Contents

Part I

Introduction

3

Interactive	Theorem	Proving ((ITP) Course
-------------	---------	-----------	------	----------

Thomas Tuerk (tuerk@kth.se)

Academic Year 2016/17, Period 4

version 155ccb5 of Fri Jun 30 16:53:36 2017

Part II	Organisational Matters	14
Part III	HOL 4 History and Architecture	22
Part IV	HOL's Logic	30
Part V	Basic HOL Usage	44
Part VI	Forward Proofs	52
Part VII	Backward Proofs	67
Part VIII	Basic Tactics	89
Part IX	Induction Proofs	116
Part X	Basic Definitions	125
Part XI	Good Definitions	169
Part XII	Deep and Shallow Embeddings	190
Part XIII	Rewriting	198
Part XIV	Advanced Definition Principles	252
Part XV	Maintainable Proofs	273
Part XVI	Overview of HOL 4	295
Part XVII	Other Interactive Theorem Provers	308

2/321

Motivation

Part I

Introduction

- Complex systems almost certainly contain bugs.
- Critical systems (e.g. avionics) need to meet very high standards.
- It is infeasible in practice to achieve such high standards just by testing.
- Debugging via testing suffers from diminishing returns.

"Program testing can be used to show the presence of bugs, but never to show their absence!"

— Edsger W. Dijkstra

Famous Bugs

Proof

- Pentium FDIV bug (1994)
 (missing entry in lookup table, \$475 million damage)
- Ariane V explosion (1996)
 (integer overflow, \$1 billion prototype destroyed)
- Mars Climate Orbiter (1999)
 (destroyed in Mars orbit, mixup of units pound-force and newtons)
- Knight Capital Group Error in Ultra Short Time Trading (2012) (faulty deployment, repurposing of critical flag, \$440 lost in 45 min on stock exchange)
-

Fun to read

http://www.cs.tau.ac.il/~nachumd/verify/horror.html https://en.wikipedia.org/wiki/List_of_software_bugs

- proof can show absence of errors in design
- but proofs talk about a design, not a real system
- → testing and proving complement each other

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

— Albert Einstein

5 / 321

Mathematical vs. Formal Proof

Detail Level of Formal Proof

6 / 321

Mathematical Proof

- informal, convince other mathematicians
- checked by community of domain experts
- subtle errors are hard to find
- often provide some new insight about our world
- often short, but require creativity and a brilliant idea

Formal Proof

- formal, rigorously use a logical formalism
- checkable by stupid machines
- very reliable
- often contain no new ideas and no amazing insights
- often long, very tedious, but largely trivial

We are interested in formal proofs in this lecture.

In **Principia Mathematica** it takes 300 pages to prove 1+1=2.

This is nicely illustrated in **Logicomix** - **An Epic Search for Truth**.

7/321 8/321

Automated vs Manual (Formal) Proof

KTH VETENBAAT

9/321

Interactive Proofs

Fully Manual Proof

- very tedious; one has to grind through many trivial but detailed proofs
- easy to make mistakes
- o hard to keep track of all assumptions and preconditions
- hard to maintain, if something changes (see Ariane V)

Automated Proof

- amazing success in certain areas
- but still often infeasible for interesting problems
- hard to get insights in case a proof attempt fails
- even if it works, it is often not that automated
 - run automated tool for a few days
 - abort, change command line arguments to use different heuristics
 - run again and iterate till you find a set of heuristics that prove it fully automatically in a few seconds

- combine strengths of manual and automated proofs
- many different options to combine automated and manual proofs
 - mainly check existing proofs (e.g. HOL Zero)
 - ► user mainly provides lemmata statements, computer searches proofs using previous lemmata and very few hints (e.g. ACL 2)
 - ▶ most systems are somewhere in the middle
- typically the human user
 - provides insights into the problem
 - structures the proof
 - ► provides main arguments
- typically the computer
 - ► checks proof
 - ► keeps track of all used assumptions
 - provides automation to grind through lengthy, but trivial proofs

Typical Interactive Proof Activities

- provide precise definitions of concepts
- state properties of these concepts
- prove these properties
 - ► human provides insight and structure
 - ► computer does book-keeping and automates simple proofs
- build and use libraries of formal definitions and proofs
 - ▶ formalisations of mathematical theories like
 - ★ lists, sets, bags, ...
 - ★ real numbers
 - **★** probability theory
 - ► specifications of real-world artefacts like
 - **★** processors
 - ★ programming languages
 - ★ network protocols
 - reasoning tools

There is a strong connection with programming. Lessons learned in Software Engineering apply.

Different Interactive Provers

10 / 321

- there are many different interactive provers, e.g.
 - ► Isabelle/HOL
 - ► Coq
 - ► PVS
 - ► HOL family of provers
 - ► ACL2
 - ▶ ...
- important differences
 - ▶ the formalism used
 - level of trustworthiness
 - ► level of automation
 - ► libraries
 - ► languages for writing proofs
 - ▶ user interface
 - ▶ ...

Which theorem prover is the best one? :-)

- there is no **best** theorem prover
- better question: Which is the **best one for a certain purpose**?
- important points to consider
 - existing libraries
 - ▶ used logic
 - ▶ level of automation
 - user interface
 - ► importance development speed versus trustworthiness
 - ► How familiar are you with the different provers?
 - ▶ Which prover do people in your vicinity use?
 - your personal preferences

In this course we use the HOL theorem prover, because it is used by the TCS group.

13 / 321

Aims of this Course

Aims

- introduction to interactive theorem proving (ITP)
- being able to evaluate whether a problem can benefit from ITP
- hands-on experience with HOL
- learn how to build a formal model
- learn how to express and prove important properties of such a model
- learn about basic conformance testing
- use a theorem prover on a small project

Required Prerequisites

- some experience with functional programming
- knowing Standard ML syntax
- basic knowledge about logic (e.g. First Order Logic)

Part II

Organisational Matters

Dates

- Interactive Theorem Proving Course takes place in Period 4 of the academic year 2016/2017
- always in room 4523 or 4532
- each week

Mondays 10:15 - 11:45 lecture

Wednesdays 10:00 - 12:00 practical session 13:00 - 15:00 practical session Fridays

- no lecture on Monday, 1st of May, instead on Wednesday, 3rd May
- last lecture: 12th of June
- last practical session: 21st of June
- 9 lectures, 17 practical sessions

Exercises

Practical Sessions

- after each lecture an exercise sheet is handed out.
- work on these exercises alone, except if stated otherwise explicitly
- exercise sheet contains due date
 - ▶ usually 10 days time to work on it
 - hand in during practical sessions
 - ► lecture Monday → hand in at latest in next week's Friday session
- main purpose: understanding ITP and learn how to use HOL
 - ▶ no detailed grading, just pass/fail
 - ► retries possible till pass
 - ▶ if stuck, ask me or one another
 - practical sessions intend to provide this opportunity

- very informal
- main purpose: work on exercises
 - ▶ I have a look and provide feedback
 - ▶ you can ask questions
 - ▶ I might sometimes explain things not covered in the lectures
 - ► I might provide some concrete tips and tricks
 - ▶ you can also discuss with each other
- attendance not required, but highly recommended
 - ► exception: session on 21st April
- only requirement: turn up long enough to hand in exercises
- you need to bring your own computer

17 / 321

Passing the ITP Course

18 / 321

Handing-in Exercises

- exercises are intended to be handed-in during practical sessions
- attend at least one practical session each week
- leave reasonable time to discuss exercises
 - ▶ don't try to hand your solution in Friday 14:55
- retries possible, but reasonable attempt before deadline required
- handing-in outside practical sessions
 - ► only if you have a good reason
 - ► decided on a case-by-case basis
- electronic hand-ins
 - ► only to get detailed feedback
 - does not replace personal hand-in
 - ▶ exceptions on a case-by-case basis if there is a good reason
 - ▶ I recommend using a KTH GitHub repo

- there is only a pass/fail mark
- to pass you need to
 - ▶ attend at least 7 of the 9 lectures
 - ► pass 8 of the 9 exercises

Communication

Part III

HOL 4 History and Architecture

we have the advantage of being a small group

- therefore we are flexible
- so please ask questions, even during lectures
- there are many shy people, therefore
 - ► anonymous checklist after each lecture
 - ► anonymous background questionnaire in first practical session
- further information is posted on Interactive Theorem Proving
 Course group on Group Web
- o contact me (Thomas Tuerk) directly, e.g. via email thomas@kth.se

LCF - Logic of Computable Functions

21 / 321

LCF - Logic of Computable Functions II

- Standford LCF 1971-72 by Milner et al.
- formalism devised by Dana Scott in 1969
- intended to reason about recursively defined functions
- intended for computer science applications
- strengths
 - ► powerful simplification mechanism
 - ► support for backward proof
- limitations
 - ▶ proofs need a lot of memory
 - ► fixed, hard-coded set of proof commands

Robin Milner (1934 - 2010)

- Milner worked on improving LCF in Edinburgh
- research assistants
 - Lockwood Morris
 - ► Malcolm Newey
 - ► Chris Wadsworth
 - ► Mike Gordon
- Edinburgh LCF 1979
- introduction of **Meta Language** (ML)
- ML was invented to write proof procedures
- ML became an influential functional programming language
- using ML allowed implementing the LCF approach

23 / 321 24 / 321

LCF Approach

LCF Approach II

- implement an abstract datatype **thm** to represent theorems
- semantics of ML ensure that values of type thm can only be created using its interface
- interface is very small
 - predefined theorems are axioms
 - ► function with result type theorem are inferences
- interface is carefully designed and checked
 - ► size of interface and implementation allow careful checking
 - ► one checks that the interface really implements only axioms and inferences that are valid in the used logic
- However you create a theorem, there is a proof for it.
- together with similar abstract datatypes for types and terms, this forms the **kernel**

Modus Ponens Example

Inference Rule

$\frac{\Gamma \vdash a \Rightarrow b \qquad \Delta \vdash a}{\Gamma \cup \Delta \vdash b}$

SML function

val MP : thm -> thm -> thm MP(
$$\Gamma \vdash a \Rightarrow b$$
)($\Delta \vdash a$) = ($\Gamma \cup \Delta \vdash b$)

- very trustworthy only the small kernel needs to be trusted
- efficient no need to store proofs

Easy to extend and automate

However complicated and potentially buggy your code is, if a value of type theorem is produced, it has been created through the small trusted interface. Therefore the statement really holds.

25 / 321

26 / 321

LCF Style Systems

There are now many interactive theorem provers out there that use an approach similar to that of Edinburgh LCF.

- HOL family
 - ► HOL theorem prover
 - ► HOL Light
 - ► HOL Zero
 - ► Proof Power
 - ▶ ...
- Isabelle
- Nuprl
- Coq
-

KTH VET MENNET

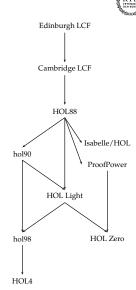
History of HOL

- 1979 Edinburgh LCF by Milner, Gordon, et al.
- 1981 Mike Gordon becomes lecturer in Cambridge
- 1985 Cambridge LCF
 - ► Larry Paulson and Gèrard Huet
 - ▶ implementation of ML compiler
 - powerful simplifier
 - various improvements and extensions
- 1988 HOL
 - ► Mike Gordon and Keith Hanna
 - ► adaption of Cambridge LCF to classical higher order logic
 - ▶ intention: hardware verification
- 1990 HOL90 reimplementation in SML by Konrad Slind at University of Calgary
- 1998 HOL98 implementation in Moscow ML and new library and theory mechanism
- since then HOL Kananaskis releases, called informally HOL 4

27 / 321 28 / 321

Family of HOL

- ProofPower
 - commercial version of HOL88 by Roger Jones, Rob Arthan et al.
- HOL Light lean CAML / OCaml port by John Harrison
- HOL Zero trustworthy proof checker by Mark Adams
- Isabelle
 - ► 1990 by Larry Paulson
 - meta-theorem prover that supports multiple logics
 - ► however, mainly HOL used, ZF a little
 - nowadays probably the most widely used HOL system
 - ▶ originally designed for software verification



Part IV

HOL's Logic

29 / 321

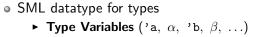
HOL Logic

- the HOL theorem prover uses a version of classical **h**igher **o**rder **l**ogic: classical higher order predicate calculus with terms from the typed lambda calculus (i. e. simple type theory)
- this sounds complicated, but is intuitive for SML programmers
- (S)ML and HOL logic designed to fit each other
- if you understand SML, you understand HOL logic

HOL = functional programming + logic

Ambiguity Warning

The acronym *HOL* refers to both the *HOL interactive theorem prover* and the *HOL logic* used by it. It's also a common abbreviation for *higher order logic* in general.



Type variables are implicitly universally quantified. Theorems containing type variables hold for all instantiations of these. Proofs using type variables can be seen as proof schemata.

► Atomic Types (c)

Atomic types denote fixed types. Examples: num, bool, unit

▶ Compound Types $((\sigma_1, \ldots, \sigma_n)op)$ op is a **type operator** of arity n and $\sigma_1, \ldots, \sigma_n$ argument types. Type operators denote operations for constructing types. Examples: num list or 'a # 'b.

► Function Types $(\sigma_1 \to \sigma_2)$ $\sigma_1 \to \sigma_2$ is the type of **total** functions from σ_1 to σ_2 .

