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb r fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb updates eq literal

|- !r n1 n0 n.

r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>

147 / 292

Datatype Package - Example IV

nested record types are not allowed

however, mutual recursive types can mitigate this restriction

Filesystem Datatype in SML
datatype file = Text of string

| Dir of {owner : string ,

files : (string * file) list}

Not Supported Nested Record Type Example in HOL
Datatype ‘file = Text string

| Dir <| owner : string ;

files : (string # file) list |>‘

Filesystem Datatype - Mutual Recursion in HOL
Datatype ‘file = Text string

| Dir directory

;

directory = <| owner : string ;

files : (string # file) list |>‘

148 / 292

Datatype Package - No support for Co-Algebraic Types

there is no support for co-algebraic types

the Datatype package could be extended to do so

other systems like Isabelle/HOL provide high-level methods for
defining such types

Co-algebraic Type Example in SML — Lazy Lists
datatype ’a lazylist = Nil

| Cons of (’a * (unit -> ’a lazylist))

149 / 292

Datatype Package - Discussion

Datatype package allows to define many useful datatypes

however, there are many limitations
I some types cannot be defined in HOL, e. g. empty types
I some types are not supported, e. g. co-algebraic types
I there are bugs (currently e. g. some trouble with certain mutually

recursive definitions)

biggest restrictions in practice (in my opinion and my line of work)
I no support for co-algebraic datatypes
I no nested record datatypes

depending on datatype, different sets of useful lemmata are derived

most important ones are added to TypeBase
I tools like Induct on, Cases on use them
I there is support for pattern matching

150 / 292

Total Functional Language (TFL) package

TFL package implements support for terminating functional definitions

Define defines functions from high-level descriptions

there is support for pattern matching

look and feel is like function definitions in SML

based on well-founded recursion principle

Define is the most common way for definitions in HOL

151 / 292

Well-Founded Relations

a relation R : ’a -> ’a -> bool is called well-founded, iff there
are no infinite descending chains

wellfounded R = ~?f. !n. R (f (SUC n)) (f n)

Example: $< : num -> num -> bool is well-founded

if arguments of recursive calls are smaller according to well-founded
relation, the recursion terminates

this is the essence of termination proofs

152 / 292

Well-Founded Recursion

a well-founded relation R can be used to define recursive functions

this recursion principle is called WFREC in HOL

idea of WFREC
I if arguments get smaller according to R, perform recursive call
I otherwise abort and return ARB

WFREC always defines a function

if all recursive calls indeed decrease according to R, the original
recursive equations can be derived from the WFREC representation

TFL uses this internally

however, this is well-hidden from the user

153 / 292

Define - Initial Examples

Simple Definitions
> val DOUBLE_def = Define ‘DOUBLE n = n + n‘

val DOUBLE_def =

|- !n. DOUBLE n = n + n:

thm

> val MY_LENGTH_def = Define ‘(MY_LENGTH [] = 0) /\

(MY_LENGTH (x::xs) = SUC (MY_LENGTH xs))‘

val MY_LENGTH_def =

|- (MY_LENGTH [] = 0) /\ !x xs. MY_LENGTH (x::xs) = SUC (MY_LENGTH xs):

thm

> val MY_APPEND_def = Define ‘(MY_APPEND [] ys = ys) /\

(MY_APPEND (x::xs) ys = x :: (MY_APPEND xs ys))‘

val MY_APPEND_def =

|- (!ys. MY_APPEND [] ys = ys) /\

(!x xs ys. MY_APPEND (x::xs) ys = x::MY_APPEND xs ys):

thm

154 / 292

Define discussion

Define feels like a function definition in HOL

it can be used to define ”terminating” recursive functions

Define is implemented by a large, non-trivial piece of SML code

it uses many heuristics

outcome of Define sometimes hard to predict

the input descriptions are only hints
I the produced function and the definitional theorem might be different
I in simple examples, quantifiers added
I pattern compilation takes place
I earlier “conjuncts” have precedence

155 / 292

Define - More Examples

> val MY_HD_def = Define ‘MY_HD (x :: xs) = x‘

val MY_HD_def = |- !x xs. MY_HD (x::xs) = x : thm

> val IS_SORTED_def = Define ‘

(IS_SORTED (x1 :: x2 :: xs) = ((x1 < x2) /\ (IS_SORTED (x2::xs)))) /\

(IS_SORTED _ = T)‘

val IS_SORTED_def =

|- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\

(IS_SORTED [] <=> T) /\ (!v. IS_SORTED [v] <=> T)

> val EVEN_def = Define ‘(EVEN 0 = T) /\ (ODD 0 = F) /\

(EVEN (SUC n) = ODD n) /\ (ODD (SUC n) = EVEN n)‘

val EVEN_def =

|- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\

(!n. ODD (SUC n) <=> EVEN n) : thm

> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP = [])‘

val ZIP_def =

|- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(!v1. ZIP [] v1 = []) /\ (!v4 v3. ZIP (v3::v4) [] = []) : thm

156 / 292

Primitive Definitions

Define introduces (if needed) the function using WFREC

intended definition derived as a theorem

the theorems are stored in current theory

usually, one never needs to look at it

Examples
val IS_SORTED_primitive_def =

|- IS_SORTED =

WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))

(\IS_SORTED a.

case a of

[] => I T

| [x1] => I T

| x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x

|- !f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)

157 / 292

Induction Theorems

Define automatically defines induction theorems

these theorems are stored in current theory with suffix ind

use DB.fetch "-" "something ind" to retrieve them

these induction theorems are useful to reason about corresponding
recursive functions

Example
val IS_SORTED_ind = |- !P.

((!x1 x2 xs. P (x2::xs) ==> P (x1::x2::xs)) /\

P [] /\

(!v. P [v])) ==>

!v. P v

158 / 292

Define failing

Define might fail for various reasons to define a function
I such a function cannot be defined in HOL
I such a function can be defined, but not via the methods used by TFL
I TFL can define such a function, but its heuristics are too weak and

user guidance is required
I there is a bug :-)

termination is an important concept for Define

it is easy to misunderstand termination in the context of HOL

we need to understand what is meant by termination

159 / 292

Termination in HOL

in SML it is natural to talk about termination of functions

in the HOL logic there is no concept of execution

thus, there is no concept of termination in HOL

3 characterisations of a function f : num -> num

I |- !n. f n = 0

I |- (f 0 = 0) /\ !n. (f (SUC n) = f n)

I |- (f 0 = 0) /\ !n. (f n = f (SUC n))

Is f terminating? All 3 theorems are equivalent.

160 / 292

Termination in HOL II

it is useful to think in terms of termination

the TFL package implements heuristics to define functions that would
terminate in SML

the TFL package uses well-founded recursion

the required well-founded relation corresponds to a termination proof

therefore, it is very natural to think of Define searching a
termination proof

important: this is the idea behind this function definition package,
not a property of HOL

HOL is not limited to ”terminating” functions

161 / 292

Termination in HOL III

one can define ”non-terminating” functions in HOL

however, one cannot do so (easily) with Define

Definition of WHILE in HOL
|- !P g x. WHILE P g x = if P x then WHILE P g (g x) else x

Execution Order
There is no ”execution order”. One can easily define a complicated constant function:

(myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions
A function f : num -> num with the following property cannot be defined in HOL unless HOL
has an inconsistancy:

!n. f n = ((f n) + 1)

Such a function would allow to prove 0 = 1.

162 / 292

Manual Termination Proofs I

TFL uses various heuristics to find a well-founded relation

however, these heuristics may not be strong enough

in such cases the user can provide a well-founded relation manually

the most common well-founded relations are measures

measures map values to natural numbers and use the less relation
|- !(f:’a -> num) x y. measure f x y <=> (f x < f y)

all measures are well-founded: |- !f. WF (measure f)

moreover, existing well-founded relations can be combined
I lexicographic order LEX
I list lexicographic order LLEX
I . . .

163 / 292

Manual Termination Proofs II

if Define fails to find a termination proof, Hol defn can be used

Hol defn defers termination proofs

it derives termination conditions and sets up the function definitions

all results are packaged as a value of type defn

after calling Hol defn the defined function(s) can be used

however, the intended definition theorem has not been derived yet

to derive it, one needs to
I provide a well-founded relation
I show that termination conditions respect that relation

Defn.tprove and Defn.tgoal are intended for this

proofs usually start by providing relation via tactic WF REL TAC

164 / 292

Manual Termination Proof Example 1

> val qsort_defn = Hol_defn "qsort" ‘

(qsort ord [] = []) /\

(qsort ord (x::rst) =

(qsort ord (FILTER ($~ o ord x) rst)) ++

[x] ++

(qsort ord (FILTER (ord x) rst)))‘

val qsort_defn = HOL function definition (recursive)

Equation(s) :

[...] |- qsort ord [] = []

[...] |- qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst)

Induction : ...

