
DD2457 Program Semantics and Analysis

Examination problems
with solutions
29 May 2017, 14:00 - 19:00

Dilian Gurov
KTH CSC

tel: 08-790 8198

1 Level E

For passing level E you need 8 (out of 10) points from this section.

Consider the following program:

x := 0; while ¬(y ≤ 0) do x := x + 1; y := y − 1

which has the purpose to copy (incrementally) the initial value of variable y to the final value of variable x,
implicitly assuming that the former is not negative.

1. Specify the program by means of a Hoare triple. The specification should make sense on its own, i.e., 2p
it should tell the user how to use the program without knowing the implementation.

Solution:

We make explicit the assumption about the non-negative initial value of variable y, introduce a logical
variable y0 to which we bind this value in the pre-condition, and specify in the post-condition that it
should be equal to the final value of variable x:

{y ≥ 0 ∧ y = y0}x := 0; while ¬(y ≤ 0) do x := x + 1; y := y − 1 {x = y0}

2. Suggest a loop invariant that is suitable for verifying the program. 1p

Solution:

A good choice turns out to be: x+y = y0∧y ≥ 0. The left conjunct is the essential invariant property
of the loop body that makes the algorithm work, while the second conjunct is needed to take into
account the loop guard.

Your next task will be to verify the program against your specification and loop invariant by means
of symbolic execution (see handouts).

3. That is, first, convert the Hoare triple and loop invariant into a loop-free program in the While 1p
language extended with assume, assert and havoc statements.

Solution:

l0 : assume y ≥ 0;
l1 : x := 0;
l2 : assert x + y = y0 ∧ y ≥ 0;
l3 : havoc x, y;
l4 : assume x + y = y0 ∧ y ≥ 0;
l5 : if ¬(y ≤ 0) then
l6 : x := x + 1;
l7 : y := y − 1;
l8 : assert x + y = y0 ∧ y ≥ 0;
l9 : assume false;

: else
l10 : skip;
l11 : assert x = y0;
lF :

4. Next, explore all paths. 3p

Solution:

Symbolic execution starts with the path:

〈l0, [x 7→ x0, y 7→ y0], true〉
⇒ 〈l1, [x 7→ x0, y 7→ y0], y0 ≥ 0〉
⇒ 〈l2, [x 7→ 0, y 7→ y0], y0 ≥ 0〉
(1)⇒ 〈l3, [x 7→ 0, y 7→ y0], y0 ≥ 0〉
⇒ 〈l4, [x 7→ x1, y 7→ y1], y0 ≥ 0〉
⇒ 〈l5, [x 7→ x1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0〉

which then splits into two, a then-branch:

⇒ 〈l6, [x 7→ x1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0)〉
⇒ 〈l7, [x 7→ x1 + 1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0)〉
⇒ 〈l8, [x 7→ x1 + 1, y 7→ y1 − 1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0)〉
(2)⇒ 〈l9, [x 7→ x1 + 1, y 7→ y1 − 1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0)〉
⇒ 〈l11, [x 7→ x1 + 1, y 7→ y1 − 1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0) ∧ false〉

which turns infeasible from here on, and an else-branch:

⇒ 〈l10, [x 7→ x1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬¬(y1 ≤ 0)〉
⇒ 〈l11, [x 7→ x1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬¬(y1 ≤ 0)〉
(3)⇒ 〈lF , [x 7→ x1, y 7→ y1], y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬¬(y1 ≤ 0)〉

which terminates and is feasible.

5. And finally, collect all resulting verification conditions and argue semi-formally for their validity. 3p

Note that if you chose too weak a loop invariant, this would show itself only here, resulting in ver-
ification conditions that are not valid (the right-hand side of the implication will not be a logical
consequence of the left-hand side).

Solution:

The three verification conditions resulting from the above symbolic execution are:

(1) y0 ≥ 0 ⇒ 0 + y0 = y0 ∧ y0 ≥ 0
Valid, since 0 + y0 = y0 is a theorem of Integer Arithmetic, while y0 ≥ 0 is a premise.

(2) y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬(y1 ≤ 0) ⇒ (x1 + 1) + (y1 − 1) = y0 ∧ y1 − 1 ≥ 0
Valid, since (x1 +1)+(y1−1) = y0 simplifies to x1 +y1 = y0, which is a premise, while y1−1 ≥ 0
is entailed by the premise ¬(y1 ≤ 0).

(3) y0 ≥ 0 ∧ x1 + y1 = y0 ∧ y1 ≥ 0 ∧ ¬¬(y1 ≤ 0) ⇒ x1 = y0
Valid, since y1 ≥ 0∧¬¬(y1 ≤ 0) entails y1 = 0, which together with x1 + y1 = y0 entails x1 = y0.

So, we can conclude that the program is correct with respect to its specification.

2 Level C

For grade D you need to have passed level E and obtained 5 (out of 12) points from this section. For passing
level C you need 8 points from this section.