- types are never empty in HOL, i.e. for each type at least one value exists
- all HOL functions are total

Terms

Terms II

- SML datatype for terms
 - ► Variables (x, y, . . .)
 - ► Constants (c,...)
 - ► Function Application (f a)
 - Lambda Abstraction (\x. f x or λx. fx)
 Lambda abstraction represents anonymous function definition.
 The corresponding SML syntax is fn x => f x.
- terms have to be well-typed
- same typing rules and same type-inference as in SML take place
- terms very similar to SML expressions
- notice: predicates are functions with return type bool, i.e. no distinction between functions and predicates, terms and formulae

HOL term	SML expression	type HOL / SML
0	0	num / int
x:'a	x:'a	variable of type 'a
x:bool	x:bool	variable of type bool
x + 5	x + 5	applying function + to x and 5
\x . x + 5	$fn x \Rightarrow x + 5$	anonymous (a. k. a. inline) function
		of type num -> num
(5, T)	(5, true)	<pre>num # bool / int * bool</pre>
[5;3;2]++[6]	[5,3,2]@[6]	${ t num \ list \ / \ int \ list}$

33 / 321

34 / 321

Free and Bound Variables / Alpha Equivalence

Theorems

- in SML, the names of function arguments does not matter (much)
- similarly in HOL, the names of variables used by lambda-abstractions does not matter (much)
- the lambda-expression λx . t is said to **bind** the variables x in term t
- variables that are guarded by a lambda expression are called bound
- all other variables are free
- Example: x is free and y is bound in $(x = 5) \land (\lambda y. (y < x))$ 3
- the names of bound variables are unimportant semantically
- two terms are called **alpha-equivalent** iff they differ only in the names of bound variables
- Example: λx . x and λy . y are alpha-equivalent
- Example: x and y are not alpha-equivalent

- theorems are of the form $\Gamma \vdash p$ where
 - ightharpoonup Γ is a set of hypothesis
 - ightharpoonup p is the conclusion of the theorem
 - \blacktriangleright all elements of Γ and p are formulae, i. e. terms of type bool
- $\Gamma \vdash p$ records that using Γ the statement p has been proved
- notice difference to logic: there it means can be proved
- the proof itself is not recorded
- theorems can only be created through a small interface in the kernel

35 / 321 36 / 321

- the HOL kernel is hard to explain
 - ▶ for historic reasons some concepts are represented rather complicated
 - ▶ for speed reasons some derivable concepts have been added
- instead consider the HOL Light kernel, which is a cleaned-up version
- there are two predefined constants
 - ▶ = : 'a -> 'a -> bool
 - ▶ @ : ('a -> bool) -> 'a
- there are two predefined types
 - ▶ bool
 - ▶ ind
- the meaning of these types and constants is given by inference rules and axioms

37 / 321

KTH

HOL Light Axioms and Definition Principles

38 / 321

HOL Light Inferences II

$$\frac{\Gamma \vdash p \Leftrightarrow q \qquad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p \Leftrightarrow q} \text{ DEDUCT_ANTISYM_RULE}$$

$$\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$$

$$\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash \rho[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash \rho[\gamma_1, \dots, \gamma_n]} \text{ INST_TYPE}$$

3 axioms needed

ETA_AX
$$|-(\lambda x. t x) = t$$

SELECT_AX $|-P x \Longrightarrow P((@)P))$
INFINITY_AX predefined type ind is infinite

- definition principle for constants
 - constants can be introduced as abbreviations
 - constraint: no free vars and no new type vars
- definition principle for types
 - ▶ new types can be defined as non-empty subtypes of existing types
- both principles
 - ▶ lead to conservative extensions
 - preserve consistency

39 / 321 40 / 321

HOL Light derived concepts

Multiple Kernels

42 / 321

Everything else is derived from this small kernel.

$$T =_{def} (\lambda p. p) = (\lambda p. p)$$

$$\wedge =_{def} \lambda p q. (\lambda f. f p q) = (\lambda f. f T T)$$

$$\Longrightarrow =_{def} \lambda p q. (p \wedge q \Leftrightarrow p)$$

$$\forall =_{def} \lambda P. (P = \lambda x. T)$$

$$\exists =_{def} \lambda P. (\forall q. (\forall x. P(x) \Longrightarrow q) \Longrightarrow q)$$

• Kernel defines abstract datatypes for types, terms and theorems

• one does not need to look at the internal implementation

• therefore, easy to exchange

• there are at least 3 different kernels for HOL

► standard kernel (de Bruijn indices)

experimental kernel (name / type pairs)

► OpenTheory kernel (for proof recording)

41 / 321

Part V

Basic HOL Usage

HOL Logic Summary

- HOL theorem prover uses classical higher order logic
- HOL logic is very similar to SML
 - ► syntax
 - ► type system
 - ► type inference
- HOL theorem prover very trustworthy because of LCF approach
 - ► there is a small kernel
 - $\,\blacktriangleright\,$ proofs are not stored explicitly
- \bullet you don't need to know the details of the kernel
- usually one works at a much higher level of abstraction

HOL Technical Usage Issues

Installing HOL

- practical issues are discussed in practical sessions
 - ► how to install HOL
 - which key-combinations to use in emacs-mode
 - detailed signature of libraries and theories
 - ▶ all parameters and options of certain tools
- exercise sheets sometimes
 - ask to read some documentation
 - provide examples
 - ▶ list references where to get additional information
- if you have problems, ask me outside lecture (tuerk@kth.se)
- covered only very briefly in lectures

45 / 321

46 / 321

Filenames KTH

- HOL is a collection of SML modules
- starting HOL starts a SML Read-Eval-Print-Loop (REPL) with
 - ▶ some HOL modules loaded
 - ▶ some default modules opened
 - ▶ an input wrapper to help parsing terms called unquote
- unquote provides special quotes for terms and types
 - ► implemented as input filter
 - ▶ ''my-term'' becomes Parse.Term [QUOTE "my-term"]
 - '':my-type'' becomes Parse.Type [QUOTE ":my-type"]
- main interfaces

General Architecture

- emacs (used in the course)
- ▶ vim
- ▶ bare shell

- *Script.sml HOL proof script file
 - script files contain definitions and proof scripts

• webpage: https://hol-theorem-prover.org

HOL supports two SML implementations

► Moscow ML (http://mosml.org)

 I recommend using PolyML please use emacs with

► hol-mode

► sml-mode

► PolyML (http://www.polyml.org)

▶ hol-unicode, if you want to type Unicode

• executing them results in HOL searching and checking proofs

• please install recent revision from git repo or Kananaskis 11 release

documentation found on HOL webpage and with sources

- ► this might take very long
- ▶ resulting theorems are stored in *Theory.{sml|sig} files
- *Theory. {sml|sig} HOL theory
 - ▶ auto-generated by corresponding script file
 - ▶ load quickly, because they don't search/check proofs
 - ▶ do not edit theory files
- *Syntax.{sml|sig} syntax libraries
 - contain syntax related functions
 - ▶ i. e. functions to construct and destruct terms and types
- *Lib.{sml|sig} general libraries
- *Simps.{sml|sig} simplifications
- selftest.sml selftest for current directory

47 / 321 48 / 321

Directory Structure

- bin HOL binaries
- src HOL sources
- examples HOL examples
 - ► interesting projects by various people
 - examples owned by their developer
 - ► coding style and level of maintenance differ a lot
- help sources for reference manual
 - ► after compilation home of reference HTML page
- Manual HOL manuals
 - ▶ Tutorial
 - Description
 - ► Reference (PDF version)
 - ► Interaction
 - Quick (cheat pages)
 - ► Style-guide
 - ▶ ...

Where to find help?

- reference manual
 - ▶ available as HTML pages, single PDF file and in-system help
- description manual
- Style-guide (still under development)
- HOL webpage (https://hol-theorem-prover.org)
- mailing-list hol-info
- DB.match and DB.find
- *Theory.sig and selftest.sml files
- ask someone, e.g. me :-) (tuerk@kth.se)

Unicode

50 / 321

- HOL supports both Unicode and pure ASCII input and output
- advantages of Unicode compared to ASCII
 - ► easier to read (good fonts provided)
 - ▶ no need to learn special ASCII syntax
- disadvanges of Unicode compared to ASCII
 - ► harder to type (even with hol-unicode.el)
 - ► less portable between systems
- whether you like Unicode is highly a matter of personal taste
- HOL's policy
 - ▶ no Unicode in HOL's source directory src
 - ► Unicode in examples directory examples is fine
- I recommend turning Unicode output off initially
 - ► this simplifies learning the ASCII syntax
 - ▶ no need for special fonts
 - ▶ it is easier to copy and paste terms from HOL's output

49 / 321

Part VI

Forward Proofs

Kernel too detailed

KTH VETTABEAN VOICE ROBBET

Common Terms and Types

0	we	already	discι discι	ussed	the	HOL	Logic
0	the	kernel	itself	does	not	even	contair

- the kernel itself does not even contain basic logic operators
- usually one uses a much higher level of abstraction
 - ► many operations and datatypes are defined
 - ► high-level derived inference rules are used
- let's now look at this more common abstraction level

 α, β, \ldots 'a, 'b, ... type vars type annotated term term:type term:type Т true false F $\neg b$ ~b negation conjunction b1 /\ b2 b1 ∧ b2 disjunction b1 \times b2 b1 \/ b2 implication $b1 \implies b2$ b1 ==> b2equivalence b1 ⇔ b2 b1 <=> b2 $v1 \neq v2$ disequation v1 <> v2 all-quantification $\forall x. P x$!x. P x

Unicode

ASCII

?x. P x

@x. P x

There are similar restrictions to constant and variable names as in SML. HOL specific: don't start variable names with an underscore

 $\exists x. P x$

0x. P x

53 / 321

54 / 321

Creating Terms

existential quantification

Hilbert's choice operator

Syntax conventions

- common function syntax
 - \blacktriangleright prefix notation, e.g. SUC x
 - ► infix notation, e.g. x + y
 - ▶ quantifier notation, e.g. $\forall x$. P x means (\forall) $(\lambda x$. P x)
- infix and quantifier notation can be turned into prefix notation Example: (+) x y and x y are the same as x + y
- quantifiers of the same type don't need to be repeated Example: $\forall x \ y. \ P \ x \ y$ is short for $\forall x. \ \forall y. \ P \ x \ y$
- there is special syntax for some functions Example: if c then v1 else v2 is nice syntax for COND c v1 v2
- associative infix operators are usually right-associative
 Example: b1 /\ b2 /\ b3 is parsed as b1 /\ (b2 /\ b3)

Term Parser

Use special quotation provided by unquote.

Operator Precedence

It is easy to misjudge the binding strength of certain operators. Therefore use plenty of parenthesis.

Use Syntax Functions

Terms are just SML values of type term. You can use syntax functions (usually defined in *Syntax.sml files) to create them.

55 / 321 56 / 321

Creating Terms II

Inference Rules for Equality

Parser '':bool''	<pre>Syntax Funs mk_type ("bool", []) or bool mk_const ("T", bool) or T</pre>	type of Booleans term true	$\overline{\vdash t = t} \ \mathrm{REFL}$	$\frac{\Gamma \vdash s = t}{\Gamma \vdash t = s} \text{ GSYM}$
··~b··	<pre>mk_neg (mk_var ("b", bool)) mk_conj (,)</pre>	negation of Boolean var b conjunction disjunction implication equation	$\Gamma \vdash s = t$ $x \text{ not free in } \Gamma$ $\Gamma \vdash \lambda x. \ s = \lambda x.t$ $\Gamma \vdash s = t$	$\frac{\Gamma \vdash s = t}{\Delta \vdash t = u}$ $\frac{\Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u}$ $\frac{\Gamma \vdash p \Leftrightarrow q \qquad \Delta \vdash p}{\Gamma \cup \Delta \vdash q}$ EQ_MP
··· <=>·	mk_eq (,) mk_eq (,) mk_neg (mk_eq (,))	equation equivalence negated equation	$\frac{\Delta \vdash u = v}{types \ fit}$ $\frac{\Gamma \cup \Delta \vdash s(u) = t(v)}{\Gamma \cup \Delta \vdash s(u) = t(v)}$ MK_COMB	$\frac{\Gamma \cup \Delta \vdash q}{\vdash (\lambda x. \ t)x = t} \text{ BETA}$

Inference Rules for free Variables

 $\frac{\Gamma[x_1,\ldots,x_n] \vdash p[x_1,\ldots,x_n]}{\Gamma[t_1,\ldots,t_n] \vdash p[t_1,\ldots,t_n]} \text{ INST}$

 $\frac{\Gamma[\alpha_1, \dots, \alpha_n] \vdash \rho[\alpha_1, \dots, \alpha_n]}{\Gamma[\gamma_1, \dots, \gamma_n] \vdash \rho[\gamma_1, \dots, \gamma_n]} \text{ INST-TYPE}$

57 / 321

Inference Rules for Implication

58 / 321

$$\frac{\Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ MP, MATCH_MP} \qquad \qquad \frac{\Gamma \vdash p}{\Gamma - \{q\} \vdash q \Longrightarrow p} \text{ DISCH}$$

$$\frac{\Gamma \vdash p = q}{\Gamma \vdash p \Longrightarrow q} \text{ EQ_IMP_RULE} \qquad \qquad \frac{\Gamma \vdash q \Longrightarrow p}{\Gamma \cup \{q\} \vdash p} \text{ UNDISCH}$$

$$\frac{\Gamma \vdash p \Longrightarrow q}{\Delta \vdash q \Longrightarrow p} \text{ IMP_ANTISYM_RULE} \qquad \frac{\Gamma \vdash p \Longrightarrow F}{\Gamma \vdash \sim p} \text{ NOT_INTRO}$$

$$\frac{\Delta \vdash q \Longrightarrow p}{\Gamma \cup \Delta \vdash p \Longrightarrow r} \text{ IMP_TRANS}$$

$$\frac{\Delta \vdash q \Longrightarrow r}{\Gamma \cup \Delta \vdash p \Longrightarrow r} \text{ IMP_TRANS}$$

59/321 60/321

Inference Rules for Conjunction / Disjunction

Inference Rules for Quantifiers

$$\frac{\Gamma \vdash p \qquad \Delta \vdash q}{\Gamma \cup \Delta \vdash p \land q} \text{ CONJ}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash p} \text{ CONJUNCT1}$$

$$\frac{\Gamma \vdash p \land q}{\Gamma \vdash q} \text{ CONJUNCT2}$$

$$\frac{\Gamma \vdash \rho}{\Gamma \vdash \rho \ \lor \ q} \text{ DISJ1}$$

$$\frac{\Gamma \vdash q}{\Gamma \vdash p \ \lor \ q} \text{ DISJ2}$$

$$\Gamma \vdash p \lor q
\Delta_1 \cup \{p\} \vdash r
\underline{\Delta_2 \cup \{q\} \vdash r}
\Gamma \cup \Delta_1 \cup \Delta_2 \vdash r$$
 DISJ_CASES

$$\frac{\Gamma \vdash p \qquad x \text{ not free in } \Gamma}{\Gamma \vdash \forall x. \ p} \text{ GEN}$$

$$\frac{\Gamma \vdash \forall x. \ p}{\Gamma \vdash p[u/x]} \text{ SPEC}$$

$$\frac{\Gamma \vdash p[u/x]}{\Gamma \vdash \exists x. \ p} \text{ EXISTS}$$

$$\frac{\Gamma \vdash \exists x. \ p}{\Delta \cup \{p[u/x]\} \vdash r}$$

$$\frac{u \text{ not free in } \Gamma, \Delta, p \text{ and } r}{\Gamma \cup \Delta \vdash r} \text{ CHOOSE}$$

Forward Proofs

- axioms and inference rules are used to derive theorems
- this method is called **forward proof**
 - ► one starts with basic building blocks
 - ► one moves step by step forward
 - finally the theorem one is interested in is derived
- one can also implement own proof tools

61 / 321

Forward Proofs — Example I

62 / 321

Let's prove $\forall p. \ p \Longrightarrow p.$

63 / 321 64 / 321

Forward Proofs — Example II

Forward Proofs — Example II cont.


```
Let's prove \forall P v. (\exists x. (x = v) \land P x) \iff P v.
```

```
val tm_v = ''v:'a'';
val tm_P = ''P:'a -> bool'';
val tm lhs = "?x. (x = y) /\ P x"
val tm_rhs = mk_comb (tm_P, tm_v);
val thm1 = let
  val thm1a = ASSUME tm rhs:
                                          > val thm1a = [P v] |- P v: thm
  val thm1b =
                                          > val thm1b =
    CONJ (REFL tm_v) thm1a;
                                              [P v] | - (v = v) / P v: thm
                                          > val thm1c =
  val thm1c =
    EXISTS (tm_lhs, tm_v) thm1b
                                              [P \ v] \ | -?x. \ (x = v) / \ P \ x
in
 DISCH tm_rhs thm1c
                                          > val thm1 = [] |-
                                              P v \Longrightarrow ?x. (x = v) / P x: thm
end
```

```
val thm2 = let
                                         > val thm2a = \lceil (u = v) / \langle P u \rangle \mid -
  val thm2a =
    ASSUME ((u:a = v) / P u')
                                              (u = v) / P u: thm
  val thm2b = AP_TERM tm_P
                                         > val thm2b = [(u = v) /\ P u] |-
    (CONJUNCT1 thm2a):
                                              P u <=> P v
  val thm2c = EQ_MP thm2b
                                         > val thm2c = [(u = v) / P u] | -
    (CONJUNCT2 thm2a);
  val thm2d =
                                         > val thm2d = [?x. (x = v) / Px] | -
    CHOOSE (''u:'a'',
      ASSUME tm_lhs) thm2c
  DISCH tm_lhs thm2d
                                         > val thm2 = [] |-
                                              ?x. (x = v) / P x ==> P v
end
                                        > val thm3 = [] |-
val thm3 = IMP_ANTISYM_RULE thm2 thm1
                                              ?x. (x = v) / P x \iff P v
                                         > val thm4 = [] |- !P v.
val thm4 = GENL [tm_P, tm_v] thm3
                                              ?x. (x = v) / P x \iff P v
```