Termination conditions :

0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)

1. !rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst)

2. WF R

165 / 292

Manual Termination Proof Example 2

> Defn.tgoal qsort_defn

Initial goal:

?R.

WF R /\

(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(, l). LENGTH l)‘)

1 subgoal :

(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\

(!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

166 / 292

Manual Termination Proof Example 2

> Defn.tgoal qsort_defn

Initial goal:

?R.

WF R /\

(!rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst)) /\

(!rst x ord. R (ord,FILTER ($~ o ord x) rst) (ord,x::rst))

> e (WF_REL_TAC ‘measure (\(, l). LENGTH l)‘)

1 subgoal :

(!rst x ord. LENGTH (FILTER (ord x) rst) < LENGTH (x::rst)) /\

(!rst x ord. LENGTH (FILTER (\x’. ~ord x x’) rst) < LENGTH (x::rst))

> ...

166 / 292

Manual Termination Proof Example 3

> val (qsort_def, qsort_ind) =

Defn.tprove (qsort_defn,

WF_REL_TAC ‘measure (\(, l). LENGTH l)‘) >> ...)

val qsort_def =

|- (qsort ord [] = []) /\

(qsort ord (x::rst) =

qsort ord (FILTER ($~ o ord x) rst) ++ [x] ++

qsort ord (FILTER (ord x) rst))

val qsort_ind =

|- !P. (!ord. P ord []) /\

(!ord x rst.

P ord (FILTER (ord x) rst) /\

P ord (FILTER ($~ o ord x) rst) ==>

P ord (x::rst)) ==>

!v v1. P v v1

167 / 292

Part XI

Good Definitions

Importance of Good Definitions

using good definitions is very important
I good definitions are vital for clarity
I proofs depend a lot on the form of definitions

unluckily, it is hard to state what a good definition is

even harder to come up with good definitions

let’s look at it a bit closer anyhow

169 / 292

Importance of Good Definitions — Clarity I

HOL guarantees that theorems do indeed hold

However, does the theorem mean what you think it does?

you can separate your development in
I main theorems you care for
I auxiliary stuff used to derive your main theorems

it is essential to understand your main theorems

170 / 292

Importance of Good Definitions — Clarity II

Guarded by HOL

proofs checked

internal, technical definitions

technical lemmata

proof tools

Manual review needed for

meaning of main theorems

meaning of definitions used
by main theorems

meaning of types used by
main theorems

171 / 292

Importance of Good Definitions — Clarity III

it is essential to understand your main theorems
I you need to understand all the definitions directly used
I you need to understand the indirectly used ones as well
I you need to convince others that you express the intended statement
I therefore, it is vital to use very simple, clear definitions

defining concepts is often the main development task

checking resulting model against real artefact is vital
I testing via e. g. EVAL
I formal sanity
I conformance testing

wrong models are main source of error when using HOL

proofs, auxiliary lemmata and auxiliary definitions
I can be as technical and complicated as you like
I correctness is guaranteed by HOL
I reviewers don’t need to care

172 / 292

Importance of Good Definitions — Proofs

good definitions can shorten proofs significantly

they improve maintainability

they can improve automation drastically

unluckily for proofs definitions often need to be technical

this contradicts clarity aims

173 / 292

How to come up with good definitions

unluckily, it is hard to state what a good definition is

it is even harder to come up with them
I there are often many competing interests
I a lot of experience and detailed tool knowledge is needed
I much depends on personal style and taste

general advice: use more than one definition
I in HOL you can derive equivalent definitions as theorems
I define a concept as clearly and easily as possible
I derive equivalent definitions for various purposes

F one very close to your favourite textbook
F one nice for certain types of proofs
F another one good for evaluation
F . . .

lessons from functional programming apply

174 / 292

Good Definitions in Functional Programming

Objectives

clarity (readability, maintainability)

performance (runtime speed, memory usage, ...)

General Advice

use the powerful type-system

use many small function definitions

encode invariants in types and function signatures

175 / 292

Good Definitions – no number encodings
many programmers familiar with C encode everything as a number
enumeration types are very cheap in SML and HOL
use them instead

Example Enumeration Types
In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and
positive integers. In SML and HOL, it is better to use a variant type.

val _ = Datatype ‘ordering = LESS | EQUAL | GREATER‘;

val compare_def = Define ‘

(compare LESS lt eq gt = lt)

/\ (compare EQUAL lt eq gt = eq)

/\ (compare GREATER lt eq gt = gt) ‘;

val list_compare_def = Define ‘

(list_compare cmp [] [] = EQUAL) /\ (list_compare cmp [] l2 = LESS)

/\ (list_compare cmp l1 [] = GREATER)

/\ (list_compare cmp (x::l1) (y::l2) = compare (cmp (x:’a) y)

(* x<y *) LESS

(* x=y *) (list_compare cmp l1 l2)

(* x>y *) GREATER) ‘;

176 / 292

Good Definitions — Isomorphic Types

the type-checker is your friend
I it helps you find errors
I code becomes more robust
I using good types is a great way of writing self-documenting code

therefore, use many types

even use types isomorphic to existing ones

Virtual and Physical Memory Addresses
Virtual and physical addresses might in a development both be numbers. It is still nice to use
separate types to avoid mixing them up.

val _ = Datatype ‘vaddr = VAddr num‘;

val _ = Datatype ‘paddr = PAddr num‘;

val virt_to_phys_addr_def = Define ‘

virt_to_phys_addr (VAddr a) = PAddr(translation of a)‘;

177 / 292

Good Definitions — Record Types I

often people use tuples where records would be more appropriate

using large tuples quickly becomes awkward
I it is easy to mix up order of tuple entries

F often types coincide, so type-checker does not help

I no good error messages for tuples
F hard to decipher type mismatch messages for long product types
F hard to figure out which entry is missing at which position
F non-local error messages
F variable in last entry can hide missing entries

records sometimes require slightly more proof effort

however, records have many benefits

178 / 292

Good Definitions — Record Types II

using records
I introduces field names
I provides automatically defined accessor and update functions
I leads to better type-checking error messages

records improve readability
I accessors and update functions lead to shorter code
I field names act as documentation

records improve maintainability
I improved error messages
I much easier to add extra fields

179 / 292

Good Definitions — Encoding Invariants

try to encode as many invariants as possible in the types

this allows the type-checker to ensure them for you

you don’t have to check them manually any more

your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)
Consider the following datatype for network connections. It has many implicit invariants.

datatype connection_state = Connected | Disconnected | Connecting;

type connection_info = {

state : connection_state,

server : inet_address,

last_ping_time : time option,

last_ping_id : int option,

session_id : string option,

when_initiated : time option,

when_disconnected : time option

}

180 / 292

Good Definitions — Encoding Invariants II

Network Connections (Example by Yaron Minsky from Jane Street) II
The following definition of connection info makes the invariants explicit:

type connected = { last_ping : (time * int) option,

session_id : string };

type disconnected = { when_disconnected : time };

type connecting = { when_initiated : time };

datatype connection_state =

Connected of connected

| Disconnected of disconneted

| Connecting of connecting;

type connection_info = {

state : connection_state,

server : inet_address

}

181 / 292

Good Definitions in HOL

Objectives

clarity (readability)

good for proofs

performance (good for automation, easily evaluatable, ...)

General Advice

same advice as for functional programming applies

use even smaller definitions
I introduce auxiliary definitions for important function parts
I use extra definitions for important constants
I ...

tiny definitions
I allow keeping proof state small by unfolding only needed ones
I allow many small lemmata
I improve maintainability

182 / 292

Good Definitions in HOL II

Technical Issues

write definition such that they work well with HOL’s tools

this requires you to know HOL well

a lot of experience is required

general advice
I avoid explicit case-expressions
I prefer curried functions

Example
val ZIP_GOOD_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP _ _ = [])‘

val ZIP_BAD1_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| (_, _) => []‘

val ZIP_BAD2_def = Define ‘(ZIP (x::xs, y::ys) = (x,y)::(ZIP (xs, ys))) /\

(ZIP _ = [])‘

183 / 292

Good Definitions in HOL III

Multiple Equivalent Definitions

satisfy competing requirements by having multiple equivalent
definitions

derive them as theorems

initial definition should be as clear as possible
I clarity allows simpler reviews
I simplicity reduces the likelihood of errors

Example - ALL DISTINCT

|- (ALL_DISTINCT [] <=> T) /\

(!h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)

|- !l. ALL_DISTINCT l <=>

(!x. MEM x l ==> (FILTER ($= x) l = [x]))

|- !ls. ALL_DISTINCT ls <=> (CARD (set ls) = LENGTH ls):