1. Consider the denotational semantics of While. In class, we suggested the following definition for the 6p
repeat S until b statement:

Sds[[repeat S until b]]
def
= FIX HS,b

where:
HS,b (g)

def
= cond(B[[b]] , id , g) ◦ Sds [[S]]

and where:
FIX HS,b =

⋃
i≥0

H i
S,b(∅)

Use denotational semantics to prove that the statement:

repeat S until b

is equivalent to the unfolding:

S; if b then skip else (repeat S until b)

Solution:

Our proof relies on the (unproved) assumption that FIX HS,b is a fixed point of HS,b:

Sds[[S; if b then skip else (repeat S until b)]]
= Sds[[if b then skip else (repeat S until b)]] ◦ Sds[[S]] {Def. Sds}
= cond(B[[b]] , Sds[[skip]] , Sds[[repeat S until b]]) ◦ Sds[[S]] {Def. Sds}
= cond(B[[b]] , id , FIX HS ,b) ◦ Sds [[S]] {Def. Sds}
= HS,b (FIX HS,b) {Def. HS,b}
= FIX HS,b {Fixed-point property}
= Sds[[repeat S until b]] {Def. Sds}

2. For a Hoare triple {P}S {Q}, the pair (P,Q) is often called the contract of the program S. In fact, for 6p
many applications it is meaningful to separate a contract C = (P,Q) from its possible implementations.
We can then say that a particular implementation S meets its contract C, denoted S |=par C, if and
only if the corresponding Hoare triple is semantically valid, that is |=par {P}S {Q}.
Now, your task is to provide a denotational semantics for contracts. That is, define the denotation
Sds[[C]] of a contract C = (P,Q) as a single mathematical object (of what type?), in the spirit of
how we defined the denotation of statements. Your definition should allow the relation S |=par C to
be equivalently expressed as a simple relationship between the denotations of S and C. Show this
relationship and motivate your reasoning.

Solution:

Recall that (s, s′) ∈ Sds[[S]] whenever execution of statement S from state s terminates in state s′.
Also recall that |=par {P}S {Q} iff for any state s such that s |= P , if execution of S from s terminates
in s′, then s′ |= Q. This suggests that we can define the denotation Sds[[C]] of contracts C = (P,Q) as
a binary relation on states! More specifically, using the notiation ||P || = {s ∈ State | s |= P} for the
set of all states satisfying assertion P , if we define:

Sds[[C]]
def
= (||P || × ||Q||) ∪ (||P || × State)

we obtain the following simple set-theoretic relationship:

S |=par C iff Sds[[S]] ⊆ Sds[[C]]

3 Level A

For grade B you need to have passed level C and obtained 3 (out of 8) points from this section. For grade A
you need 6 points from this section.

Consider again the denotational semantics of While and its extension with repeat S until b as proposed
in Problem C1 above.

1. Explain what the i-th approximant of HS,b captures. 2p

Solution:

We have H i
S,b(∅)(s) = s′ iff exection of repeat S until b from state s terminates in state s′ by executing

the loop body S at most i times.

2. Compute iteratively the denotation of the statement repeat x := x− 2 until x ≤ 0. That is, start by 6p
simplifying Hx:=x−2, x≤0 (g) as much as possible, by evaluating all occurrences of semantic functions.
Then, compute the first few fixed-point approximants of Hx:=x−2, x≤0, and guess the i-th approximant.
Finally, present the fixed point, which is also the denotation of the statement. Simplify all denotations
as much as possible.

Solution:

Simplifying Hx:=x−2, x≤0 (g) results in (where for readability we omit the subscript to H):

H(g)(s) =

{
s[x 7→ s(x)− 2] if s(x) ≤ 2
g(s[x 7→ s(x)− 2]) if s(x) > 2

The first approximant, after simplification, becomes:

H1(∅)(s) = H(∅)(s) =

{
s[x 7→ s(x)− 2] if s(x) ≤ 2
undef if s(x) > 2

The second approximant, after simplification, becomes:

H2(∅)(s) = H(H1(∅))(s) =


s[x 7→ s(x)− 2] if s(x) ≤ 2
s[x 7→ s(x)− 4] if s(x) > 2 and s(x) ≤ 4
undef if s(x) > 4

The i-th approximant can be guessed as:

H i(∅)(s) =


s[x 7→ s(x)− 2j] if j > 0 is the smalles positive number

such that j ≤ i and s(x)− 2j ≤ 0
undef if no such j exists, i.e., if s(x)− 2i > 0

which can also be presented as:

H i(∅)(s) =


s[x 7→ s(x)− 2] if s(x) ≤ 0
s[x 7→ −1] if s(x) = 2k − 1 for some 0 < k ≤ i
s[x 7→ 0] if s(x) = 2k for some 0 < k ≤ i
undef if s(x) > 2i

Since Sds[[repeat S until b]] = FIX HS,b =
⋃

i≥0H
i
x:=x−2, x≤0(∅), we finally obtain:

Sds[[repeat S until b]] =


s[x 7→ s(x)− 2] if s(x) ≤ 0
s[x 7→ −1] if s(x) = 2k − 1 for some k > 0
s[x 7→ 0] if s(x) = 2k for some k > 0

Notice that the denotation is a total function, signifying that program execution terminates from any
state.