65 / 321

66 / 321

Part VII

Backward Proofs

Motivation I

• let's prove !A B. A /\ B <=> B /\ A

```
(* Show |- A /\ B ==> B /\ A *)
val thm1a = ASSUME ''A /\ B'';
val thm1b = CONJ (CONJUNCT2 thm1a) (CONJUNCT1 thm1a);
val thm1 = DISCH ''A /\ B'' thm1b

(* Show |- B /\ A ==> A /\ B *)
val thm2a = ASSUME ''B /\ A'';
val thm2b = CONJ (CONJUNCT2 thm2a) (CONJUNCT1 thm2a);
val thm2 = DISCH ''B /\ A'' thm2b

(* Combine to get |- A /\ B <=> B /\ A *)
val thm3 = IMP_ANTISYM_RULE thm1 thm2

(* Add quantifiers *)
val thm4 = GENL [''A:bool'', ''B:bool''] thm3
```

- this is how you write down a proof
- for finding a proof it is however often useful to think backwards

Motivation II - thinking backwards

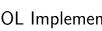
69 / 321

KTH

Motivation III - thinking backwards

- we want to prove
 - ▶ !A B. A /\ B <=> B /\ A
- all-quantifiers can easily be added later, so let's get rid of them
 - ► A /\ B <=> B /\ A
- now we have an equivalence, let's show 2 implications
 - ► A /\ B ==> B /\ A
 - ► B /\ A ==> A /\ B
- we have an implication, so we can use the precondition as an assumption
 - ▶ using A /\ B show B /\ A
 - ► A /\ B ==> B /\ A

- we have a conjunction as assumption, let's split it
 - ▶ using A and B show B /\ A
 - ► A /\ B ==> B /\ A
- we have to show a conjunction, so let's show both parts
 - ▶ using A and B show B
 - ▶ using A and B show A
 - ► A /\ B ==> B /\ A
- the first two proof obligations are trivial
 - ► A /\ B ==> B /\ A
-
- we are done



HOL Implementation of Backward Proofs

70 / 321

common practise

Motivation IV

- think backwards to find proof
- write found proof down in forward style
- often switch between backward and forward style within a proof Example: induction proof
 - ▶ backward step: induct on ...
 - ► forward steps: prove base case and induction case
- whether to use forward or backward proofs depend on
 - ► support by the interactive theorem prover you use
 - ★ HOL 4 and close family: emphasis on backward proof
 - ★ Isabelle/HOL: emphasis on forward proof
 - ★ Cog: emphasis on backward proof
 - your way of thinking
 - ▶ the theorem you try to prove

- in HOL
 - proof tactics / backward proofs used for most user-level proofs
 - ► forward proofs used usually for writing automation
- backward proofs are implemented by tactics in HOL
 - decomposition into subgoals implemented in SML
 - ► SML datastructures used to keep track of all open subgoals
 - ► forward proof used to construct theorems
- to understand backward proofs in HOL we need to look at
 - ▶ goal SML datatype for proof obligations
 - ▶ goalStack library for keeping track of goals
 - ► tactic SML type for functions performing backward proofs

71 / 321 72 / 321

Tactics

- goals represent proof obligations, i. e. theorems we need/want to prove
- the SML type goal is an abbreviation for term list * term
- the goal ([asm_1, ..., asm_n], c) records that we need/want to prove the theorem {asm_1, ..., asm_n} |- c

Example Goals Goal ([''A'', ''B''], ''A /\ B'') {A, B} |- A /\ B ([''B'', ''A''], ''A /\ B'') {A, B} |- A /\ B ([''B /\ A''], ''A /\ B'') {B /\ A} |- A /\ B ([], ''(B /\ A) ==> (A /\ B)'') |- (B /\ A) ==> (A /\ B)

- the SML type tactic is an abbreviation for the type goal -> goal list * validation
- validation is an abbreviation for thm list -> thm
- given a goal, a tactic
 - ▶ decides into which subgoals to decompose the goal
 - ► returns this list of subgoals
 - ► returns a validation that
 - ★ given a list of theorems for the computed subgoals
 - ★ produces a theorem for the original goal
- special case: empty list of subgoals
 - ▶ the validation (given []) needs to produce a theorem for the goal
- notice: a tactic might be invalid

73 / 321

Tactic Example — EQ_TAC

74 / 321

$$\Gamma \vdash p \qquad \Delta \vdash q$$

Tactic Example — CONJ_TAC

$$\frac{\texttt{t} \equiv \texttt{conj1} \ \ / \setminus \texttt{conj2}}{\texttt{asl} \vdash \texttt{conj1} \ \ \ }$$

```
val CONJ_TAC: tactic = fn (asl, t) =>
  let
    val (conj1, conj2) = dest_conj t
  in
    ([(asl, conj1), (asl, conj2)],
     fn [th1, th2] => CONJ th1 th2 | _ => raise Match)
  end
  handle HOL_ERR _ => raise ERR "CONJ_TAC" ""
```

$$\Gamma \vdash p \Longrightarrow q
\underline{\Delta \vdash q \Longrightarrow p}
\Gamma \cup \Delta \vdash p = q$$
IMP_ANTISYM_RULE

$$t \equiv lhs = rhs$$
 $asl \vdash lhs ==> rhs$
 $asl \vdash rhs ==> lhs$
 $asl \vdash t$

75 / 321 76 / 321

proofManagerLib / goalStack

77 / 321

Tactic Proof Example I

- the proofManagerLib keeps track of open goals
- it uses goalStack internally
- important commands
 - ▶ g set up new goal
 - ▶ e expand a tactic
 - ▶ p print the current status
 - ► top_thm get the proved thm at the end

Previous Goalstack

_

User Action

g '!A B. A /\ B <=> B /\ A';

New Goalstack

Initial goal:

!A B. A /\ B <=> B /\ A

: proof

78 / 321

Tactic Proof Example II

Initial goal:

!A B. A /\ B <=> B /\ A

: proof

User Action

- e GEN_TAC;
- e GEN_TAC;

New Goalstack

A /\ B <=> B /\ A

: proof

Tactic Proof Example III

Previous Goalstack

A /\ B <=> B /\ A

: proof

User Action

e EQ_TAC;

New Goalstack

B / A ==> A / B

A /\ B ==> B /\ A

: proof

Tactic Proof Example IV

Tactic Proof Example V

Previous Goalstack

Previous Goalstack

B / A ==> A / B

 $A / B \Longrightarrow B / A : proof$

User Action

e STRIP_TAC;

New Goalstack

B /\ A

0. A

1. B

User Action

e CONJ_TAC;

1. B

B /\ A

New Goalstack

O. A 1. B

81 / 321

82 / 321

Tactic Proof Example VI

Tactic Proof Example VII

Previous Goalstack

O. A 1. B

0. A 1. B

User Action

e (ACCEPT_TAC (ASSUME ''B:bool'')); e (ACCEPT_TAC (ASSUME ''A:bool''));

New Goalstack

B /\ A ==> A /\ B

: proof

Previous Goalstack

B /\ A ==> A /\ B

: proof

User Action

e STRIP_TAC;

e (ASM_REWRITE_TAC[]);

New Goalstack

Initial goal proved. |- !A B. A /\ B <=> B /\ A:

proof

Tactic Proof Example VIII

Tactic Proof Example IX

Previous Goalstack

```
Initial goal proved.
|- !A B. A /\ B <=> B /\ A:
  proof
```

User Action

```
val thm = top_thm();
```

Result

```
val thm =
   |- !A B. A /\ B <=> B /\ A:
   t.hm
```

Combined Tactic

```
val thm = prove (''!A B. A /\ B <=> B /\ A'',
 GEN_TAC >> GEN_TAC >>
 EQ_TAC >| [
   STRIP_TAC >>
   STRIP_TAC >| [
     ACCEPT_TAC (ASSUME ''B:bool''),
     ACCEPT_TAC (ASSUME ''A:bool'')
   STRIP TAC >>
   ASM_REWRITE_TAC[]
 ]);
```

Result

```
val thm =
  |- !A B. A /\ B <=> B /\ A:
```

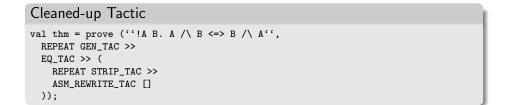
85 / 321

86 / 321

Tactic Proof Example X

Summary Backward Proofs

- in HOL most user-level proofs are tactic-based
 - ▶ automation often written in forward style
 - ► low-level, basic proofs written in forward style
 - ▶ nearly everything else is written in backward (tactic) style
 - there are many different tactics
 - in the lecture only the most basic ones will be discussed
 - you need to learn about tactics on your own
 - ▶ good starting point: Quick manual
 - ▶ learning finer points takes a lot of time
 - exercises require you to read up on tactics
 - often there are many ways to prove a statement, which tactics to use depends on
 - personal way of thinking
 - personal style and preferences
 - maintainability, clarity, elegance, robustness
 - ▶ ...



Result

```
val thm =
   |- !A B. A /\ B <=> B /\ A:
   thm
```

87 / 321 88 / 321

Part VIII

Basic Tactics

Some Basic Tactics

GEN_TAC DISCH_TAC	remove outermost all-quantifier move antecedent of goal into assumptions
$CONJ_TAC$	splits conjunctive goal
STRIP_TAC	splits on outermost connective (combination
	of GEN_TAC, CONJ_TAC, DISCH_TAC,)
DISJ1_TAC	selects left disjunct
DISJ2_TAC	selects right disjunct
$EQ_{-}TAC$	reduce Boolean equality to implications
ASSUME_TAC thm	add theorem to list of assumptions
EXISTS_TAC term	provide witness for existential goal

Syntax of Tactics in HOL

- originally tactics were written all in capital letters with underscores
 Example: ALL_TAC
- since 2010 more and more tactics have overloaded lower-case syntax
 Example: all_tac
- sometimes, the lower-case version is shortened Example: REPEAT, rpt
- sometimes, there is special syntax
 Example: THEN, \\, >>
- which one to use is mostly a matter of personal taste
 - ► all-capital names are hard to read and type
 - ▶ however, not for all tactics there are lower-case versions
 - ▶ mixed lower- and upper-case tactics are even harder to read
 - ▶ often shortened lower-case name is not *speaking*

In the lecture we will use mostly the old-style names.

90 / 321

Tacticals

- tacticals are SML functions that combine tactics to form new tactics
- common workflow
 - ► develop large tactic interactively
 - using goalStack and editor support to execute tactics one by one
 - ► combine tactics manually with tacticals to create larger tactics
 - ▶ finally end up with one large tactic that solves your goal
 - ▶ use prove or store_thm instead of goalStack
- make sure to **clearly mark proof structure** by e.g.
 - ► use indentation
 - use parentheses
 - use appropriate connectives
 - ▶ ...
- goalStack commands like e or g should not appear in your final proof

91 / 321 92 / 321

Some Basic Tacticals

Basic Rewrite Tactics

tac1 >> tac2	THEN, \\	applies tactics in sequence
tac > tacL	THENL	applies list of tactics to subgoals
tac1 >- tac2	THEN1	applies tac2 to the first subgoal of tac1
REPEAT tac	rpt	repeats tac until it fails
NTAC n tac		apply tac n times
REVERSE tac	reverse	reverses the order of subgoals
tac1 ORELSE tac2		applies tac1 only if tac2 fails
TRY tac		do nothing if tac fails
ALL_TAC	${\tt all_tac}$	do nothing
NO_TAC		fail

• (equational) rewriting is at the core of HOL's automation

we will discuss it in detail later

details complex, but basic usage is straightforward

▶ given a theorem rewr_thm of form |- P x = Q x and a term t

► rewriting t with rewr_thm means

▶ replacing each occurrence of a term P c for some c with Q c in t

• warning: rewriting may loop

Example: rewriting with theorem $|-X| <=> (X /\ T)$

rewrite goal using equations found REWRITE_TAC thms

in given list of theorems

in addition use assumptions ASM_REWRITE_TAC thms

rewrite once in goal using equations ONCE_REWRITE_TAC thms ONCE_ASM_REWRITE_TAC thms rewrite once using assumptions

93 / 321

94 / 321

Case-Split and Induction Tactics

Assumption Tactics

Induct_on 'term' induct on term Induct induct on all-quantor Cases_on 'term' case-split on term case-split on all-quantor Cases

MATCH_MP_TAC thm apply rule

IRULE_TAC thm generalised apply rule

use and remove first assumption POP ASSUM thm-tac

common usage POP_ASSUM MP_TAC

PAT_ASSUM term thm-tac also PAT_X_ASSUM term thm-tac use (and remove) first

assumption matching pattern

WEAKEN_TAC term-pred

removes first assumption satisfying predicate

95 / 321 96 / 321

Decision Procedure Tactics

Subgoal Tactics

- decision procedures try to solve the current goal completely
- they either succeed or fail
- no partial progress
- decision procedures vital for automation

TAUT_TAC propositional logic tautology checker

DECIDE_TAC linear arithmetic for num

METIS_TAC thms first order prover numLib.ARITH_TAC Presburger arithmetic intLib.ARITH_TAC uses Omega test

• it is vital to structure your proofs well

- ► improved maintainability
- ► improved readability
- ► improved reusability
- ▶ saves time in medium-run
- therefore, use many small lemmata
- also, use many explicit subgoals

'term-frag' by tac show term with tac and

add it to assumptions

'term-frag' sufficies_by tac show it sufficies to prove term

97 / 321

M KTH

Importance of Exercises

98 / 321

Term Fragments / Term Quotations

- notice that by and sufficies_by take term fragments
- term fragments are also called term quotations
- they represent (partially) unparsed terms
- parsing takes place during execution of tactic in context of goal
- this helps to avoid type annotations
- however, this means syntax errors show late as well
- the library **Q** defines many tactics using term fragments

- here many tactics are presented in a very short amount of time
- there are many, many more important tactics out there
- few people can learn a programming language just by reading manuals
- similar few people can learn HOL just by reading and listening
- you should write your own proofs and play around with these tactics
- solving the exercises is highly recommended (and actually required if you want credits for this course)

Tactical Proof - Example I - Slide 1

Tactical Proof - Example I - Slide 2

• we want to prove !1. LENGTH (APPEND 1 1) = 2 * LENGTH 1

- first step: set up goal on goalStack
- at same time start writing proof script

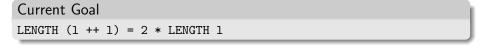
Proof Script val LENGTH_APPEND_SAME = prove ("!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1",

Actions

- run g ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1''
- this is done by hol-mode
- move cursor inside term and press M-h g (menu-entry HOL - Goalstack - New goal)

101 / 321

Tactical Proof - Example I - Slide 3



- LENGTH of APPEND can be simplified
- let's search an appropriate lemma with DB.match