184 / 292

Formal Sanity

Formal Sanity

to ensure correctness test your definitions via e. g. EVAL

in HOL testing means symbolic evaluation, i. e. proving lemmata

formally proving sanity check lemmata is very beneficial
I they should express core properties of your definition
I thereby they check your intuition against your actual definitions
I these lemmata are often useful for following proofs
I using them improves robustness and maintainability of your

development

I highly recommend using formal sanity checks

185 / 292

Formal Sanity Example I

> val ALL_DISTINCT = Define ‘

(ALL_DISTINCT [] = T) /\

(ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)‘;

Example Sanity Check Lemmata
|- ALL_DISTINCT []

|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs

|- !x. ALL_DISTINCT [x]

|- !x xs. ~(ALL_DISTINCT (x::x::xs))

|- !l. ALL_DISTINCT (REVERSE l) <=> ALL_DISTINCT l

|- !x l. ALL_DISTINCT (SNOC x l) <=> ~MEM x l /\ ALL_DISTINCT l

|- !l1 l2. ALL_DISTINCT (l1 ++ l2) <=>

ALL_DISTINCT l1 /\ ALL_DISTINCT l2 /\ !e. MEM e l1 ==> ~MEM e l2

186 / 292

Formal Sanity Example II 1

> val ZIP_def = Define ‘

(ZIP [] ys = []) /\ (ZIP xs [] = []) /\

(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))‘

val ZIP_def =

|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

above definition of ZIP looks straightforward

small changes cause heuristics to produce different theorems

use formal sanity lemmata to compensate

> val ZIP_def = Define ‘

(ZIP xs [] = []) /\ (ZIP [] ys = []) /\

(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))‘

val ZIP_def =

|- (!xs. ZIP xs [] = []) /\ (!v3 v2. ZIP [] (v2::v3) = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys0

187 / 292

Formal Sanity Example II 2

val ZIP_def =

|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\

(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

Example Formal Sanity Lemmata
|- (!xs. ZIP xs [] = []) /\ (!ys. ZIP [] ys = []) /\

(!y ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)

|- !xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)

|- !x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)

|- !xs1 xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1 ==>

(ZIP (xs1++xs2) (ys1++ys2) = (ZIP xs1 ys1 ++ ZIP xs2 ys2))

...

in your proofs use sanity lemmata, not original definition

this makes your development robust against
I small changes to the definition required later
I changes to Define and its heuristics
I bugs in function definition package

188 / 292

Part XII

Deep and Shallow Embeddings

Deep and Shallow Embeddings

often one models some kind of formal language

important design decision: use deep or shallow embedding

in a nutshell:
I shallow embeddings just model semantics
I deep embeddings model syntax as well

a shallow embedding directly uses the HOL logic

a deep embedding
I defines a datatype for the syntax of the language
I provides a function to map this syntax to a semantic

190 / 292

Example: Embedding of Propositional Logic I

propositional logic is a subset of HOL

a shallow embedding is therefore trivial

val sh_true_def = Define ‘sh_true = T‘;

val sh_var_def = Define ‘sh_var (v:bool) = v‘;

val sh_not_def = Define ‘sh_not b = ~b‘;
val sh_and_def = Define ‘sh_and b1 b2 = (b1 /\ b2)‘;

val sh_or_def = Define ‘sh_or b1 b2 = (b1 \/ b2)‘;

val sh_implies_def = Define ‘sh_implies b1 b2 = (b1 ==> b2)‘;

191 / 292

Example: Embedding of Propositional Logic II

we can also define a datatype for propositional logic

this leads to a deep embedding

val _ = Datatype ‘bvar = BVar num‘

val _ = Datatype ‘prop = d_true | d_var bvar | d_not prop

| d_and prop prop | d_or prop prop

| d_implies prop prop‘;

val _ = Datatype ‘var_assignment = BAssign (bvar -> bool)‘

val VAR_VALUE_def = Define ‘VAR_VALUE (BAssign a) v = (a v)‘

val PROP_SEM_def = Define ‘

(PROP_SEM a d_true = T) /\

(PROP_SEM a (d_var v) = VAR_VALUE a v) /\

(PROP_SEM a (d_not p) = ~(PROP_SEM a p)) /\

(PROP_SEM a (d_and p1 p2) = (PROP_SEM a p1 /\ PROP_SEM a p2)) /\

(PROP_SEM a (d_or p1 p2) = (PROP_SEM a p1 \/ PROP_SEM a p2)) /\

(PROP_SEM a (d_implies p1 p2) = (PROP_SEM a p1 ==> PROP_SEM a p2))‘

192 / 292

Shallow vs. Deep Embeddings

Shallow

quick and easy to build

extensions are simple

Deep

can reason about syntax

allows verified
implementations

sometimes tricky to define
I e. g. bound variables

Important Questions for Deciding

Do I need to reason about syntax?

Do I have hard to define syntax like bound variables?

How much time do I have?

193 / 292

Example: Embedding of Propositional Logic III

with deep embedding one can easily formalise syntactic properties like
I Which variables does a propositional formula contain?
I Is a formula in negation-normal-form (NNF)?

with shallow embeddings
I syntactic concepts can’t be defined in HOL
I however, they can be defined in SML
I no proofs about them possible

val _ = Define ‘

(IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\

(IS_NNF (d_not _) = F) /\

(IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\

(IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\

(IS_NNF (d_or p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\

(IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2))‘

194 / 292

Verified vs. Verifying Program

Verified Programs

are formalised in HOL

their properties have been
proven once and for all

all runs have proven
properties

are usually less sophisticated,
since they need verification

is what one wants ideally

often require deep embedding

Verifying Programs

are written in meta-language

they produce a separate
proof for each run

only certain that current run
has properties

allow more flexibility, e. g.
fancy heuristics

good pragmatic solution

shallow embedding fine

195 / 292

Summary Deep vs. Shallow Embeddings

deep embeddings require more work

they however allow reasoning about syntax
I induction and case-splits possible
I a semantic subset can be carved out syntactically

syntax sometimes hard to define for deep embeddings

combinatations of deep and shallow embeddings common
I certain parts are deeply embedded
I others are embedded shallowly

196 / 292

Part XIII

Rewriting

Rewriting in HOL

simplification via rewriting was already a strength of Edinburgh LCF

it was further improved for Cambridge LCF

HOL inherited this powerful rewriter

equational reasoning is still the main workhorse

there are many different equational reasoning tools in HOL
I Rewrite library

inherited from Cambridge LCF
you have seen it in the form of REWRITE TAC

I computeLib — fast evaluation
build for speed, optimised for ground terms
seen in the form of EVAL

I simpLib — Simplification
sophisticated rewrite engine, HOL’s main workhorse
not discussed in this lecture, yet

I . . .

198 / 292

Semantic Foundations

we have seen primitive inference rules for equality before

Γ ` s = t
∆ ` u = v

types fit

Γ ∪∆ ` s(u) = t(v)
COMB

Γ ` s = t
∆ ` t = u

Γ ∪∆ ` s = u
TRANS

Γ ` s = t
x not free in Γ

Γ ` λx . s = λx . t
ABS

` t = t
REFL

these rules allow us to replace any subterm with an equal one

this is the core of rewriting

199 / 292

Conversions

in HOL, equality reasoning is implemented by conversions

a conversion is a SML function of type term -> thm

given a term t, a conversion
I produces a theorem of the form |- t = t’
I raises an UNCHANGED exception or
I fails, i. e. raises an HOL ERR exception

Example
> BETA CONV ‘‘(\x. SUC x) y‘‘

val it = |- (\x. SUC x) y = SUC y

> BETA CONV ‘‘SUC y‘‘

Exception-HOL_ERR ... raised

> REPEATC BETA CONV ‘‘SUC y‘‘

Exception- UNCHANGED raised

200 / 292

Conversionals

similar to tactics and tacticals there are conversionals for conversions

conversionals allow building conversions from simpler ones

there are many of them
I THENC
I ORELSEC
I REPEATC
I TRY CONV
I RAND CONV
I RATOR CONV
I ABS CONV
I . . .

201 / 292

Depth Conversionals

for rewriting depth-conversionals are important

a depth-conversional applies a conversion to all subterms

there are many different ones
I ONCE DEPTH CONV c — top down, applies c once at highest possible

positions in distinct subterms
I TOP SWEEP CONV c — top down, like ONCE DEPTH CONV, but continues

processing rewritten terms
I TOP DEPTH CONV c — top down, like TOP SWEEP CONV, but try

top-level again after change
I DEPTH CONV c — bottom up, recurse over subterms, then apply c

repeatedly at top-level
I REDEPTH CONV c — bottom up, like DEPTH CONV, but revisits subterms

202 / 292

REWR CONV

it remains to rewrite terms at top-level

this is achieved by REWR CONV

given a term t and a theorem |- t1 = t2, REWR CONV t thm
I searches an instantiation of term and type variables such that t1

becomes α-equivalent to t
I fails, if no instantiation is found
I otherwise, instantiate the theorem and get |- t1’ = t2’
I return theorem |- t = t2’

Example
term LENGTH [1;2;3], theorem |- LENGTH ((x:’a)::xs) = SUC (LENGTH xs)

found type instantiation: [‘‘:’a‘‘ |-> ‘‘:num‘‘]

found term instantiation: [‘‘x:num‘‘ |-> ‘‘1‘‘; ‘‘xs‘‘ |-> ‘‘[2;3]‘‘]

returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])

the tricky part is finding the instantiation

this problem is called the (term) matching problem

203 / 292

Term Matching

given term t org and a term t goal try to find
I type substitution ty s
I term substitution tm s

such that subst tm s (inst ty s t org)
α≡ t goal

this can be easily implemented by a recursive search

t org t goal action
t1 org t2 org t1 goal t2 goal recurse
t1 org t2 org otherwise fail
\x. t org x \y. t goal y match types of x, y and recurse
\x. t org x otherwise fail
const same const match types
const otherwise fail
var anything try to bind var,

take care of existing bindings

204 / 292

Examples Term Matching

t org t goal substs
LENGTH ((x:’a)::xs) LENGTH [1;2;3] ’a → num, x → 1, xs → [2;3]

[]:’a list []:’b list ’a → ’b

0 0 empty substitution

b /\ T (P (x:’a) ==> Q) /\ T b → P x ==> Q

b /\ b P x /\ P x b → P x

b /\ b P x /\ P y fail
!x:num. P x /\ Q x !y:num. P’ y /\ Q’ y P → P’, Q → Q’

!x:num. P x /\ Q x !y. (2 = y) /\ Q’ y P → ($= 2), Q → Q’

!x:num. P x /\ Q x !y. (y = 2) /\ Q’ y fail

it is often very annoying that the last match fails

it prevents us for example rewriting !y. (2 = y) /\ Q y to
(!y. (2=y)) /\ (!y. Q y)

Can we do better? Yes, with higher order (term) matching.

205 / 292

Higher Order Term Matching

term matching searches for substitutions such that t org becomes
α-equivalent to t goal

higher order term matching searches for substitutions such that
t org becomes t subst such that the βη-normalform of t subst is
α-equivalent equivalent to βη-normalform of t goal, i. e.
higher order term matching is aware of the semantics of λ

β-reduction (λx . f) y = f [y/x]
η-conversion (λx . f x) = f where x is not free in f

the HOL implementation expects t org to be a higher-order
pattern

I t org is β-reduced
I if X is a variable that should be instantiated, then all arguments should

be distinct variables

for other forms of t org, HOL’s implementation might fail

higher order matching is used by HO REWR CONV

206 / 292

Examples Higher Order Term Matching

t org t goal substs
!x:num. P x /\ Q x !y. (y = 2) /\ Q’ y P → (\y. y = 2), Q → Q’

!x. P x /\ Q x !x. P x /\ Q x /\ Z x Q → \x. Q x /\ Z x

!x. P x /\ Q !x. P x /\ Q x fails
!x. P (x, x) !x. Q x fails
!x. P (x, x) !x. FST (x,x) = SND (x,x) P → \xx. FST xx = SND xx

Don’t worry, it might look complicated, but
in practice it is easy to get a feeling for higher order matching.

207 / 292

Rewrite Library

the rewrite library combines REWR CONV with depth conversions

there are many different conversions, rules and tactics

at they core, they all work very similarly
I given a list of theorems, a set of rewrite theorems is derived

F split conjunctions
F remove outermost universal quantification
F introduce equations by adding = T (or = F) if needed

I REWR CONV is applied to all the resulting rewrite theorems
I a depth-conversion is used with resulting conversion

for performance reasons an efficient indexing structure is used

by default implicit rewrites are added

208 / 292

Rewrite Library II

REWRITE CONV

REWRITE RULE

REWRITE TAC

ASM REWRITE TAC

ONCE REWRITE TAC

PURE REWRITE TAC

PURE ONCE REWRITE TAC

. . .

209 / 292

Ho Rewrite Library

similar to Rewrite lib, but uses higher order matching

internally uses HO REWR CONV

similar conversions, rules and tactics as Rewrite lib
I Ho Rewrite.REWRITE CONV
I Ho Rewrite.REWRITE RULE
I Ho Rewrite.REWRITE TAC
I Ho Rewrite.ASM REWRITE TAC
I Ho Rewrite.ONCE REWRITE TAC
I Ho Rewrite.PURE REWRITE TAC
I Ho Rewrite.PURE ONCE REWRITE TAC
I . . .

210 / 292

Examples Rewrite and Ho Rewrite Library

> REWRITE CONV [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (SUC 0)

> ONCE REWRITE CONV [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE CONV [] ‘‘A /\ A /\ ~A‘‘
Exception- UNCHANGED raised

> PURE REWRITE CONV [NOT AND] ‘‘A /\ A /\ ~A‘‘
val it = |- A /\ A /\ ~A <=> A /\ F

> REWRITE CONV [NOT AND] ‘‘A /\ A /\ ~A‘‘
val it = |- A /\ A /\ ~A <=> F

> REWRITE CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q x /\ R x‘‘

Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE CONV [FORALL_AND_THM] ‘‘!x. P x /\ Q x /\ R x‘‘

val it = |- !x. P x /\ Q x /\ R x <=> (!x. P x) /\ (!x. Q x) /\ (!x. R x)

211 / 292

Summary Rewrite and Ho Rewrite Library

the Rewrite and Ho Rewrite library provide powerful infrastructure
for term rewriting

thanks to clever implementations they are reasonably efficient

basics are easily explained

however, efficient usage needs some experience

212 / 292

Term Rewriting Systems

to use rewriting efficiently, one needs to understand about term
rewriting systems

this is a large topic

one can easily give whole course just about term rewriting systems

however, in practise you quickly get a feeling

important points in practise
I ensure termination of your rewrites
I make sure they work nicely together

213 / 292

Term Rewriting Systems — Termination

Theory

choose well-founded order ≺
for each rewrite theorem |- t1 = t2 ensure t2 ≺ t1

Practice

informally define for yourself what simpler means

ensure each rewrite makes terms simpler

good heuristics
I subterms are simpler than whole term
I use an order on functions

214 / 292

Termination — Subterm examples

a proper subterm is always simpler
I !l. APPEND [] l = l
I !n. n + 0 = n
I !l. REVERSE (REVERSE l) = l
I !t1 t2. if T then t1 else t2 <=> t1
I !n. n * 0 = 0

the right hand side should not use extra vars, throwing parts away is
usually simpler

I !x xs. (SNOC x xs = []) = F
I !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
I !n x xs. DROP (SUC n) (x::xs) = DROP n xs

215 / 292

Termination — use simpler terms

it is useful to consider some functions simple and other complicated

replace complicated ones with simple ones

never do it in the opposite direction

clear examples
I |- !m n. MEM m (COUNT LIST n) <=> (m < n)
I |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)

unclear example
I |- !L. REVERSE L = REV L []

216 / 292

Termination — Normalforms

some equations can be used in both directions

one should decide on one direction

this implicitly defined a normalform one wants terms to be in

examples
I |- !f l. MAP f (REVERSE l) = REVERSE (MAP f l)
I |- !l1 l2 l3. l1 ++ (l2 ++ l3) = l1 ++ l2 ++ l3

217 / 292

Termination — Problematic rewrite rules

some equations immediately lead to non-termination, e. g.
I |- !m n. m + n = n + m
I |- !m. m = m + 0

slightly more subtle are rules like
I |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)

often combination of multiple rules leads to non-termination
this is especially problematic when adding to predefined set of
rewrites

I |- !m n p. m + (n + p) = (m + n) + p and
|- !m n p. (m + n) + p = m + (n + p)

218 / 292

Rewrites working together

rewrite rules should not complete with each other

if a term ta can be rewritten to ta1 and ta2 applying different
rewrite rules, then the ta1 and ta2 should be further rewritten to a
common tb

this can often be achieved by adding extra rewrite rules

Example

Assume we have the rewrite rules |- DOUBLE n = n + n and
|- EVEN (DOUBLE n) = T.
With these the term EVEN (DOUBLE 2) can be rewritten to

T or

EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T.
Adding an extra rewrite rule |- EVEN (n + n) = T achieves this.