Actions o run DB.print_match [] ''LENGTH (_ ++ _)'' this is done via hol-mode • press M-h m and enter term pattern (menu-entry HOL - Misc - DB match) • this finds the theorem listTheory.LENGTH_APPEND |- !11 12. LENGTH (11 ++ 12) = LENGTH 11 + LENGTH 12

Current Goal

```
!1. LENGTH (1 ++ 1) = 2 * LENGTH 1
```

- the outermost connective is an all-quantor
- let's get rid of it via GEN_TAC

Proof Script val LENGTH_APPEND_SAME = prove ("!1. LENGTH (1 ++ 1) = 2 * LENGTH 1", GEN_TAC

Actions

- run e GEN_TAC
- this is done by hol-mode
- mark line with GEN_TAC and press M-h e (menu-entry HOL - Goalstack - Apply tactic)

102 / 321

Tactical Proof - Example I - Slide 4

Current Goal

```
LENGTH (1 ++ 1) = 2 * LENGTH 1
```

• let's rewrite with found theorem listTheory.LENGTH_APPEND

Proof Script

```
val LENGTH_APPEND_SAME = prove (
  "!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1",
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND]
```

Actions

- connect the new tactic with tactical >> (THEN)
- use hol-mode to expand the new tactic

103 / 321 104 / 321

Tactical Proof - Example I - Slide 5

Tactical Proof - Example I - Slide 6

Current Goal

```
LENGTH 1 + LENGTH 1 = 2 * LENGTH 1
```

- let's search a theorem for simplifying 2 * LENGTH 1
- prepare for extending the previous rewrite tactic

Proof Script val LENGTH_APPEND_SAME = prove (''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'', GEN_TAC >> REWRITE_TAC[listTheory.LENGTH_APPEND]

Actions

- DB.match finds theorem arithmeticTheory.TIMES2
- press M-h b and undo last tactic expansion (menu-entry HOL - Goalstack - Back up)

105 / 321

321

Current Goal

```
LENGTH (1 ++ 1) = 2 * LENGTH 1
```

- extend the previous rewrite tactic
- finish proof

Proof Script

```
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
GEN_TAC >>
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
```

Actions

- add TIMES2 to the list of theorems used by rewrite tactic
- use hol-mode to expand the extended rewrite tactic
- goal is solved, so let's add closing parenthesis and semicolon

106 / 321

Tactical Proof - Example I - Slide 7

Tactical Proof - Example II - Slide 1

- we have a finished tactic proving our goal
- notice that GEN_TAC is not needed
- let's polish the proof script

Proof Script val LENGTH_APPEND_SAME = prove (''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'', GEN_TAC >> REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);

```
Polished Proof Script
val LENGTH_APPEND_SAME = prove (
   ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
REWRITE_TAC[listTheory.LENGTH_APPEND, arithmeticTheory.TIMES2]);
```

- let's prove something slightly more complicated
- drop old goal by pressing M-h d
 (menu-entry HOL Goalstack Drop goal)
- set up goal on goalStack (M-h g)
- at same time start writing proof script

Proof Script

Tactical Proof - Example II - Slide 2

Tactical Proof - Example II - Slide 2

Current Goal

```
!x1 x2 x3 l1 l2 l3.

(MEM x1 l1 /\ MEM x2 l2 /\ MEM x3 l3) /\

x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>

~ALL_DISTINCT (l1 ++ l2 ++ l3)
```

let's strip the goal

Proof Script

109 / 321

Current Goal

```
!x1 x2 x3 11 12 13.

(MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
x1 <= x2 /\ x2 <= x3 /\ x3 <= SUC x1 ==>
~ALL_DISTINCT (11 ++ 12 ++ 13)
```

let's strip the goal

Proof Script

```
val LENGTH_APPEND_SAME = prove (
    ''!1. LENGTH (APPEND 1 1) = 2 * LENGTH 1'',
REPEAT STRIP_TAC
```

Actions

- add REPEAT STRIP_TAC to proof script
- expand this tactic using hol-mode

110 / 321

Tactical Proof - Example II - Slide 3

Current Goal

F

- 0. MEM x1 l1 4. x2 <= x3
- 1. MEM x2 12 5. x3 <= SUC x1 2. MEM x3 13 6. ALL_DISTINCT (11 ++ 12 ++ 13)
- 3. $x1 \le x2$

• oops, we did too much, we would like to keep ALL_DISTINCT in goal

Proof Script

```
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC
```

Actions

- o undo REPEAT STRIP_TAC (M-h b)
- expand more fine-tuned strip tactic

Tactical Proof - Example II - Slide 4

Current Goal

```
~ALL_DISTINCT (11 ++ 12 ++ 13)
```

- 0. MEM x1 11
- 3. x1 <= x2
- 1. MEM x2 12
- 4. x2 <= x3
- 2. MEM x3 13
- 5. x3 <= SUC x1
- now let's simplify ALL_DISTINCT
- search suitable theorems with DB.match
- use them with rewrite tactic

Proof Script

```
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND]
```

Tactical Proof - Example II - Slide 5

Tactical Proof - Example II - Slide 6

Current Goal

```
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12) /\
 ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> ~MEM e 13)
 0. MEM x1 11
                    3. x1 \le x2
 1. MEM x2 12
                    4. x2 <= x3
                    5. x3 <= SUC x1
 2. MEM x3 13
```

- from assumptions 3, 4 and 5 we know $x2 = x1 \ / \ x2 = x3$
- let's deduce this fact by DECIDE_TAC

```
Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
(x2 = x1) \ / (x2 = x3) by DECIDE_TAC
```

113 / 321

Current Goals — 2 subgoals, one for each disjunct

```
~((ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12) /\
 ALL_DISTINCT 13 /\ !e. MEM e 11 \/ MEM e 12 ==> ~MEM e 13)
 0. MEM x1 l1
                     4. x2 \le x3
 1. MEM x2 12
                     5. x3 <= SUC x1
 2. MEM x3 13
                     6a. x2 = x1
 3. x1 <= x2
                     6b. x2 = x3
```

- both goals are easily solved by first-order reasoning
- let's use METIS_TAC[] for both subgoals

Proof Script

```
val NOT_ALL_DISTINCT_LEMMA = prove (''...'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
(x2 = x1) \ / (x2 = x3) by DECIDE_TAC >> (
  METIS_TAC[]
));
```

114 / 321

Tactical Proof - Example II - Slide 7


```
Finished Proof Script
val NOT_ALL_DISTINCT_LEMMA = prove (
"!x1 x2 x3 l1 l2 l3.
  (MEM x1 11 /\ MEM x2 12 /\ MEM x3 13) /\
  ((x1 \le x2) /\ (x2 \le x3) /\ x3 \le SUC x1) \Longrightarrow
  ~(ALL_DISTINCT (11 ++ 12 ++ 13))'',
REPEAT GEN_TAC >> STRIP_TAC >>
REWRITE_TAC[listTheory.ALL_DISTINCT_APPEND, listTheory.MEM_APPEND] >>
(x2 = x1) \ / (x2 = x3) by DECIDE_TAC >> (
 METIS_TAC[]
));
```

- notice that proof structure is explicit
- parentheses and indentation used to mark new subgoals

Part IX

Induction Proofs

Mathematical Induction

Structural Induction Theorems

- mathematical (a. k. a. natural) induction principle: If a property P holds for 0 and P(n) implies P(n+1) for all n, then P(n) holds for all n.
- HOL is expressive enough to encode this principle as a theorem.

```
|-!P.P0/\ (!n.Pn ==> P (SUC n)) ==> !n.Pn
```

- Performing mathematical induction in HOL means applying this theorem (e.g. via HO_MATCH_MP_TAC)
- there are many similarish induction theorems in HOL
- Example: complete induction principle

$$|-!P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n$$

- structural induction theorems are an important special form of induction theorems
- they describe performing induction on the structure of a datatype
- Example: |- !P. P [] /\ (!t. P t ==> !h. P (h::t)) ==> !1. P 1
- structural induction is used very frequently in HOL
- for each algabraic datatype, there is an induction theorem

117 / 321

118 / 321

Other Induction Theorems

Induction (and Case-Split) Tactics

- there are many induction theorems in HOL
 - ► datatype definitions lead to induction theorems
 - ► recursive function definitions produce corresponding induction theorems
 - ► recursive relation definitions give rise to induction theorems
 - ► many are manually defined
- Examples

- the tactic Induct (or Induct_on) is usually used to start induction proofs
- it looks at the type of the quantifier (or its argument) and applies the default induction theorem for this type
- $\ \, \bullet \,$ this is usually what one needs
- other (non default) induction theorems can be applied via INDUCT_THEN or HO_MATCH_MP_TAC
- similarish Cases_on picks and applies default case-split theorems

Induction Proof - Example I - Slide 1

Induction Proof - Example I - Slide 2

- let's prove via induction !11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11
- we set up the goal and start an induction proof on 11

```
Proof Script
val REVERSE_APPEND = prove (
''!11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11'',
Induct
```

• the induction tactic produced two cases

base case: !12. REVERSE ([] ++ 12) = REVERSE 12 ++ REVERSE []

• induction step:

```
!h 12. REVERSE (h::11 ++ 12) = REVERSE 12 ++ REVERSE (h::11)
!12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11
```

both goals can be easily proved by rewriting

```
Proof Script
val REVERSE_APPEND = prove (''
!11 12. REVERSE (11 ++ 12) = REVERSE 12 ++ REVERSE 11'',
Induct >| [
 REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_NIL],
 ASM_REWRITE_TAC[REVERSE_DEF, APPEND, APPEND_ASSOC]
```

121 / 321

Induction Proof - Example II - Slide 2

!1. REVERSE (REVERSE 1) = 1

• we set up the goal and start an induction proof on 1

Induction Proof - Example II - Slide 2

122 / 321

- the induction tactic produced two cases
- base case:

```
REVERSE (REVERSE []) = []
```

• induction step:

```
!h. REVERSE (REVERSE (h::11)) = h::11
REVERSE (REVERSE 1) = 1
```

again both goals can be easily proved by rewriting

```
Proof Script
```

```
val REVERSE_REVERSE = prove (
"!1. REVERSE (REVERSE 1) = 1",
Induct
```

let's prove via induction

Proof Script

```
val REVERSE_REVERSE = prove (
''!1. REVERSE (REVERSE 1) = 1''.
Induct >| [
 REWRITE_TAC[REVERSE_DEF],
 ASM_REWRITE_TAC[REVERSE_DEF, REVERSE_APPEND, APPEND]
```

123 / 321 124 / 321

Definitional Extensions

Part X

Basic Definitions

- there are conservative definition principles for types and constants
- conservative means that all theorems that can be proved in extended theory can also be proved in original one
- however, such extensions make the theory more comfortable
- definitions introduce no new inconsistencies
- the HOL community has a very strong tradition of a purely definitional approach

126 / 321

Axiomatic Extensions

Oracles

- axioms are a different approach
- they allow postulating arbitrary properties, i. e. extending the logic with arbitrary theorems
- this approach might introduce new inconsistencies
- in HOL axioms are very rarely needed
- using definitions is often considered more elegant
- it is hard to keep track of axioms
- use axioms only if you really know what you are doing

- oracles are families of axioms
- however, they are used differently than axioms
- they are used to enable usage of external tools and knowledge
- you might want to use an external automated prover
- this external tool acts as an oracle
 - ▶ it provides answers
 - ► it does not explain or justify these answers
- you don't know, whether this external tool might be buggy
- all theorems proved via it are tagged with a special oracle-tag
- tags are propagated
- this allows keeping track of everything depending on the correctness of this tool

127 / 321 128 / 321

Oracles II

KTH VITENSAT

Pitfalls of Definitional Approach

- Common oracle-tags
 - ► DISK_THM theorem was written to disk and read again
 - ► HolSatLib proved by MiniSat
 - ► HolSmtLib proved by external SMT solver
 - ▶ fast_proof proof was skipped to compile a theory rapidly
 - ▶ cheat we cheated :-)
- cheating via e.g. the cheat tactic means skipping proofs
- it can be helpful during proof development
 - ► test whether some lemmata allow you finishing the proof
 - ▶ skip lengthy but boring cases and focus on critical parts first
 - experiment with exact form of invariants
 - **.** . . .

Specifications

- cheats should be removed reasonable quickly
- HOL warns about cheats and skipped proofs

- definitions can't introduce new inconsistencies
- they force you to state all assumed properties at one location
- however, you still need to be careful
- Is your definition really expressing what you had in mind?
- Does your formalisation correspond to the real world artefact ?
- How can you convince others that this is the case ?
- we will discuss methods to deal with this later in this course
 - ► formal sanity
 - ► conformance testing
 - ▶ code review
 - ► comments, good names, clear coding style
 - ▶ ..
- this is highly complex and needs a lot of effort in general

129 / 321

Definitions

130 / 321

 HOL allows to introduce new constants with certain properties, provided the existence of such constants has been shown

- new_specification is a convenience wrapper
 - ▶ it uses existential quantification instead of Hilbert's choice
 - ► deals with pair syntax
 - stores resulting definitions in theory
- new_specification captures the underlying principle nicely

• special case: new constant defined by equality

```
Specification with Equality
> double_EXISTS
val it =
|- ?double. (!n. double n = (n + n))
> val double_def = new_specification ("double_def", ["double"], double_EXISTS);
val double_def =
|- !n. double n = n + n
```

• there is a specialised methods for such simple definitions

Restrictions for Definitions

Underspecified Functions

- all variables occurring on right-hand-side (rhs) need to be arguments
 - ▶ e.g. new_definition (..., "F n = n + m") fails
 - ▶ m is free on rhs
- all type variables occurring on rhs need to occur on lhs

 - ► IS_FIN_TY would lead to inconsistency
 - ► |- FINITE (UNIV : bool set)
 - ► |- ~FINITE (UNIV : num set)
 - ► T <=> FINITE (UNIV:bool set) <=> IS_FIN_TY <=>
 - FINITE (UNIV:num set) <=> F
 - ▶ therefore, such definitions can't be allowed

- function specification do not need to define the function precisely
- multiple different functions satisfying one spec are possible
- functions resulting from such specs are called underspecified
- underspecified functions are still total, one just lacks knowledge
- one common application: modelling partial functions
 - ► functions like e.g. HD and TL are total
 - ► they are defined for empty lists
 - ▶ however, it is not specified, which value they have for empty lists
 - only known: HD [] = HD [] and TL [] = TL []
 val MY_HD_EXISTS = prove (''?hd. !x xs. (hd (x::xs) = x)'', ...);
 val MY_HD_SPEC =
 new_specification ("MY_HD_SPEC", ["MY_HD"], MY_HD_EXISTS)

133 / 321

134 / 321

Primitive Type Definitions

Primitive Type Definitions - Example 1

- HOL allows introducing non-empty subtypes of existing types
- a predicate P : ty -> bool describes a subset of an existing type ty
- ty may contain type variables
- only non-empty types are allowed
- therefore a non-emptyness proof ex-thm of form ?e. P e is needed
- new_type_definition (op-name, ex-thm) then introduces a new type op-name specified by P

- lets try to define a type dlist of lists containing no duplicates
- predicate ALL_DISTINCT : 'a list -> bool is used to define it
- easy to prove theorem dlist_exists: |- ?1. ALL_DISTINCT 1
- val dlist_TY_DEF = new_type_definitions("dlist",
 dlist_exists) defines a new type 'a dlist and returns a theorem
- rep is a function taking a 'a dlist to the list representing it
 - ► rep is injective
 - ▶ a list satisfies ALL_DISTINCT iff there is a corresponding dlist

Primitive Type Definitions - Example 2

Primitive Definition Principles Summary

- define_new_type_bijections can be used to define bijections between old and new type
- other useful theorems can be automatically proved by
 - prove_abs_fn_one_one
 - ▶ prove_abs_fn_onto
 - prove_rep_fn_one_one
 - ▶ prove_rep_fn_onto

- primitive definition principles are easily explained
- they lead to conservative extensions
- however, they are cumbersome to use
- LCF approach allows implementing more convenient definition tools
 - ► Datatype package
 - ► TFL (Total Functional Language) package
 - ► IndDef (Inductive Definition) package
 - ► quotientLib Quotient Types Library
 - ▶ ..