219 / 292

Rewrites working together II

to design rewrite systems that work well, normalforms are vital

a term is in normalform, if it cannot be rewritten any further

one should have a clear idea what the normalform of common terms
looks like

all rules should work together to establish this normalform

the right-hand-side of each rule should be in normalform

the left-hand-side should not be simplifiable by any other rule

the order in which rules are applied should not influence the final
result

220 / 292

computeLib

computeLib is the library behind EVAL

it is a rewriting library designed for evaluating ground terms (i. e.
terms without variables) efficiently

it uses a call-by-value strategy similar to SML’s

it uses first order term matching

it performs β reduction in addition to rewrites

221 / 292

compset

computeLib uses compsets to store its rewrites

a compset stores
I rewrite rules
I extra conversions

the extra conversions are guarded by a term pattern for efficiency

users can define their own compsets

however, computeLib maintains one special compset called
the compset

the compset is used by EVAL

222 / 292

EVAL

EVAL uses the compset

tools like the Datatype of TFL automatically extend the compset

this way, EVAL knows about (nearly) all types and functions

one can extended the compset manually as well

rewrites exported by Define are good for ground terms but may lead
to non-termination for non-ground terms

zDefine prevents TFL from automatically extending the compset

223 / 292

simpLib

simpLib is a sophisticated rewrite engine

it is HOL’s main workhorse

it provides
I higher order rewriting
I usage of context information
I conditional rewriting
I arbitrary conversions
I support for decision procedures
I simple heuristics to avoid non-termination
I fancier preprocessing of rewrite theorems
I . . .

it is very powerful, but compared to Rewrite lib sometimes slow

224 / 292

Basic Usage I

simpLib uses simpsets

simpsets are special datatypes storing
I rewrite rules
I conversions
I decision procedures
I congruence rules
I . . .

in addition there are simpset-fragments

simpset-fragments contain similar information as simpsets

fragments can be added to and removed from simpsets

common usage: basic simpset combined with one or more
simpset-fragments, e. g.

I list ss ++ pairSimps.gen beta ss
I std ss ++ QI ss
I . . .

225 / 292

Basic Usage II

a call to the simplifier takes as arguments
I a simpset
I a list of rewrite theorems

common high-level entry points are
I SIMP CONV ss thmL — conversion
I SIMP RULE ss thmL — rule
I SIMP TAC ss thmL — tactic without considering assumptions
I ASM SIMP TAC ss thmL — tactic using assumptions to simplify goal
I FULL SIMP TAC ss thmL — tactic simplifying assumptions with each

other and goal with assumptions
I REV FULL SIMP TAC ss thmL — similar to FULL SIMP TAC but with

reversed order of assumptions

there are many derived tools not discussed here

226 / 292

Basic Simplifier Examples

> SIMP_CONV bool_ss [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = SUC (SUC 0)

> SIMP_CONV std_ss [LENGTH] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = 2

> SIMP_CONV list_ss [] ‘‘LENGTH [1;2]‘‘

val it = |- LENGTH [1; 2] = 2

227 / 292

FULL SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) (SUC (SUC y0))

0. SUC y1 = y2

1. x1 = SUC x0

2. y1 = SUC y0

3. SUC x1 = x2

Action
FULL_SIMP_TAC std_ss []

Resulting GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC y0) = y2

1. x1 = SUC x0

2. y1 = SUC y0

3. SUC x1 = x2

228 / 292

REV FULL SIMP TAC Example

Current GoalStack
P (SUC (SUC x0)) y2

0. SUC (SUC y0) = y2

1. x1 = SUC x0

2. y1 = SUC y0

3. SUC x1 = x2

Action
REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack
P x2 y2

0. SUC (SUC y0) = y2

1. x1 = SUC x0

2. y1 = SUC y0

3. SUC (SUC x0) = x2

229 / 292

Common simpsets

pure ss — empty simpset

bool ss — basic simpset

std ss — standard simpset

arith ss — arithmetic simpset

list ss — list simpset

real ss — real simpset

230 / 292

Common simpset-fragments

many theories and libraries provide their own simpset-fragments

PRED SET ss — simplify sets

STRING ss — simplify strings

QI ss — extra quantifier instantiations

gen beta ss — β reduction for pairs

ETA ss — η conversion

EQUIV EXTRACT ss — extract common part of equivalence

CONJ ss — use conjunctions for context

. . .

231 / 292

Build-In Conversions and Decision Procedures

in contrast to Rewrite lib the simplifier can run arbitrary conversions

most useful is probably β reduction

std ss has support for basic arithmetic and numerals

it also has simple, syntactic conversions for instantiating quantifiers
I !x. ... /\ (x = c) /\ ... ==> ...
I !x. ... \/ ~(x = c) \/ ...
I ?x. ... /\ (x = c) /\ ...

besides very useful conversions, there are decision procedures as well

the most frequently used one is probably the arithmetic decision
procedure you already know from DECIDE

232 / 292

Examples I

> SIMP_CONV std_ss [] ‘‘(\x. x + 2) 5‘‘

val it = |- (\x. x + 2) 5 = 7

> SIMP_CONV std_ss [] ‘‘!x. Q x /\ (x = 7) ==> P x‘‘

val it = |- (!x. Q x /\ (x = 7) ==> P x) <=> (Q 7 ==> P 7)‘‘

> SIMP_CONV std_ss [] ‘‘?x. Q x /\ (x = 7) /\ P x‘‘

val it = |- (?x. Q x /\ (x = 7) /\ P x) <=> (Q 7 /\ P 7)‘‘

> SIMP_CONV std_ss [] ‘‘x > 7 ==> x > 5‘‘

Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] ‘‘x > 7 ==> x > 5‘‘

val it = |- (x > 7 ==> x > 5) <=> T

233 / 292

Higher Order Rewriting

the simplifier supports higher order rewriting

this is often very handy

for example it allows moving quantifiers around easily

Examples
> SIMP_CONV std_ss [FORALL_AND_THM] ‘‘!x. P x /\ Q /\ R x‘‘

val it = |- (!x. P x /\ Q /\ R x) <=>

(!x. P x) /\ Q /\ (!x. R x)

> SIMP_CONV std_ss [GSYM RIGHT_EXISTS_AND_THM, GSYM LEFT_FORALL_IMP_THM]

‘‘!y. (P y /\ (?x. y = SUC x)) ==> Q y‘‘

val it = |- (!y. P y /\ (?x. y = SUC x) ==> Q y) <=>

!x. P (SUC x) ==> Q (SUC x)

234 / 292

Context

a great feature of the simplifier is that it can use context information

by default simple context information is used like
I the precondition of an implication
I the condition of if-then-else

one can configure which context to use via congruence rules
I by using CONJ ss one can easily use context of conjunctions
I warning: using CONJ ss can be slow
I using other contexts is outside the scope of this lecture

using context often simplifies proofs drastically
I using Rewrite lib, often a goal needs to be split and a precondition

moved to the assumptions
I then ASM REWRITE TAC can be used
I with SIMP TAC there is no need to split the goal

235 / 292

Context Examples

> SIMP_CONV std_ss [] ‘‘((l = []) ==> P l) /\ Q l‘‘

val it = |- ((l = []) ==> P l) /\ Q l <=>

((l = []) ==> P []) /\ Q l

> SIMP_CONV arith_ss [] ‘‘if (c /\ x < 5) then (P c /\ x < 6) else Q c‘‘

val it = |- (if c /\ x < 5 then P c /\ x < 6 else Q c) <=>

if c /\ x < 5 then P T else Q c:

> SIMP_CONV std_ss [] ‘‘P x /\ (Q x /\ P x ==> Z x)‘‘

Exception- UNCHANGED raised

> SIMP_CONV (std_ss++boolSimps.CONJ_ss) [] ‘‘P x /\ (Q x /\ P x ==> Z x)‘‘

val it = |- P x /\ (Q x /\ P x ==> Z x) <=> P x /\ (Q x ==> Z x)

236 / 292

Conditional Rewriting I

perhaps the most powerful feature of the simplifier is that it supports
conditional rewriting

this means it allows conditional rewrite theorems of the form
|- cond ==> (t1 = t2)

if the simplifier finds a term t1’ it can rewrite via t1 = t2 to t2’, it
tries to discharge the assumption cond’

for this, it calls itself recursively on cond’
I all the decision procedures and all context information is used
I conditional rewriting can be used
I to prevent divergence, there is a limit on recursion depth

if cond’ = T can be shown, t1’ is rewritten to t2’

otherwise t1’ is not modified

237 / 292

Conditional Rewriting Example

consider the conditional rewrite theorem
!l n. LENGTH l <= n ==> (DROP n l = [])

let’s assume we want to prove
(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]

we can without conditional rewriting
I show |- LENGTH [1;2;3;4] <= 7
I use this to discharge the precondition of the rewrite theorem
I use the resulting theorem to rewrite the goal

with conditional rewriting, this is all automated

> SIMP_CONV list_ss [DROP_LENGTH_TOO_LONG]

‘‘(DROP 7 [1;2;3;4]) ++ [5;6;7]‘‘

val it = |- DROP 7 [1; 2; 3; 4] ++ [5; 6; 7] = [5; 6; 7]

conditional rewriting often shortens proofs considerably

238 / 292

Conditional Rewriting Example II

Proof with Rewrite
prove (‘‘(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]‘‘,

‘DROP 7 [1;2;3;4] = []‘ by (

MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>

REWRITE_TAC[LENGTH] >>

DECIDE_TAC

) >>

ASM_REWRITE_TAC[APPEND])

Proof with Simplifier
prove (‘‘(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]‘‘,

ASM_SIMP_TAC list_ss [])

239 / 292

Conditional Rewriting II

conditional rewriting is a very powerful technique

decision procedures and sophisticated rewrites can be used to
discharge preconditions without cluttering proof state

it provides a powerful search for theorems that apply

however, if used naively, it can be slow

moreover, to work well, rewrite theorems need to of a special form

240 / 292

Conditional Rewriting Pitfalls I

if the pattern is too general, the simplifier becomes very slow

consider the following, trivial but hopefully useful example

Looping example
> val my_thm = prove (‘‘~P ==> (P = F)‘‘, PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ‘‘P1 /\ P2 /\ P3 /\ ... /\ P10‘‘

runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.