137 / 321

138 / 321

Functional Programming

Functional Programming Example

- the Datatype package allows to define datatypes conveniently
- the TFL package allows to define (mutually recursive) functions
- the EVAL conversion allows evaluating those definitions
- this gives many HOL developments the feeling of a functional program
- there is really a close connection between functional programming and definitions in HOL
 - ► functional programming design principles apply
 - ► EVAL is a great way to test quickly, whether your definitions are working as intended

139 / 321 140 / 321

Datatype Package

Datatype Package - Example I

datatype ('a,'b) btree = Leaf of 'a

Hol_datatype 'btree = Leaf of 'a

| Node btree 'b btree'

Tree Datatype in HOL — Deprecated Syntax

Tree Datatype in SML

Tree Datatype in HOL

Datatype 'btree = Leaf 'a

- the Datatype package allows to define SML style datatypes easily
- there is support for
 - ► algebraic datatypes
 - record types
 - mutually recursive types
 - ▶ ...
- many constants are automatically introduced
 - ► constructors
 - ► case-split constant
 - ▶ size function
 - ► field-update and accessor functions for records
 - ▶ ...
- many theorems are derived and stored in current theory
 - ► injectivity and distinctness of constructors
 - nchotomy and structural induction theorems
 - rewrites for case-split, size and record update functions
 - ▶ ...

141 / 321

142 / 321

Datatype Package - Example I - Derived Theorems 1

Datatype Package - Example I - Derived Theorems 2

| Node of btree => 'b => btree'

| Node of ('a,'b) btree * 'b * ('a,'b) btree

btree distinct

|- !a2 a1 a0 a. Leaf a <> Node a0 a1 a2

btree_11

```
|- (!a a'. (Leaf a = Leaf a') <=> (a = a')) /\
    (!a0 a1 a2 a0' a1' a2'.
        (Node a0 a1 a2 = Node a0' a1' a2') <=>
        (a0 = a0') /\ (a1 = a1') /\ (a2 = a2'))
```

btree_nchotomy

|-!bb. (?a. $bb = Leaf a) \/ (?b b1 b0. bb = Node b b1 b0)$

btree_induction

btree size def

```
|- (!f f1 a. btree_size f f1 (Leaf a) = 1 + f a) /\
    (!f f1 a0 a1 a2.
    btree_size f f1 (Node a0 a1 a2) =
    1 + (btree_size f f1 a0 + (f1 a1 + btree_size f f1 a2)))
```

bbtree case def

```
|- (!a f f1. btree_CASE (Leaf a) f f1 = f a) /\
   (!a0 a1 a2 f f1. btree_CASE (Node a0 a1 a2) f f1 = f1 a0 a1 a2)
```

btree_case_cong

```
|- !M M' f f1.
      (M = M') /\ (!a. (M' = Leaf a) ==> (f a = f' a)) /\
      (!a0 a1 a2.
      (M' = Node a0 a1 a2) ==> (f1 a0 a1 a2 = f1' a0 a1 a2)) ==>
      (btree_CASE M f f1 = btree_CASE M' f' f1')
```

143 / 321 144 / 321

Datatype Package - Example II

Datatype Package - Example II - Derived Theorems

Enumeration type in SML

datatype my_enum = E1 | E2 | E3

Enumeration type in HOL

Datatype 'my_enum = E1 | E2 | E3'

my_enum_nchotomy

|- !P. P E1 /\ P E2 /\ P E3 ==> !a. P a

my_enum_distinct

|- E1 <> E2 /\ E1 <> E3 /\ E2 <> E3

my_enum2num_thm

|- $(my_enum2num E1 = 0) / (my_enum2num E2 = 1) / (my_enum2num E3 = 2)$

my_enum2num_num2my_enum

 $|-!r.r < 3 \iff (my_enum2num (num2my_enum r) = r)$

145 / 321

146 / 321

Datatype Package - Example III

Datatype Package - Example III - Derived Theorems

Record type in SML

type rgb = { r : int, g : int, b : int }

Record type in HOL

Datatype 'rgb = <| r : num; g : num; b : num |>'

rgb_component_equality

rgb_nchotomy

|- !rr. ?n n0 n1. rr = rgb n n0 n1

rgb_r_fupd

|- !f n n0 n1. rgb n n0 n1 with r updated_by f = rgb (f n) n0 n1

rgb_updates_eq_literal

|- !r n1 n0 n. r with <|r := n1; g := n0; b := n|> = <|r := n1; g := n0; b := n|>

Datatype Package - Example IV

Datatype Package - No support for Co-Algebraic Types

- nested record types are not allowed
- however, mutual recursive types can mitigate this restriction

Not Supported Nested Record Type Example in HOL

Filesystem Datatype - Mutual Recursion in HOL

- there is no support for co-algebraic types
- the Datatype package could be extended to do so
- other systems like Isabelle/HOL provide high-level methods for defining such types

150 / 321

Datatype Package - Discussion

149 / 321

Total Functional Language (TFL) package

- however, there are many limitations
 - ► some types cannot be defined in HOL, e.g. empty types
 - ► some types are not supported, e.g. co-algebraic types

• Datatype package allows to define many useful datatypes

- ► there are bugs (currently e.g. some trouble with certain mutually recursive definitions)
- biggest restrictions in practice (in my opinion and my line of work)
 - ► no support for co-algebraic datatypes
 - ► no nested record datatypes
- o depending on datatype, different sets of useful lemmata are derived
- most important ones are added to TypeBase
 - ▶ tools like Induct_on, Cases_on use them
 - ► there is support for pattern matching

- TFL package implements support for terminating functional definitions
- Define defines functions from high-level descriptions
- there is support for pattern matching
- look and feel is like function definitions in SML
- based on well-founded recursion principle
- Define is the most common way for definitions in HOL

151/321 152/321

Well-Founded Recursion

• a relation R : 'a -> 'a -> bool is called **well-founded**, iff there are no infinite descending chains

```
wellfounded R = \sim ?f. !n. R (f (SUC n)) (f n)
```

- Example: \$< : num -> num -> bool is well-founded
- if arguments of recursive calls are smaller according to well-founded relation, the recursion terminates
- this is the essence of termination proofs

- a well-founded relation R can be used to define recursive functions
- this recursion principle is called WFREC in HOL
- idea of WFREC
 - ▶ if arguments get smaller according to R, perform recursive call
 - otherwise abort and return ARB
- WFREC always defines a function
- if all recursive calls indeed decrease according to R, the original recursive equations can be derived from the WFREC representation
- TFL uses this internally
- however, this is well-hidden from the user

153 / 321

154 / 321

Define - Initial Examples

Define discussion

Simple Definitions

- Define feels like a function definition in HOL
- it can be used to define "terminating" recursive functions
- Define is implemented by a large, non-trivial piece of SML code
- it uses many heuristics
- outcome of Define sometimes hard to predict
- the input descriptions are only hints
 - ▶ the produced function and the definitional theorem might be different
 - ▶ in simple examples, quantifiers added
 - pattern compilation takes place
 - ► earlier "conjuncts" have precedence

155 / 321 156 / 321

Define - More Examples

Primitive Definitions


```
> val MY_HD_def = Define 'MY_HD (x :: xs) = x'
val MY_HD_def = |-!x xs. MY_HD (x::xs) = x : thm
> val IS_SORTED_def = Define '
     (IS\_SORTED (x1 :: x2 :: xs) = ((x1 < x2) / (IS\_SORTED (x2::xs)))) /
     (IS\_SORTED _ = T)
val IS_SORTED_def =
   |- (!xs x2 x1. IS_SORTED (x1::x2::xs) <=> x1 < x2 /\ IS_SORTED (x2::xs)) /\
      (IS SORTED [] \iff T) / (!v. IS SORTED [v] \iff T)
> val EVEN_def = Define '(EVEN 0 = T) /\ (ODD 0 = F) /\
                         (EVEN (SUC n) = ODD n) / \setminus (ODD (SUC n) = EVEN n)
val EVEN_def =
   |- (EVEN 0 <=> T) /\ (ODD 0 <=> F) /\ (!n. EVEN (SUC n) <=> ODD n) /\
      (!n. ODD (SUC n) <=> EVEN n) : thm
> val ZIP_def = Define (ZIP (x::xs) (y::ys) = (x,y)::(ZIP xs ys)) /
                       val ZIP def =
   |-(!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) /
      (!v1. ZIP [] v1 = []) / (!v4 v3. ZIP (v3::v4) [] = []) : thm
```

- Define introduces (if needed) the function using WFREC
- intended definition derived as a theorem
- the theorems are stored in current theory
- usually, one never needs to look at it

```
Examples
val IS_SORTED_primitive_def =
|- IS_SORTED =
    WFREC (@R. WF R /\ !x1 xs x2. R (x2::xs) (x1::x2::xs))
        (\IS_SORTED a.
        case a of
        [] => I T
        | [x1] => I T
        | x1::x2::xs => I (x1 < x2 /\ IS_SORTED (x2::xs)))

|- !R M. WF R ==> !x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x
|- !f R x. RESTRICT f R x = (\y. if R y x then f y else ARB)
```

157 / 321

158 / 321

Induction Theorems

Define failing

- Define automatically defines induction theorems
- these theorems are stored in current theory with suffix ind
- use DB.fetch "-" "something_ind" to retrieve them
- these induction theorems are useful to reason about corresponding recursive functions

- Define might fail for various reasons to define a function
 - such a function cannot be defined in HOL
 - ▶ such a function can be defined, but not via the methods used by TFL
 - ► TFL can define such a function, but its heuristics are too weak and user guidance is required
 - ► there is a bug :-)
- termination is an important concept for Define
- it is easy to misunderstand termination in the context of HOL
- we need to understand what is meant by termination

Termination in HOL

Termination in HOL II

- in SML it is natural to talk about termination of functions
- in the HOL logic there is no concept of execution
- thus, there is no concept of termination in HOL

3 characterisations of a function f : num -> num

- | !n. f n = 0
- \vdash \mid (f 0 = 0) \mid \!n. (f (SUC n) = f n)
- |-(f 0 = 0) / !n. (f n = f (SUC n))
- Is f terminating? All 3 theorems are equivalent.

- it is useful to think in terms of termination
- the TFL package implements heuristics to define functions that would terminate in SML
- the TFL package uses well-founded recursion
- the required well-founded relation corresponds to a termination proof
- therefore, it is very natural to think of Define searching a termination proof
- important: this is the idea behind this function definition package, not a property of HOL

HOL is not limited to "terminating" functions

161 / 321

KTH

Manual Termination Proofs I

162 / 321

Termination in HOL III

- one can define "non-terminating" functions in HOL
- however, one cannot do so (easily) with Define

Definition of WHILE in HOL

Execution Order

There is no "execution order". One can easily define a complicated constant function: (myk : num -> num) (n:num) = (let x = myk (n+1) in 0)

Unsound Definitions

A function ${\tt f}: {\tt num} \to {\tt num}$ with the following property cannot be defined in HOL unless HOL has an inconsistancy:

$$!n. f n = ((f n) + 1)$$

Such a function would allow to prove 0 = 1.

- TFL uses various heuristics to find a well-founded relation
- however, these heuristics may not be strong enough
- in such cases the user can provide a well-founded relation manually
- the most common well-founded relations are measures
- measures map values to natural numbers and use the less relation
 |-!(f:'a -> num) x y. measure f x y <=> (f x < f y)
- all measures are well-founded: |- !f. WF (measure f)
- moreover, existing well-founded relations can be combined
 - ► lexicographic order LEX
 - ► list lexicographic order LLEX

▶ ...

Manual Termination Proofs II

Manual Termination Proof Example 1

- if Define fails to find a termination proof, Hol_defn can be used
- Hol_defn defers termination proofs
- it derives termination conditions and sets up the function definitions
- all results are packaged as a value of type defn
- after calling Hol_defn the defined function(s) can be used
- however, the intended definition theorem has not been derived yet
- to derive it, one needs to
 - provide a well-founded relation
 - ► show that termination conditions respect that relation
- Defn.tprove and Defn.tgoal are intended for this
- proofs usually start by providing relation via tactic WF_REL_TAC

> val qsort_defn = Hol_defn "qsort" ' (qsort ord [] = []) /\ (qsort ord (x::rst) = (qsort ord (FILTER (\$~ o ord x) rst)) ++ (qsort ord (FILTER (ord x) rst)))' val qsort_defn = HOL function definition (recursive) Equation(s): [...] |- qsort ord [] = [] [...] \mid - qsort ord (x::rst) = qsort ord (FILTER (\$~ o ord x) rst) ++ [x] ++ qsort ord (FILTER (ord x) rst) Induction: ... Termination conditions: 0. !rst x ord. R (ord,FILTER (ord x) rst) (ord,x::rst) 1. !rst x ord. R (ord, FILTER (\$~ o ord x) rst) (ord, x::rst) 2. WF R

165 / 321

166 / 321

Manual Termination Proof Example 2

Manual Termination Proof Example 3

Importance of Good Definitions

Part XI

Good Definitions

- using good definitions is very important
 - ▶ good definitions are vital for clarity
 - ▶ **proofs** depend a lot on the form of definitions
- unluckily, it is hard to state what a good definition is
- even harder to come up with good definitions
- let's look at it a bit closer anyhow

Importance of Good Definitions — Clarity I

Importance of Good Definitions — Clarity II

170 / 321

- HOL guarantees that theorems do indeed hold
- However, does the theorem mean what you think it does?
- you can separate your development in
 - ► main theorems you care for
 - ► auxiliary stuff used to derive your main theorems
- it is essential to understand your main theorems

Guarded by HOL

- proofs checked
- internal, technical definitions
- technical lemmata
- proof tools

Manual review needed for

- $\, \bullet \,$ meaning of main theorems
- meaning of definitions used by main theorems
- meaning of types used by main theorems

171 / 321 172 / 321

Importance of Good Definitions — Clarity III

Importance of Good Definitions — Proofs

- it is essential to understand your main theorems
 - ▶ you need to understand all the definitions directly used
 - ▶ you need to understand the indirectly used ones as well
 - ▶ you need to convince others that you express the intended statement
 - ▶ therefore, it is vital to use very simple, clear definitions
- defining concepts is often the main development task
- checking resulting model against real artefact is vital
 - ► testing via e.g. EVAL
 - ► formal sanity
 - conformance testing
- wrong models are main source of error when using HOL
- proofs, auxiliary lemmata and auxiliary definitions
 - ► can be as technical and complicated as you like
 - correctness is guaranteed by HOL
 - reviewers don't need to care

- good definitions can shorten proofs significantly
- they improve maintainability
- they can improve automation drastically
- unluckily for proofs definitions often need to be technical
- this contradicts clarity aims

173 / 321

Good Definitions in Functional Programming

174 / 321

- unluckily, it is hard to state what a good definition is
- it is even harder to come up with them

How to come up with good definitions

- ▶ there are often many competing interests
- ▶ a lot of experience and detailed tool knowledge is needed
- ► much depends on personal style and taste
- general advice: use more than one definition
 - ▶ in HOL you can derive equivalent definitions as theorems
 - ► define a concept as clearly and easily as possible
 - derive equivalent definitions for various purposes
 - ★ one very close to your favourite textbook
 - ★ one nice for certain types of proofs
 - ★ another one good for evaluation
- lessons from functional programming apply

Objectives

- clarity (readability, maintainability)
- performance (runtime speed, memory usage, ...)

General Advice

- use the powerful type-system
- use many small function definitions
- encode invariants in types and function signatures

175 / 321 176 / 321

Good Definitions – no number encodings

- KTH
- many programmers familiar with C encode everything as a number
- enumeration types are very cheap in SML and HOL
- use them instead

Example Enumeration Types

In C the result of an order comparison is an integer with 3 equivalence classes: 0, negative and positive integers. In SML and HOL, it is better to use a variant type.

Good Definitions — Isomorphic Types

- the type-checker is your friend
 - ▶ it helps you find errors
 - ▶ code becomes more robust
 - ▶ using good types is a great way of writing self-documenting code
- therefore, use many types
- even use types isomorphic to existing ones

Virtual and Physical Memory Addresses

Virtual and physical addresses might in a development both be numbers. It is still nice to use separate types to avoid mixing them up.

```
val _ = Datatype 'vaddr = VAddr num';
val _ = Datatype 'paddr = PAddr num';

val virt_to_phys_addr_def = Define '
  virt_to_phys_addr (VAddr a) = PAddr( translation of a )';
```

178 / 321

177 / 321

Good Definitions — Record Types I

Good Definitions — Record Types II

- often people use tuples where records would be more appropriate
- using large tuples quickly becomes awkward
 - ▶ it is easy to mix up order of tuple entries
 - $\ensuremath{\bigstar}$ often types coincide, so type-checker does not help
 - no good error messages for tuples
 - ★ hard to decipher type mismatch messages for long product types
 - \star hard to figure out which entry is missing at which position
 - ★ non-local error messages
 - ★ variable in last entry can hide missing entries
- records sometimes require slightly more proof effort
- however, records have many benefits

- using records
 - ► introduces field names
 - provides automatically defined accessor and update functions
 - ► leads to better type-checking error messages
- records improve readability
 - ▶ accessors and update functions lead to shorter code
 - ▶ field names act as documentation
- records improve maintainability
 - ► improved error messages
 - much easier to add extra fields

Good Definitions — Encoding Invariants

Good Definitions — Encoding Invariants II

- try to encode as many invariants as possible in the types
- this allows the type-checker to ensure them for you
- you don't have to check them manually any more
- your code becomes more robust and clearer

Network Connections (Example by Yaron Minsky from Jane Street)

Consider the following datatype for network connections. It has many implicit invariants.

Network Connections (Example by Yaron Minsky from Jane Street) II

The following definition of connection_info makes the invariants explicit:

182 / 321

Good Definitions in HOL

181 / 321

Objectives

- clarity (readability)
- good for proofs
- performance (good for automation, easily evaluatable, ...)

General Advice

- same advice as for functional programming applies
- use even smaller definitions
 - introduce auxiliary definitions for important function parts
 - use extra definitions for important constants
 - **>** ...
- tiny definitions
 - allow keeping proof state small by unfolding only needed ones
 - ► allow many small lemmata
 - improve maintainability

Good Definitions in HOL II

Technical Issues

- write definitions such that they work well with HOL's tools
- this requires you to know HOL well
- a lot of experience is required
- general advice
 - avoid explicit case-expressions
 - prefer curried functions

Example

Formal Sanity

Multiple Equivalent Definitions

- satisfy competing requirements by having multiple equivalent definitions
- derive them as theorems
- initial definition should be as clear as possible
 - clarity allows simpler reviews
 - simplicity reduces the likelihood of errors

Example - ALL_DISTINCT

```
|- (ALL_DISTINCT [] <=> T) /\
   (!h t. ALL_DISTINCT (h::t) <=> ~MEM h t /\ ALL_DISTINCT t)
|- !1. ALL DISTINCT 1 <=>
       (!x. MEM x 1 ==> (FILTER ($= x) 1 = [x]))
|- !ls. ALL_DISTINCT ls <=> (CARD (set ls) = LENGTH ls):
```

Formal Sanity

- to ensure correctness test your definitions via e.g. EVAL
- in HOL testing means symbolic evaluation, i. e. proving lemmata
- formally proving sanity check lemmata is very beneficial
 - they should express core properties of your definition
 - thereby they check your intuition against your actual definitions
 - these lemmata are often useful for following proofs
 - using them improves robustness and maintainability of your development
- I highly recommend using formal sanity checks

Formal Sanity Example I

185 / 321

Formal Sanity Example II 1

> val ZIP_def = Define '

val ZIP def =

186 / 321

```
> val ALL_DISTINCT = Define '
    (ALL DISTINCT [] = T) /\
    (ALL_DISTINCT (h::t) = ~MEM h t /\ ALL_DISTINCT t)';
```

Example Sanity Check Lemmata

```
|- ALL_DISTINCT []
|- !x xs. ALL_DISTINCT (x::xs) <=> ~MEM x xs /\ ALL_DISTINCT xs
|- !x. ALL_DISTINCT [x]
|- !x xs. ~(ALL_DISTINCT (x::x::xs))
|- !1. ALL_DISTINCT (REVERSE 1) <=> ALL_DISTINCT 1
|- !x 1. ALL_DISTINCT (SNOC x 1) <=> ~MEM x 1 /\ ALL_DISTINCT 1
|- !11 12. ALL DISTINCT (11 ++ 12) <=>
          ALL_DISTINCT 11 /\ ALL_DISTINCT 12 /\ !e. MEM e 11 ==> ~MEM e 12
```

|- (!ys. ZIP [] ys = []) /\ (!v3 v2. ZIP (v2::v3) [] = []) /\ (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys) above definition of ZIP looks straightforward

- small changes cause heuristics to produce different theorems
- use formal sanity lemmata to compensate

(ZIP [] ys = []) /\ (ZIP xs [] = []) /\

(ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))'

```
> val ZIP_def = Define '
    (ZIP xs [] = []) / (ZIP [] ys = []) /
    (ZIP (x::xs) (y::ys) = (x, y)::(ZIP xs ys))'
val ZIP_def =
   |-(!xs. ZIP xs [] = []) / (!v3 v2. ZIP [] (v2::v3) = []) / |
      (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys0
```

187 / 321 188 / 321

Formal Sanity Example II 2


```
val ZIP_def =
 |-(!ys. ZIP [] ys = []) / (!v3 v2. ZIP (v2::v3) [] = []) / |
   (!ys y xs x. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
```

```
Example Formal Sanity Lemmata
|- (!xs. ZIP xs [] = []) /\ (!ys. ZIP [] ys = []) /\
   (!y ys x xs. ZIP (x::xs) (y::ys) = (x,y)::ZIP xs ys)
|- !xs ys. LENGTH (ZIP xs ys) = MIN (LENGTH xs) (LENGTH ys)
|-!x y xs ys. MEM (x, y) (ZIP xs ys) ==> (MEM x xs /\ MEM y ys)
|- !xs1 xs2 ys1 ys2. LENGTH xs1 = LENGTH ys1 ==>
                    (ZIP (xs1++xs2) (ys1++ys2) = (ZIP xs1 ys1 ++ ZIP xs2 ys2))
```

- in your proofs use sanity lemmata, not original definition
- this makes your development robust against
 - ▶ small changes to the definition required later
 - ► changes to Define and its heuristics
 - ▶ bugs in function definition package

Deep and Shallow Embeddings

189 / 321

Example: Embedding of Propositional Logic I

- often one models some kind of formal language
- important design decision: use **deep** or **shallow** embedding
- in a nutshell:
 - ► shallow embeddings just model semantics
 - deep embeddings model syntax as well
- a shallow embedding directly uses the HOL logic
- a deep embedding
 - ► defines a datatype for the syntax of the language
 - provides a function to map this syntax to a semantic

Part XII

Deep and Shallow Embeddings

- propositional logic is a subset of HOL
- a shallow embedding is therefore trivial

```
val sh true def
                = Define 'sh_true = T';
                = Define 'sh_var (v:bool) = v';
val sh_var_def
                = Define 'sh_not b = ~b';
val sh_not_def
val sh_and_def
                = Define 'sh_and b1 b2 = (b1 / b2)';
                val sh_or_def
val sh_implies_def = Define 'sh_implies b1 b2 = (b1 ==> b2)';
```

191 / 321 192 / 321

Example: Embedding of Propositional Logic II

Shallow vs. Deep Embeddings

- we can also define a datatype for propositional logic
- this leads to a deep embedding

Shallow

- quick and easy to build
- extensions are simple

Deep

- can reason about syntax
- allows verified implementations
- sometimes tricky to define
 - e.g. bound variables

Important Questions for Deciding

- Do I need to reason about syntax?
- Do I have hard to define syntax like bound variables?
- How much time do I have?

194 / 321

Example: Embedding of Propositional Logic III

193 / 321

Verified vs. Verifying Program

- with deep embedding one can easily formalise syntactic properties like
 - ► Which variables does a propositional formula contain?
 - ► Is a formula in negation-normal-form (NNF)?
- with shallow embeddings
 - ▶ syntactic concepts can't be defined in HOL
 - ▶ however, they can be defined in SML
 - ▶ no proofs about them possible

```
val _ = Define '
  (IS_NNF (d_not d_true) = T) /\ (IS_NNF (d_not (d_var v)) = T) /\
  (IS_NNF (d_not _) = F) /\
  (IS_NNF d_true = T) /\ (IS_NNF (d_var v) = T) /\
  (IS_NNF (d_and p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_or p1 p2) = (IS_NNF p1 /\ IS_NNF p2)) /\
  (IS_NNF (d_implies p1 p2) = (IS_NNF p1 /\ IS_NNF p2))'
```

Verified Programs

- are formalised in HOL
- their properties have been proven once and for all
- all runs have proven properties
- are usually less sophisticated, since they need verification
- is what one wants ideally
- often require deep embedding

Verifying Programs

- are written in meta-language
- they produce a separate proof for each run
- only certain that current run has properties
- allow more flexibility, e. g. fancy heuristics
- good pragmatic solution
- shallow embedding fine

Summary Deep vs. Shallow Embeddings

- deep embeddings require more work
- they however allow reasoning about syntax
 - ▶ induction and case-splits possible
 - ▶ a semantic subset can be carved out syntactically
- syntax sometimes hard to define for deep embeddings
- combinations of deep and shallow embeddings common
 - certain parts are deeply embedded
 - ▶ others are embedded shallowly

Part XIII

Rewriting

197 / 321

Rewriting in HOL

Semantic Foundations

- simplification via rewriting was already a strength of Edinburgh LCF
- it was further improved for Cambridge LCF
- HOL inherited this powerful rewriter
- equational reasoning is still the main workhorse
- there are many different equational reasoning tools in HOL
 - ► Rewrite library inherited from Cambridge LCF you have seen it in the form of REWRITE_TAC
 - computeLib fast evaluation build for speed, optimised for ground terms seen in the form of EVAL
 - simpLib Simplification sophisticated rewrite engine, HOL's main workhorse not discussed in this lecture, yet
 - ▶ ...

• we have seen primitive inference rules for equality before

$$\Gamma \vdash s = t$$

$$\Delta \vdash u = v$$

$$types fit$$

$$\Gamma \cup \Delta \vdash s(u) = t(v)$$

$$\Gamma \vdash s = t$$

$$\Delta \vdash t = u$$

$$\Gamma \vdash s = t$$

$$\Delta \vdash t = u$$

$$\Gamma \vdash s = t$$

$$\Delta \vdash t = u$$

$$\Gamma \vdash s = t$$

$$\Gamma \vdash \lambda x. \ s = \lambda x. \ t$$

$$\Gamma \vdash t = t$$
REFL

- these rules allow us to replace any subterm with an equal one
- this is the core of rewriting

199 / 321 200 / 321

Conversions

Conversionals

- in HOL, equality reasoning is implemented by conversions
- a conversion is a SML function of type term -> thm
- given a term t, a conversion
 - ▶ produces a theorem of the form |- t = t'
 - ▶ raises an UNCHANGED exception or
 - ► fails, i. e. raises an HOL_ERR exception

```
Example
```

```
> BETA_CONV ''(\x. SUC x) y''
val it = |- (\x. SUC x) y = SUC y

> BETA_CONV ''SUC y''
Exception-HOL_ERR ... raised

> REPEATC BETA_CONV ''SUC y''
Exception- UNCHANGED raised
```

- similar to tactics and tacticals there are conversionals for conversions
- conversionals allow building conversions from simpler ones
- there are many of them
 - ► THENC
 - ► ORELSEC
 - ► REPEATC
 - ► TRY_CONV
 - ► RAND_CONV
 - ► RATOR_CONV
 - ► ABS_CONV
 - ▶ ...

201 / 321

202 / 321

Depth Conversionals

REWR CONV

- for rewriting depth-conversionals are important
- a depth-conversional applies a conversion to all subterms
- there are many different ones
 - ONCE_DEPTH_CONV c top down, applies c once at highest possible positions in distinct subterms
 - ► TOP_SWEEP_CONV c top down, like ONCE_DEPTH_CONV, but continues processing rewritten terms
 - ► TOP_DEPTH_CONV c top down, like TOP_SWEEP_CONV, but try top-level again after change
 - ► DEPTH_CONV c bottom up, recurse over subterms, then apply c repeatedly at top-level
 - ▶ REDEPTH_CONV c bottom up, like DEPTH_CONV, but revisits subterms

- it remains to rewrite terms at top-level
- this is achieved by REWR_CONV
- \bullet given a term t and a theorem |- t1 = t2, REWR_CONV t thm
 - searches an instantiation of term and type variables such that t1 becomes α-equivalent to t
 - ► fails, if no instantiation is found
 - ▶ otherwise, instantiate the theorem and get |- t1' = t2'
 - ► return theorem |- t = t2'

Example

```
term LENGTH [1;2;3], theorem |- LENGTH ((x:'a)::xs) = SUC (LENGTH xs) found type instantiation: ['':'a'' |-> '':num''] found term instantiation: [''x:num'' |-> ''1''; ''xs'' |-> ''[2;3]''] returned theorem: |- LENGTH [1;2;3] = SUC (LENGTH [2;3])
```

- the tricky part is finding the instantiation
- this problem is called the (term) matching problem

203 / 321 204 / 321

Term Matching

Examples Term Matching

- given term t_org and a term t_goal try to find
 - ► type substitution ty_s
 - ▶ term substitution tm_s
- such that subst tm_s (inst ty_s t_org) $\stackrel{\alpha}{\equiv}$ t_goal
- this can be easily implemented by a recursive search

$t_{ extsf{goal}}$	action
t1_goal t2_goal	recurse
otherwise	fail
\y. t_goal y	match types of x , y and recurse
otherwise	fail
same const	match types
otherwise	fail
anything	try to bind var,
	take care of existing bindings
	t1_goal t2_goal otherwise \y. t_goal y otherwise same const otherwise

t_org	t_goal	substs
LENGTH ((x:'a)::xs)	LENGTH [1;2;3]	'a $ ightarrow$ num, x $ ightarrow$ 1, xs $ ightarrow$ [2;3]
[]:'a list	[]:'b list	'a $ ightarrow$ 'b
0	0	empty substitution
b /\ T	(P (x:'a) ==> Q) / T	$b \rightarrow P x ==> Q$
b /\ b	P x /\ P x	$b \rightarrow P x$
b /\ b	P x /\ P y	fail
!x:num. P x /\ Q x	!y:num. P'y /\ Q'y	P $ ightarrow$ P', Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. (2 = y) /\ Q' y	P $ ightarrow$ (\$= 2), Q $ ightarrow$ Q'
!x:num. P x /\ Q x	!y. $(y = 2) / Q' y$	fail

- it is often very annoying that the last match in the list above fails
- it prevents us for example rewriting !y. (2 = y) / Q y to (!y. (2=y)) / (!y. Q y)
- Can we do better? Yes, with higher order (term) matching.