Exception- UNCHANGED raised

> time (SIMP_CONV std_ss []) ‘‘P1 /\ P2 /\ P3 /\ ... /\ P10‘‘

runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.

Exception- UNCHANGED raised

I notice that the rewrite is applied at plenty of places (quadratic in
number of conjuncts)

I notice that each backchaining triggers many more backchainings
I each has to be aborted to prevent diverging
I as a result, the simplifier becomes very slow
I incidentally, the conditional rewrite is useless

241 / 292

Conditional Rewriting Pitfalls II

good conditional rewrites |- c ==> (l = r) should mention only
variables in c that appear in l

if c contains extra variables x1 ... xn, the conditional rewrite
engine has to search instantiations for them

this mean that conditional rewriting is trying discharge the
precondition ?x1 ... xn. c

the simplifier is usually not able to find such instances

Transitivity
> val P_def = Define ‘P x y = x < y‘;

> val my_thm = prove (‘‘!x y z. P x y ==> P y z ==> P x z‘‘, ...)

> SIMP_CONV arith_ss [my_thm] ‘‘P 2 3 /\ P 3 4 ==> P 2 4‘‘

Exception- UNCHANGED raised

(* However transitivity of < build in via decision procedure *)

> SIMP_CONV arith_ss [P_def] ‘‘P 2 3 /\ P 3 4 ==> P 2 4‘‘

val it = |- P 2 3 /\ P 3 4 ==> P 2 4 <=> T:

242 / 292

Conditional Rewriting Pitfalls III

let’s look in detail why SIMP CONV did not make progress above

> set_trace "simplifier" 2;

> SIMP_CONV arith_ss [my_thm] ‘‘P 2 3 /\ P 3 4 ==> P 2 4‘‘

[468000]: more context: |- !x y z. P x y ==> P y z ==> P x z

[468000]: New rewrite: |- (?y. P x y /\ P y z) ==> (P x z <=> T)

...

[584000]: more context: [.] |- P 2 3 /\ P 3 4

[584000]: New rewrite: [.] |- P 2 3 <=> T

[584000]: New rewrite: [.] |- P 3 4 <=> T

[588000]: rewriting P 2 4 with |- (?y. P x y /\ P y z) ==> (P x z <=> T)

[588000]: trying to solve: ?y. P 2 y /\ P y 4

[588000]: rewriting P 2 y with |- (?y. P x y /\ P y z) ==> (P x z <=> T)

[592000]: trying to solve: ?y’. P 2 y’ /\ P y’ y

...

[596000]: looping - cut

...

[608000]: looping - stack limit reached

...

[640000]: couldn’t solve: ?y. P 2 y /\ P y 4

Exception- UNCHANGED raised

243 / 292

Conditional vs. Unconditional Rewrite Rules

conditional rewrite rules are often much more powerful

however, Rewrite lib does not support them

for this reason there are often two versions of rewrite theorems

drop example

DROP LENGTH NIL is a useful rewrite rule:
|- !l. DROP (LENGTH l) l = []

in proofs, one needs to be careful though to preserve exactly this form
I one should not (partly) evaluate LENGTH l or modify l somehow

with the conditional rewrite rule DROP LENGTH TOO LONG one does
not need to be as careful
|- !l n. LENGTH l <= n ==> (DROP n l = [])

I the simplifier can use simplify the precondition using information about
LENGTH and even arithmetic decision procedures

244 / 292

Special Rewrite Forms

some theorems given in the list of rewrites to the simplifier are used
for special purposes

there are marked functions that mark these theorems
I Once : thm -> thm use given theorem at most once
I Ntimes : thm -> int -> thm use given theorem at most the given

number of times
I AC : thm -> thm -> thm use given associativity and commutativity

theorems for AC rewriting
I Cong : thm -> thm use given theorem as a congruence rule

these special forms are easy ways to add this information to a simpset

it can be directly set in a simpset as well

245 / 292

Example Once

> SIMP_CONV pure_ss [Once ADD_COMM] ‘‘a + b = c + d‘‘

val it = |- (a + b = c + d) <=> (b + a = c + d)

> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ‘‘a + b = c + d‘‘

val it = |- (a + b = c + d) <=> (a + b = c + d)

> SIMP_CONV pure_ss [ADD_COMM] ‘‘a + b = c + d‘‘

Exception- UNCHANGED raised

> ONCE_REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d‘‘

val it = |- (a + b = c + d) <=> (b + a = d + c)

> REWRITE_CONV [ADD_COMM] ‘‘a + b = c + d‘‘

... diverges ...

246 / 292

Stateful Simpset

the simpset srw ss() is maintained by the system
I it is automatically extended by new type-definitions
I theories can extend it via export rewrites
I libs can augment it via augment srw ss

the stateful simpset contains many rewrites

it is very powerful and easy to use

Example
> SIMP_CONV (srw_ss()) [] ‘‘case [] of [] => (2 + 4)‘‘

val it = |- (case [] of [] => 2 + 4 | v::v1 => ARB) = 6

247 / 292

Discussion on Stateful Simpset

the stateful simpset is very powerful and easy to use

however, results are hard to predict

proofs using it unwisely are hard to maintain

the stateful simpset can expand too much
I bigger, harder to read proof states
I high level arguments become hard to see

whether to use the stateful simpset depends on personal proof style

I advise at the beginning to not use srw ss

once you got a good intuition on how the simplifier works, make your
own choice

248 / 292

Adding Own Conversions

it is complicated to add arbitrary decision procedures to a simpset

however, adding simple conversions is straightforward

a conversion is described by a stdconvdata record
type stdconvdata = {

name: string, (* name for debugging *)

pats: term list, (* list of patterns, when to try conv *)

conv: conv (* the conversion *)

}

use std conv ss to create simpset-fragement

Example
val WORD_ADD_ss =

simpLib.std_conv_ss

{conv = CHANGED_CONV WORD_ADD_CANON_CONV,

name = "WORD_ADD_CANON_CONV",

pats = [‘‘words$word_add (w:’a word) y‘‘]}

249 / 292

Summary Simplifier

the simplifier is HOL’s main workhorse for automation

it is very powerful

conditional rewriting very powerful
I here only simple examples were presented
I experiment with it to get a feeling

many advanced features not discussed here at all
I using congruence rules
I writing own decision procedures
I rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in
control when using it. Otherwise your proofs easily become lengthy,
convoluted and hard to maintain.

250 / 292

Part XIV

Advanced Definition Principles

Relations

a relation is a function from some arguments to bool

the following example types are all types of relations:
I : ’a -> ’a -> bool
I : ’a -> ’b -> bool
I : ’a -> ’b -> ’c -> ’d -> bool
I : (’a # ’b # ’c) -> bool
I : bool
I : ’a -> bool

relations are closely related to sets
I R a b c <=> (a, b, c) IN {(a, b, c) | R a b c}
I (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

252 / 292

Relations II

relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation R : ’a -> ’a ->

bool can be defined as the least relation RTC R that satisfies the
following rules:

R x y

RTC R x y RTC R x x

RTC R x y RTC R y z

RTC R x z

if the rules are monoton, a least and a greatest fix point exists
(Knaster-Tarski theorem)

least fixpoints give rise to inductive relations

greatest fixpoints give rise to coinductive relations

253 / 292

(Co)inductive Relations in HOL

(Co)IndDefLib provides infrastructure for defining (co)inductive
relations

given a set of rules Hol (co)reln defines (co)inductive relations

3 theorems are returned and stored in current theory
I a rules theorem — it states that the defined constant satisfies the rules
I a cases theorem — this is an equational form of the rules showing that

the defined relation is indeed a fixpoint
I a (co)induction theorem

additionally a strong (co)induction theorem is stored in current theory

254 / 292

Example: Transitive Reflexive Closure

> val (RTC_REL_rules, RTC_REL_ind, RTC_REL_cases) = Hol_reln ‘

(!x y. R x y ==> RTC_REL R x y) /\

(!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)‘

val RTC_REL_rules = |- !R.