205 / 321

206 / 321

Higher Order Term Matching

- term matching searches for substitutions such that t_{org} becomes α -equivalent to t_{goal}
- higher order term matching searches for substitutions such that t_org becomes t_subst such that the $\beta\eta$ -normalform of t_subst is α -equivalent equivalent to $\beta\eta$ -normalform of t_goal, i.e.

higher order term matching is aware of the semantics of λ

```
β-reduction (λx. f) y = f[y/x] η-conversion (λx. f x) = f where x is not free in f
```

- the HOL implementation expects t_org to be a higher-order pattern
 - ► t_org is β-reduced
 - ► if X is a variable that should be instantiated, then all arguments should be distinct variables
- for other forms of t_org, HOL's implementation might fail
- higher order matching is used by HO_REWR_CONV

Examples Higher Order Term Matching

t_org	t_goal	substs
!x:num. P x /\ Q x	!y. (y = 2) /\ Q' y	$P \rightarrow (y. y = 2), Q \rightarrow Q'$
!x. P x /\ Q x	!x. P x /\ Q x /\ Z x	Q \rightarrow \x. Q x /\ Z x
!x. P x /\ Q	!x. P x /\ Q x	fails
!x. P (x, x)	!x. Q x	fails
!x. P (x, x)	!x. FST $(x,x) = SND(x,x)$	P \rightarrow \xx. FST xx = SND xx

Don't worry, it might look complicated, but in practice it is easy to get a feeling for higher order matching.

207 / 321 208 / 321

Rewrite Library

Rewrite Library II

- the rewrite library combines REWR_CONV with depth conversions
- there are many different conversions, rules and tactics
- at their core, they all work very similarly
 - ▶ given a list of theorems, a set of rewrite theorems is derived
 - **★** split conjunctions
 - ★ remove outermost universal quantification
 - ★ introduce equations by adding = T (or = F) if needed
 - ► REWR_CONV is applied to all the resulting rewrite theorems
 - ► a depth-conversion is used with resulting conversion
- for performance reasons an efficient indexing structure is used
- by default implicit rewrites are added

- REWRITE_CONV
- REWRITE_RULE
- REWRITE_TAC
- ASM_REWRITE_TAC
- ONCE_REWRITE_TAC
- PURE_REWRITE_TAC
- PURE_ONCE_REWRITE_TAC
- ...

Ho_Rewrite Library

- similar to Rewrite lib, but uses higher order matching
- internally uses HO_REWR_CONV
- similar conversions, rules and tactics as Rewrite lib
 - ► Ho_Rewrite.REWRITE_CONV
 - ► Ho_Rewrite.REWRITE_RULE
 - ► Ho_Rewrite.REWRITE_TAC
 - ► Ho_Rewrite.ASM_REWRITE_TAC
 - ► Ho_Rewrite.ONCE_REWRITE_TAC
 - ► Ho_Rewrite.PURE_REWRITE_TAC
 - ▶ Ho_Rewrite.PURE_ONCE_REWRITE_TAC
 - ▶ ...

209 / 321

Examples Rewrite and Ho_Rewrite Library

210 / 321

```
> REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
```

> ONCE_REWRITE_CONV [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (LENGTH [2])

> REWRITE_CONV [] ''A /\ A /\ ~A'' Exception- UNCHANGED raised

> PURE_REWRITE_CONV [NOT_AND] ''A /\ A /\ ~A'' val it = |-A/A| /\ |-A| <=> A /\ F

> REWRITE_CONV [NOT_AND] ''A $\$ A $\$ ~A'' val it = $\$ - A $\$ A $\$ ~A $\$ ~A <=> F

> REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x'' Exception- UNCHANGED raised

> Ho_Rewrite.REWRITE_CONV [FORALL_AND_THM] ''!x. P x /\ Q x /\ R x''
val it = |- !x. P x /\ Q x /\ R x <=> (!x. P x) /\ (!x. Q x) /\ (!x. R x)

211 / 321 212 / 321

Summary Rewrite and Ho_Rewrite Library

Term Rewriting Systems

- the Rewrite and Ho_Rewrite library provide powerful infrastructure for term rewriting
- thanks to clever implementations they are reasonably efficient
- basics are easily explained
- however, efficient usage needs some experience

- to use rewriting efficiently, one needs to understand about term rewriting systems
- this is a large topic
- unluckily, it cannot be covered here in detail for time constraints
- however, in practise you quickly get a feeling
- important points in practise
 - ensure termination of your rewrites
 - ► make sure they work nicely together

213 / 321

214 / 321

Term Rewriting Systems — Termination

Termination — Subterm examples

Theory

- choose well-founded order
 ✓
- \circ for each rewrite theorem |- t1 = t2 ensure t2 \prec t1

Practice

- informally define for yourself what **simpler** means
- ensure each rewrite makes terms simpler
- good heuristics
 - subterms are simpler than whole term
 - use an order on functions

- a proper subterm is always simpler
 - ▶ !1. APPEND [] 1 = 1
 - \triangleright !n. n + 0 = n
 - ▶ !1. REVERSE (REVERSE 1) = 1
 - ▶ !t1 t2. if T then t1 else t2 <=> t1
 - \triangleright !n. n * 0 = 0
- the right hand side should not use extra vars, throwing parts away is usually simpler
 - \blacktriangleright !x xs. (SNOC x xs = []) = F
 - ▶ !x xs. LENGTH (x::xs) = SUC (LENGTH xs)
 - \blacktriangleright !n x xs. DROP (SUC n) (x::xs) = DROP n xs

215 / 321 216 / 321

Termination — use simpler terms

Termination — Normalforms

- it is useful to consider some functions simple and other complicated
- replace complicated ones with simple ones
- never do it in the opposite direction
- clear examples
 - ▶ |- !m n. MEM m (COUNT_LIST n) <=> (m < n)
 - \blacktriangleright |- !ls n. (DROP n ls = []) <=> (n >= LENGTH ls)
- unclear example
 - ► |- !L. REVERSE L = REV L []

- some equations can be used in both directions
- one should decide on one direction
- this implicitly defines a **normalform** one wants terms to be in
- examples
 - ▶ |- !f 1. MAP f (REVERSE 1) = REVERSE (MAP f 1)
 - ▶ |- !11 12 13. 11 ++ (12 ++ 13) = 11 ++ 12 ++ 13

Termination — Problematic rewrite rules

217 / 321

Rewrites working together

218 / 321

- some equations immediately lead to non-termination, e.g.
 - | | m n. m + n = n + m
 - \triangleright |-!m. m = m + 0
- slightly more subtle are rules like
 - \blacktriangleright |- !n. fact n = if (n = 0) then 1 else n * fact(n-1)
- often combination of multiple rules leads to non-termination this is especially problematic when adding to predefined sets of rewrites
 - \blacktriangleright |-!m n p. m + (n + p) = (m + n) + p and |-|m| p. (m+n) + p = m + (n+p)

- rewrite rules should not compete with each other
- if a term ta can be rewritten to ta1 and ta2 applying different rewrite rules, then ta1 and ta2 it should be possible to further rewrite them both to a common tb
- this can often be achieved by adding extra rewrite rules

Example

Assume we have the rewrite rules | - DOUBLE n = n + n and |- EVEN (DOUBLE n) = T.

With these the term EVEN (DOUBLE 2) can be rewritten to

- T or
- EVEN (2 + 2).

To avoid a hard to predict result, EVEN (2+2) should be rewritten to T. Adding an extra rewrite rule |-| EVEN (n + n) = T achieves this.

219 / 321 220 / 321

Rewrites working together II

computeLib

- to design rewrite systems that work well, normalforms are vital
- a term is in normalform, if it cannot be rewritten any further
- one should have a clear idea what the normalform of common terms looks like
- all rules should work together to establish this normalform
- the right-hand-side of each rule should be in normalform
- the left-hand-side should not be simplifiable by any other rule
- the order in which rules are applied should not influence the final result

- computeLib is the library behind EVAL
- it is a rewriting library designed for evaluating ground terms (i. e. terms without variables) efficiently
- it uses a call-by-value strategy similar to SML's
- it uses first order term matching
- ullet it performs eta reduction in addition to rewrites

221 / 321

222 / 321

compset

EVAL

- computeLib uses compsets to store its rewrites
- a compset stores
 - rewrite rules
 - extra conversions
- the extra conversions are guarded by a term pattern for efficiency
- users can define their own compsets
- however, computeLib maintains one special compset called the_compset
- the_compset is used by EVAL

- EVAL uses the_compset
- tools like the Datatype or TFL libraries automatically extend the_compset
- this way, EVAL knows about (nearly) all types and functions
- one can extended the_compset manually as well
- rewrites exported by Define are good for ground terms but may lead to non-termination for non-ground terms
- zDefine prevents TFL from automatically extending the_compset

223 / 321 224 / 321

simpLib

Basic Usage I

- simpLib is a sophisticated rewrite engine
- it is HOL's main workhorse
- it provides
 - ► higher order rewriting
 - ► usage of context information
 - ► conditional rewriting
 - ► arbitrary conversions
 - support for decision procedures
 - simple heuristics to avoid non-termination
 - fancier preprocessing of rewrite theorems
 - **▶** ...
- it is very powerful, but compared to Rewrite lib sometimes slow

- simpLib uses simpsets
- simpsets are special datatypes storing
 - ► rewrite rules
 - conversions
 - ► decision procedures
 - ► congruence rules
 - ▶ ...
- in addition there are simpset-fragments
- simpset-fragments contain similar information as simpsets
- fragments can be added to and removed from simpsets
- common usage: basic simpset combined with one or more simpset-fragments, e.g.
 - ▶ list_ss ++ pairSimps.gen_beta_ss
 - ▶ std_ss ++ QI_ss
 - ▶ ...

225 / 321

226 / 321

Basic Usage II

Basic Simplifier Examples

- a call to the simplifier takes as arguments
 - ► a simpset
 - ► a list of rewrite theorems
- common high-level entry points are
 - ► SIMP_CONV ss thmL conversion
 - ► SIMP_RULE ss thmL rule
 - ► SIMP_TAC ss thmL tactic without considering assumptions
 - ► ASM_SIMP_TAC ss thmL tactic using assumptions to simplify goal
 - ► FULL_SIMP_TAC ss thmL tactic simplifying assumptions with each other and goal with assumptions
 - ► REV_FULL_SIMP_TAC ss thmL similar to FULL_SIMP_TAC but with reversed order of assumptions
- there are many derived tools not discussed here

> SIMP_CONV bool_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = SUC (SUC 0)
> SIMP_CONV std_ss [LENGTH] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2
> SIMP_CONV list_ss [] ''LENGTH [1;2]''
val it = |- LENGTH [1; 2] = 2

227 / 321 228 / 321

FULL_SIMP_TAC Example

REV_FULL_SIMP_TAC Example

Current GoalStack

P (SUC (SUC x0)) (SUC (SUC y0))

- 0. SUC y1 = y2
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Action

FULL_SIMP_TAC std_ss []

Resulting GoalStack

P (SUC (SUC x0)) y2

- 0. SUC (SUC y0) = y2
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Current GoalStack

P (SUC (SUC x0)) y2

- 0. SUC (SUC y0) = y2
- 1. x1 = SUC x0
- 1. A1 D00 A
- 2. y1 = SUC y0
- 3. SUC x1 = x2

Action

REV_FULL_SIMP_TAC std_ss []

Resulting GoalStack

P x2 y2

- 0. SUC (SUC y0) = y2
- 1. x1 = SUC x0
- 2. y1 = SUC y0
- 3. SUC (SUC x0) = x2

229 / 321

230 / 321

Common simpsets

Common simpset-fragments

- pure_ss empty simpset
- bool_ss basic simpset
- std_ss standard simpset
- arith_ss arithmetic simpset
- list_ss list simpset
- real_ss real simpset

- many theories and libraries provide their own simpset-fragments
- PRED_SET_ss simplify sets
- STRING_ss simplify strings
- QI_ss extra quantifier instantiations
- gen_beta_ss β reduction for pairs
- \bullet ETA_ss η conversion
- EQUIV_EXTRACT_ss extract common part of equivalence
- \bullet CONJ_ss use conjunctions for context
- LIFT_COND_ss lifting if-then-else
- ...

231 / 321 232 / 321

Examples I

- in contrast to Rewrite lib the simplifier can run arbitrary conversions
- ullet most common and useful conversion is probably eta-reduction
- std_ss has support for basic arithmetic and numerals
- it also has simple, syntactic conversions for instantiating quantifiers

```
▶ !x. ... /\ (x = c) /\ ... ==> ...
▶ !x. ... \/ ~(x = c) \/ ...
▶ ?x. ... /\ (x = c) /\ ...
```

- besides very useful conversions, there are decision procedures as well
- the most frequently used one is probably the arithmetic decision procedure you already know from DECIDE

```
> SIMP_CONV std_ss [] ''(\x. x + 2) 5''
val it = |- (\x. x + 2) 5 = 7

> SIMP_CONV std_ss [] ''!x. Q x /\ (x = 7) ==> P x''
val it = |- (!x. Q x /\ (x = 7) ==> P x) <=> P x)''

> SIMP_CONV std_ss [] ''?x. Q x /\ (x = 7) /\ P x''
val it = |- (?x. Q x /\ (x = 7) /\ P x) <=> (Q 7 /\ P 7)''

> SIMP_CONV std_ss [] ''x > 7 ==> x > 5''
Exception- UNCHANGED raised

> SIMP_CONV arith_ss [] ''x > 7 ==> x > 5''
val it = |- (x > 7 ==> x > 5) <=> T
```

233 / 321

234 / 321

Higher Order Rewriting

Context

- the simplifier supports higher order rewriting
- this is often very handy
- for example it allows moving quantifiers around easily

- a great feature of the simplifier is that it can use context information
- by default simple context information is used like
 - ► the precondition of an implication
 - ▶ the condition of if-then-else
- one can configure which context to use via congruence rules
 - ► e.g. by using CONJ_ss one can easily use context of conjunctions
 - ▶ warning: using CONJ_ss can be slow
- using context often simplifies proofs drastically
 - ► using Rewrite lib, often a goal needs to be split and a precondition moved to the assumptions
 - ▶ then ASM_REWRITE_TAC can be used
 - ▶ with SIMP_TAC there is no need to split the goal

235 / 321 236 / 321

Context Examples

Conditional Rewriting I

- perhaps the most powerful feature of the simplifier is that it supports conditional rewriting
- this means it allows conditional rewrite theorems of the form
 |- cond ==> (t1 = t2)
- if the simplifier finds a term t1' it can rewrite via t1 = t2 to t2', it tries to discharge the assumption cond'
- for this, it calls itself recursively on cond'
 - ▶ all the decision procedures and all context information is used
 - ► conditional rewriting can be used
 - ▶ to prevent divergence, there is a limit on recursion depth
- if cond' = T can be shown, t1' is rewritten to t2'
- otherwise t1' is not modified

237 / 321

238 / 321

Conditional Rewriting Example

Conditional Rewriting Example II


```
o consider the conditional rewrite theorem
!l n. LENGTH 1 <= n ==> (DROP n 1 = [])
```

- let's assume we want to prove
 (DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]
- we can without conditional rewriting
 - ▶ show |- LENGTH [1;2;3;4] <= 7
 - ▶ use this to discharge the precondition of the rewrite theorem
 - ▶ use the resulting theorem to rewrite the goal
- with conditional rewriting, this is all automated

conditional rewriting often shortens proofs considerably

Proof with Rewrite

```
prove (''(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'',
'DROP 7 [1;2;3;4] = []' by (
    MATCH_MP_TAC DROP_LENGTH_TOO_LONG >>
    REWRITE_TAC[LENGTH] >>
    DECIDE_TAC
) >>
ASM_REWRITE_TAC[APPEND])
```

Proof with Simplifier

```
prove (''(DROP 7 [1;2;3;4]) ++ [5;6;7] = [5;6;7]'',
SIMP_TAC list_ss [])
```

Notice that DORP_LENGTH_TOO_LONG is part of list_ss.