(!x y. R x y ==> RTC_REL R x y) /\ (!x. RTC_REL R x x) /\

(!x y z. RTC_REL R x y /\ RTC_REL R y z ==> RTC_REL R x z)

val RTC_REL_cases = |- !R a0 a1.

RTC_REL R a0 a1 <=>

(R a0 a1 \/ (a1 = a0) \/ ?y. RTC_REL R a0 y /\ RTC_REL R y a1)

255 / 292

Example: Transitive Reflexive Closure II

val RTC_REL_ind = |- !R RTC_REL’.

((!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z. RTC_REL’ x y /\ RTC_REL’ y z ==> RTC_REL’ x z)) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

> val RTC_REL_strongind = DB.fetch "-" "RTC_REL_strongind"

val RTC_REL_strongind = |- !R RTC_REL’.

(!x y. R x y ==> RTC_REL’ x y) /\ (!x. RTC_REL’ x x) /\

(!x y z.

RTC_REL R x y /\ RTC_REL’ x y /\ RTC_REL R y z /\

RTC_REL’ y z ==>

RTC_REL’ x z) ==>

(!a0 a1. RTC_REL R a0 a1 ==> RTC_REL’ a0 a1)

256 / 292

Example: EVEN

> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln

‘(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))‘;

val EVEN_REL_cases =

|- !a0. EVEN_REL a0 <=> (a0 = 0) \/ ?n. (a0 = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =

|- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL’.

(EVEN_REL’ 0 /\ (!n. EVEN_REL’ n ==> EVEN_REL’ (n + 2))) ==>

(!a0. EVEN_REL a0 ==> EVEN_REL’ a0)

notice that in this example there is exactly one fixpoint

therefore for these rule, the induction and coinductive relation coincide

257 / 292

Example: Dummy Relations

> val (DF_rules, DF_ind, DF_cases) = Hol_reln

‘(!n. DF (n+1) ==> (DF n))‘

> val (DT_rules, DT_coind, DT_cases) = Hol_coreln

‘(!n. DT (n+1) ==> (DT n))‘

val DT_coind =

|- !DT’. (!a0. DT’ a0 ==> DT’ (a0 + 1)) ==> !a0. DT’ a0 ==> DT a0

val DF_ind =

|- !DF’. (!n. DF’ (n + 1) ==> DF’ n) ==> !a0. DF a0 ==> DF’ a0

val DT_cases = |- !a0. DT a0 <=> DT (a0 + 1):

val DF_cases = |- !a0. DF a0 <=> DF (a0 + 1):

notice that for both DT and DF we used essentially a non-terminating
recursion

DT is always true, i. e. |- !n. DT n

DF is always false, i. e. |- !n. ~(DF n)

258 / 292

Quotient Types

quotientLib allows to define types as quotients of existing types
with respect to partial equivalence relation

each equivalence class becomes a value of the new type

partiality allows ignoring certain types

quotientLib allows to lift definitions and lemmata as well

details are technical and won’t be presented here

259 / 292

Quotient Types Example

let’s assume we have an implementation of finite sets of numbers as
binary trees with

I type binset
I binary tree invariant WF BINSET : binset -> bool
I constant empty binset
I add and member functions add : num -> binset -> binset,

mem : binset -> num -> bool

we can define a partial equivalence relation by
binset equiv b1 b2 := (

WF BINSET b1 /\ WF BINSET b2 /\

(!n. mem b1 n <=> mem b2 n))

this allows defining a quotient type of sets of numbers

functions empty binset, add and mem as well as lemmata about
them can be lifted automatically

260 / 292

Quotient Types Summary

quotient types are sometimes very useful
I e. g. rational numbers are defined as a quotient type

there is powerful infrastructure for them

many tasks are automated

however, the details are technical and won’t be discussed here

261 / 292

Pattern Matching / Case Expressions

pattern matching ubiquitous in functional programming

pattern matching is a powerful technique

it helps to write concise, readable definitions

very handy and frequently used for interactive theorem proving in
higher-order logic (HOL)

however, it is not directly supported by HOL’s logic

representations in HOL
I sets of equations as produced by Define
I decision trees (printed as case-expressions)

262 / 292

TFL / Define

we have already used top-level pattern matches with the TFL package

Define is able to handle them
I all the semantic complexity is taken care of
I no special syntax or functions remain
I no special rewrite rules, reasoning tools needed afterwards

Define produces a set of equations

this is the recommended way of using pattern matching in HOL

Example
> val ZIP_def = Define ‘(ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /\

(ZIP [] [] = [])‘

val ZIP_def = |- (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /\

(ZIP [] [] = [])

263 / 292

Case Expressions

sometimes one does not want to use this compilation by TFL
I one wants to use pattern-matches somewhere nested in a term
I one might not want to introduce a new constant
I one might want to avoid using TFL for technical reasons

in such situations, case-expressions can be used

their syntax is similar to the syntax used by SML

Example
> val ZIP_def = Define ‘ZIP xs ys = case (xs, ys) of

(x::xs, y::ys) => (x,y)::(ZIP xs ys)

| ([], []) => []‘

val ZIP_def = |- !ys xs. ZIP xs ys =

case (xs,ys) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’

264 / 292

Case Expressions II

the datatype package define case-constants for each datatype

the parser contains a pattern compilation algorithm

case-expressions are by the parser compiled to decision trees using
case-constants

pretty printer prints these decision trees as case-expressions again

Example
val ZIP_def = |- !ys xs. ZIP xs ys =

pair_CASE (xs,ys)

(\v v1.

list_CASE v (list_CASE v1 [] (\v4 v5. ARB))

(\x xs’. list_CASE v1 ARB (\y ys’. (x,y)::ZIP xs’ ys’))):

265 / 292

Case Expression Issues

using case expressions feels very natural to functional programmers

case-expressions allow concise, well-readable definitions

however, there are also many drawbacks

there is large, complicated code in the parser and pretty printer
I this is outside the kernel
I parsing a pretty-printed term can result in a non α-equivalent one
I there are bugs in this code (see e. g. Issue #416 reported 8 May 2017)

the results are hard to predict
I heuristics involved in creating decision tree
I results sometimes hard to predict
I however, it is beneficial that proofs follow this internal, volatile

structure

266 / 292

Case Expression Issues II

technical issues
I it is tricky to reason about decision trees
I rewrite rules about case-constants needs to be fetched from TypeBase

F alternative srw ss often does more than wanted

I partially evaluated decision-trees are not pretty printed nicely any more

underspecified functions
I decision trees are exhaustive
I they list underspecified cases explicitly with value ARB
I this can be lengthy
I Define in contrast hides underspecified cases

267 / 292

Case Expression Example I

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def]

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case (l1,l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

268 / 292

Case Expression Example IIa – partial evaluation

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC

Current Goal
!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

(((case l1 of

[] => (case l2 of [] => [] | v4::v5 => ARB)

| x::xs’ => case l2 of [] => ARB | y::ys’ => (x,y)::ZIP xs’ ys’) =

[]) <=> (l1 = []) /\ (l2 = []))

269 / 292

Case Expression Example IIb — following tree structure

Partial Proof Script
val _ = prove (‘‘!l1 l2.

(LENGTH l1 = LENGTH l2) ==>

((ZIP l1 l2 = []) <=> ((l1 = []) /\ (l2 = [])))‘‘,

ONCE_REWRITE_TAC [ZIP_def] >>

Cases_on ‘l1‘ >| [

REWRITE_TAC[listTheory.list_case_def]

Current Goal
!l2.

(LENGTH [] = LENGTH l2) ==>

(((case ([],l2) of

([],[]) => []

| ([],v4::v5) => ARB

| (x::xs’,[]) => ARB

| (x::xs’,y::ys’) => (x,y)::ZIP xs’ ys’) =

[]) <=> (l2 = []))

270 / 292

Case Expression Summary

case expressions are natural to functional programmers

they allow concise, readable definitions

however, fancy parser and pretty-printer needed
I trustworthiness issues
I sanity check lemmata advisable

reasoning about case expressions can be tricky and lengthy

proofs about case expression often hard to maintain

therefore, use top-level pattern matching via Define if easily possible

271 / 292

Part XV

Maintainable Proofs

Motivation

proofs are hopefully still used in a few weeks, months or even years

often the environment changes slightly during the lifetime of a proof
I your definitions change slightly
I your own lemmata change (e. g. become more general)
I used libraries change
I HOL changed

F automation became more powerful
F rewrite rules in certain simpsets changed
F definition packages produce slightly different theorems
F autogenerated variable-names change
F . . .

even if HOL and used libraries are stable, proofs often go through
several iterations

often they are adapted by someone else than the original author

therefore it is important that proofs are easily maintainable

273 / 292

Nice Properties of Proofs

maintainability is closely linked to other desirable properties of proofs
I easily understandable
I well-structured
I robust

F they should be able to scope with minor changes to environment
F if they fail they should do so at sensible points

I reusable

How can one write proofs with such properties?

as usual, there are no easy answers but plenty of good advice

I recommend following the advice of ProofStyle manual

274 / 292

Formatting

format your proof such that it easily understandable

make the structure of the proof very clear

show clearly where subgoals start and stop

use indentation to mark proofs of subgoals

use empty lines to separate large proofs of subgoals

use comments where appropriate

275 / 292

Formatting Example I

Bad Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==> LENGTH l2 <

LENGTH (l1 ++ l2)‘‘,

...)

Good Example Term Formatting
prove (‘‘!l1 l2. l1 <> [] ==>

(LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

...)

276 / 292

Formatting Example II

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >>

REWRITE_TAC[] >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

Improved Example Subgoals

At least show when a subgoal starts and ends

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[]

) >>

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

277 / 292

Formatting Example II 2

Good Example Subgoals

Make sure REWRITE TAC is only applied to first subgoal and proof fails, if
it does not solve this subgoal.

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >- (

REWRITE_TAC[] >>

)

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC)

278 / 292

Formatting Example II 3

Alternative Good Example Subgoals

Alternative good formatting using THENL

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

])

Another Bad Example Subgoals

Bad formatting using THENL

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >> DECIDE_TAC])

279 / 292

Some basic advice

use semicoli after each declaration
I if exception is raised during interactive processing (e. g. by a failing

proof), previous successful declarations are kept
I it sometimes leads to better error messages in case of parsing errors

use plenty of parentheses to make structure very clear

don’t ignore parser warnings
I especially multiple possible parse trees are likely to lead to unstable

proofs
I understand why such warnings occur and make sure there is no problem

format your development well
I use indentation
I use linebreaks at sensible points
I don’t use overlong lines
I . . .

don’t use open in middle of files

personal opinion: avoid unicode in source files

280 / 292

KISS and Premature Optimisation

follow standard design principles
I KISS principle
I “premature optimization is the root of all evil” (Donald Knuth)

don’t try to be overly clever

simple proofs are preferable

proof-checking-speed mostly unimportant

conciseness not a value in itself but desirable if it helps
I readability
I maintainability

abstraction is often declarable, but also has a price
I don’t use too complex, artificial definitions and lemmata

281 / 292

Too much abstraction

Too much abstraction Example
val ABSTRACT_LEMMA = prove (‘‘

!(size :’a -> num) (P : ’a -> bool) (combine : ’a -> ’a -> ’a).

(!x. P x ==> (0 < size x)) /\

(!x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>

(!x1 x2. P x1 ==> (size x2 < size (combine x1 x2)))‘‘,

...)

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

some proof using ABSTRACT_LEMMA

)

282 / 292

Too clever tactics

a common mistake is to use too clever tactics
I intended to work on many (sub)goals
I using TRY and other fancy trial and error mechanisms
I intended to replace multiple simple, clear tactics

typical case: a tactic containing TRY applied to many subgoals

it is often hard to see why such tactics work

if something goes wrong, they are hard to debug

general advice: don’t factor with tactics, instead use definitions and
lemmata

283 / 292

Too Clever Tactics Example I

Bad Example Subgoals
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> (

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

))

Alternative Good Example Subgoals II
prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >> SIMP_TAC list_ss [])

prove (‘‘!l1 l2. l1 <> [] ==> (LENGTH l2 < LENGTH (l1 ++ l2))‘‘,

Cases >| [

REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

REPEAT STRIP_TAC >>

DECIDE_TAC

])

284 / 292

Too Clever Tactics Example II

Bad Example
val oadd_def = Define ‘(oadd (SOME n1) (SOME n2) = (SOME (n1 + n2))) /\

(oadd _ _ = NONE)‘;

val osub_def = Define ‘(osub (SOME n1) (SOME n2) = (SOME (n1 - n2))) /\

(osub _ _ = NONE)‘;

val omul_def = Define ‘(omul (SOME n1) (SOME n2) = (SOME (n1 * n2))) /\

(omul _ _ = NONE)‘;

val onum_NONE_TAC =

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >>

SIMP_TAC std_ss [oadd_def, osub_def, omul_def];

val oadd_NULL = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

val osub_NULL = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

val omul_NULL = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

onum_NONE_TAC);

285 / 292

Too Clever Tactics Example II

Good Example
val obin_def = Define ‘(obin op (SOME n1) (SOME n2) = (SOME (op n1 n2))) /\

(obin _ _ _ = NONE)‘;

val oadd_def = Define ‘oadd = obin $+‘;
val osub_def = Define ‘osub = obin $-‘;
val omul_def = Define ‘omul = obin $*‘;

val obin_NULL = prove (

‘‘!op o1 o2. (obin op o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

Cases_on ‘o1‘ >> Cases_on ‘o2‘ >> SIMP_TAC std_ss [obin_def]);

val oadd_NULL = prove (

‘‘!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[oadd_def, obin_NULL]);

val osub_NULL = prove (

‘‘!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[osub_def, obin_NULL]);

val omul_NULL = prove (

‘‘!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)‘‘,

REWRITE_TAC[omul_def, obin_NULL]);

286 / 292

Use many subgoals and lemmata

often it is beneficial to use subgoals
I they structure long proofs well
I they help keeping the proof state clean
I they mark clearly what one tries to proof and provide points where

proofs can break sensibly

general subgoals should often become lemmata
I this improves reusability
I proof scripts become shorter
I proofs are disentangled

287 / 292

Subgoal Example

the following example is taken from exercise 5

First Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Induct_on ‘l‘ >- (

Q.EXISTS_TAC ‘[]‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES]

) >>

FULL_SIMP_TAC std_ss [] >>

GEN_TAC >>

Q.EXISTS_TAC ‘T::bl‘ >>

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES])

288 / 292

Subgoal Example II

Subgoal Version
val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

‘FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘ suffices_by (

METIS_TAC[LENGTH_REPLICATE]

) >>

Induct_on ‘l‘ >> (

ASM_SIMP_TAC list_ss [FILTER_BY_BOOLS_REWRITES, REPLICATE]

))

289 / 292

Subgoal Example II

Lemma Version
val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",

‘‘!l. FILTER_BY_BOOLS (REPLICATE (LENGTH l) T) l = l‘‘,

Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",

‘‘!l. IS_WEAK_SUBLIST_FILTER l l‘‘,

GEN_TAC >>

REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>

Q.EXISTS_TAC ‘REPLICATE (LENGTH l) T‘ >>

SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])

290 / 292

Avoid Autogenerated Names

many HOL-tactics introduce new variable names
I Induct
I Cases
I . . .

the new names are often very artificial

even worse, generated names might change in future

proof scripts using autogenerated names are therefore
I hard to read
I potentially fragile

therefore rename variables after they have been introduced

HOL has multiple tactics supporting renaming

most useful is rename1 ‘pat‘, it searches for pattern and renames
vars accordingly

291 / 292

Autogenerated Names Example

Bad Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

GEN_TAC >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

Cases_on ‘t‘ >> SIMP_TAC list_ss [])

Good Example
prove (‘‘!l. 1 < LENGTH l ==> (?x1 x2 l’. l = x1::x2::l’)‘‘,

GEN_TAC >>

Cases_on ‘l‘ >> SIMP_TAC list_ss [] >>

rename1 ‘LENGTH l2‘ >>

Cases_on ‘l2‘ >> SIMP_TAC list_ss [])

Proof State before rename1
1 < SUC (LENGTH t) ==> ?x2 l’. t = x2::l’

Proof State after rename1
1 < SUC (LENGTH l2) ==> ?x2 l’. l2 = x2::l’

292 / 292

	Introduction
	Motivation
	Types of Proofs
	Interactive Theorem Provers

	Organisational Matters
	HOL 4 History and Architecture
	LCF
	History and Family of HOL

	HOL's Logic
	HOL Logic
	Kernel
	HOL Logic Summary

	Basic HOL Usage
	Forward Proofs
	Term Syntax
	Inference Rules
	Forward Proofs

	Backward Proofs
	Motivation
	Backward Proofs
	General Discussion

	Basic Tactics
	Basic Tactics
	Examples

	Induction Proofs
	Basic Definitions
	Definitions, Axioms and Oracles
	Primitive Definition Principles
	Functional Programming
	Datatype Definitions
	Recursive Function Definitions

	Good Definitions
	General Discussion
	Functional Programming
	HOL
	Formal Sanity

	Deep and Shallow Embeddings
	Rewriting
	Rewrite Library
	Term Rewriting Systems
	computeLib
	simpLib

	Advanced Definition Principles
	Inductive and Coinductive Relations
	Quotient Types
	Case Expressions

	Maintainable Proofs