239 / 321 240 / 321

Conditional Rewriting II

Conditional Rewriting Pitfalls I

- conditional rewriting is a very powerful technique
- decision procedures and sophisticated rewrites can be used to discharge preconditions without cluttering proof state
- it provides a powerful search for theorems that apply
- however, if used naively, it can be slow
- moreover, to work well, rewrite theorems need to of a special form

- if the pattern is too general, the simplifier becomes very slow
- consider the following, trivial but hopefully educational example

```
Looping example

> val my_thm = prove (''^P ==> (P = F)'', PROVE_TAC[])

> time (SIMP_CONV std_ss [my_thm]) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.84000s, gctime: 0.02400s, systime: 0.02400s.

Exception- UNCHANGED raised

> time (SIMP_CONV std_ss []) ''P1 /\ P2 /\ P3 /\ ... /\ P10''
runtime: 0.00000s, gctime: 0.00000s, systime: 0.00000s.

Exception- UNCHANGED raised
```

- notice that the rewrite is applied at plenty of places (quadratic in number of conjuncts)
- ▶ notice that each backchaining triggers many more backchainings
- ▶ each has to be aborted to prevent diverging
- ► as a result, the simplifier becomes very slow
- ▶ incidentally, the conditional rewrite is useless

241 / 321

242 / 321

Conditional Rewriting Pitfalls II

- good conditional rewrites |- c ==> (1 = r) should mention only variables in c that appear in 1
- if c contains extra variables x1 ... xn, the conditional rewrite engine has to search instantiations for them
- this mean that conditional rewriting is trying discharge the precondition ?x1 ... xn. c
- the simplifier is usually not able to find such instances

```
Transitivity
> val P_def = Define 'P x y = x < y';
> val my_thm = prove (''!x y z. P x y ==> P y z ==> P x z'', ...)
> SIMP_CONV arith_ss [my_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
Exception- UNCHANGED raised

(* However transitivity of < build in via decision procedure *)
> SIMP_CONV arith_ss [P_def] ''P 2 3 /\ P 3 4 ==> P 2 4''
val it = |- P 2 3 /\ P 3 4 ==> P 2 4 <=> T:
```

Conditional Rewriting Pitfalls III

• let's look in detail why SIMP_CONV did not make progress above

```
> set_trace "simplifier" 2;
> SIMP_CONV arith_ss [mv_thm] ''P 2 3 /\ P 3 4 ==> P 2 4''
           more context: |- !x y z. P x y ==> P y z ==> P x z
           New rewrite: |-(?y. P x y / P y z) ==> (P x z <=> T)
[584000]:
            more context: [.] |- P 2 3 /\ P 3 4
[584000]:
            New rewrite: [.] |- P 2 3 <=> T
            New rewrite: [.] |- P 3 4 <=> T
[584000]:
[588000]:
            rewriting P 2 4 with |-(?y. P x y / P y z) ==> (P x z <=> T)
[588000]:
            trying to solve: ?y. P 2 y /\ P y 4
[588000]:
            rewriting P 2 y with |-(?y. P x y / P y z) ==> (P x z <=> T)
[592000]:
            trying to solve: ?y'. P 2 y' /\ P y' y
[596000]:
            looping - cut
[608000]:
           looping - stack limit reached
. . .
            couldn't solve: ?y. P 2 y /\ P y 4
Exception- UNCHANGED raised
```

243 / 321 244 / 321

Conditional vs. Unconditional Rewrite Rules

Special Rewrite Forms

- conditional rewrite rules are often much more powerful
- however, Rewrite lib does not support them
- for this reason there are often two versions of rewrite theorems

drop example

- DROP_LENGTH_NIL is a useful rewrite rule:
 - |-!1. DROP (LENGTH 1) 1 = []
- in proofs, one needs to be careful though to preserve exactly this form
 - ▶ one should not (partly) evaluate LENGTH 1 or modify 1 somehow
- with the conditional rewrite rule DROP_LENGTH_TOO_LONG one does not need to be as careful
 - $|-!1 \text{ n. LENGTH } 1 \le n ==> (DROP \text{ n } 1 = [])$
 - ▶ the simplifier can use simplify the precondition using information about LENGTH and even arithmetic decision procedures

- some theorems given in the list of rewrites to the simplifier are used for special purposes
- there are marking functions that mark these theorems
 - ▶ Once : thm -> thm use given theorem at most once
 - ► Ntimes : thm -> int -> thm use given theorem at most the given number of times
 - ► AC : thm -> thm use given associativity and commutativity theorems for AC rewriting
 - ▶ Cong : thm -> thm use given theorem as a congruence rule
- these special forms are easy ways to add this information to a simpset
- it can be directly set in a simpset as well

245 / 321

246 / 321

Stateful Simpset

Example Once

> SIMP_CONV pure_ss [Once ADD_COMM] ''a + b = c + d''
val it = |- (a + b = c + d) <=> (b + a = c + d)
> SIMP_CONV pure_ss [Ntimes ADD_COMM 2] ''a + b = c + d''
val it = |- (a + b = c + d) <=> (a + b = c + d)
> SIMP_CONV pure_ss [ADD_COMM] ''a + b = c + d''
Exception- UNCHANGED raised
> ONCE_REWRITE_CONV [ADD_COMM] ''a + b = c + d''
val it = |- (a + b = c + d) <=> (b + a = d + c)
> REWRITE_CONV [ADD_COMM] ''a + b = c + d''
... diverges ...

- the simpset srw_ss() is maintained by the system
 - ▶ it is automatically extended by new type-definitions
 - ► theories can extend it via export_rewrites
 - ► libs can augment it via augment_srw_ss
- the stateful simpset contains many rewrites
- it is very powerful and easy to use

Example

```
> SIMP_CONV (srw_ss()) [] ''case [] of [] => (2 + 4)''
val it = |- (case [] of [] => 2 + 4 | v::v1 => ARB) = 6
```

247 / 321 248 / 321

Discussion on Stateful Simpset

Adding Own Conversions

- the stateful simpset is very powerful and easy to use
- however, results are hard to predict
- proofs using it unwisely are hard to maintain
- the stateful simpset can expand too much
 - ▶ bigger, harder to read proof states
 - ► high level arguments become hard to see
- whether to use the stateful simpset depends on personal proof style
- I advise to not use srw_ss at the beginning
- once you got a good intuition on how the simplifier works, make your own choice

- it is complicated to add arbitrary decision procedures to a simpset
- however, adding simple conversions is straightforward
- a conversion is described by a stdconvdata record

```
type stdconvdata = {
  name: string,     (* name for debugging *)
  pats: term list, (* list of patterns, when to try conv *)
  conv: conv     (* the conversion *)
}
```

use std_conv_ss to create simpset-fragement

Example val WORD_ADD_ss = simpLib.std_conv_ss {conv = CHANGED_CONV WORD_ADD_CANON_CONV, name = "WORD_ADD_CANON_CONV", pats = [''words\$word_add (w:'a word) y'']}

249 / 321 250 / 321

KTH .

Summary Simplifier

- the simplifier is HOL's main workhorse for automation
- it is very powerful
- conditional rewriting very powerful
 - ► here only simple examples were presented
 - ► experiment with it to get a feeling
- many advanced features not discussed here at all
 - ► using congruence rules
 - writing own decision procedures
 - rewriting with respect to arbitrary congruence relations

Warning

The simplifier is very powerful. Make sure you understand it and are in control when using it. Otherwise your proofs easily become lengthy, convoluted and hard to maintain.

Part XIV

Advanced Definition Principles

Relations

KTH

Relations II

- a relation is a function from some arguments to bool
- the following example types are all types of relations:
 - ▶ : 'a -> 'a -> bool
 - ▶ : 'a -> 'b -> bool
 - ▶ : 'a -> 'b -> 'c -> 'd -> bool
 - ▶ : ('a # 'b # 'c) -> bool
 - ▶ : bool
 - ▶ : 'a -> bool
- relations are closely related to sets
 - ► Rabc <=> (a, b, c) IN {(a, b, c) | Rabc}
 - ▶ (a, b, c) IN S <=> (\a b c. (a, b, c) IN S) a b c

• relations are often defined by a set of rules

Definition of Reflexive-Transitive Closure

The transitive reflexive closure of a relation $R: 'a \rightarrow 'a \rightarrow bool$ can be defined as the least relation RTC R that satisfies the following rules:

$$\frac{\text{R x y}}{\text{RTC R x y}} \quad \frac{\text{RTC R x y}}{\text{RTC R x x}} \quad \frac{\text{RTC R x y}}{\text{RTC R x z}}$$

- if the rules are monoton, a least and a greatest fix point exists (Knaster-Tarski theorem)
- least fixpoints give rise to inductive relations
- greatest fixpoints give rise to coinductive relations

253 / 321

254 / 321

(Co)inductive Relations in HOL

Example: Transitive Reflexive Closure

- (Co)IndDefLib provides infrastructure for defining (co)inductive relations
- given a set of rules Hol_(co)reln defines (co)inductive relations
- 3 theorems are returned and stored in current theory
 - ▶ a rules theorem it states that the defined constant satisfies the rules
 - ► a cases theorem this is an equational form of the rules showing that the defined relation is indeed a fixpoint
 - ► a (co)induction theorem
- additionally a strong (co)induction theorem is stored in current theory

255 / 321 256 / 321

Example: Transitive Reflexive Closure II

Example: Dummy Relations

```
> val (DF_rules, DF_ind, DF_cases) = Hol_reln
    '(!n. DF (n+1) ==> (DF n))'
> val (DT_rules, DT_coind, DT_cases) = Hol_coreln
    '(!n. DT (n+1) ==> (DT n))'

val DT_coind =
    |- !DT'. (!ao. DT' ao ==> DT' (ao + 1)) ==> !ao. DT' ao ==> DT ao

val DF_ind =
    |- !DF'. (!n. DF' (n + 1) ==> DF' n) ==> !ao. DF ao ==> DF' ao

val DT_cases = |- !ao. DT ao <=> DT (ao + 1):
val DF_cases = |- !ao. DF ao <=> DF (ao + 1):
```

- notice that the definitions of DT and DF look like a non-terminating recursive definition
- DF is always false, i. e. | !n. ~(DF n)

Example: EVEN


```
> val (EVEN_REL_rules, EVEN_REL_ind, EVEN_REL_cases) = Hol_reln
    '(EVEN_REL 0) /\ (!n. EVEN_REL n ==> (EVEN_REL (n + 2)))';

val EVEN_REL_cases =
    |- !ao. EVEN_REL ao <=> (ao = 0) \/ ?n. (ao = n + 2) /\ EVEN_REL n

val EVEN_REL_rules =
    |- EVEN_REL 0 /\ !n. EVEN_REL n ==> EVEN_REL (n + 2)

val EVEN_REL_ind = |- !EVEN_REL'.
    (EVEN_REL' 0 /\ (!n. EVEN_REL' n ==> EVEN_REL' (n + 2))) ==>
    (!ao. EVEN_REL ao ==> EVEN_REL' ao)
```

- notice that in this example there is exactly one fixpoint
- therefore, for these rules the inductive and coinductive relation coincide

257 / 321

258 / 321

Quotient Types

- quotientLib allows to define types as quotients of existing types with respect to partial equivalence relation
- each equivalence class becomes a value of the new type
- partiality allows ignoring certain values of original type
- quotientLib allows to lift definitions and lemmata as well
- details are technical and won't be presented here

259 / 321 260 / 321

Quotient Types Example

Quotient Types Summary

- let's assume we have an implementation of finite sets of numbers as binary trees with
 - ▶ type binset
 - ▶ binary tree invariant WF_BINSET : binset -> bool
 - ► constant empty_binset
 - ▶ add and member functions add : num -> binset -> binset, mem : binset -> num -> bool
- we can define a partial equivalence relation by

```
binset_equiv b1 b2 := (
  WF_BINSET b1 /\ WF_BINSET b2 /\
  (!n. mem b1 n <=> mem b2 n))
```

- this allows defining a quotient type of sets of numbers
- functions empty_binset, add and mem as well as lemmata about them can be lifted automatically

- quotient types are sometimes very useful
 - e.g. rational numbers are defined as a quotient type
- there is powerful infrastructure for them
- many tasks are automated
- however, the details are technical and won't be discussed here

261 / 321

262 / 321

Pattern Matching / Case Expressions

TFL / Define

- pattern matching ubiquitous in functional programming
- pattern matching is a powerful technique
- it helps to write concise, readable definitions
- very handy and frequently used for interactive theorem proving
- however, it is **not directly supported** by HOL's logic
- representations in HOL
 - ▶ sets of equations as produced by Define
 - ► decision trees (printed as case-expressions)

- we have already used top-level pattern matches with the TFL package
- Define is able to handle them
 - ▶ all the semantic complexity is taken care of
 - ► no special syntax or functions remain
 - ▶ no special rewrite rules, reasoning tools needed afterwards
- Define produces a set of equations
- this is the recommended way of using pattern matching in HOL

Example

263 / 321 264 / 321

Case Expressions

Case Expressions II

- sometimes one does not want to use this compilation by TFL
 - ▶ one wants to use pattern-matches somewhere nested in a term
 - ▶ one might not want to introduce a new constant
 - ▶ one might want to avoid using TFL for technical reasons
- in such situations, case-expressions can be used
- their syntax is similar to the syntax used by SML

- the datatype package defines case-constants for each datatype
- the parser contains a pattern compilation algorithm
- case-expressions are by the parser compiled to decision trees using case-constants
- pretty printer prints these decision trees as case-expressions again

266 / 321

Case Expression Issues

265 / 321

Case Expression Issues II

- using case expressions feels very natural to functional programmers
- case-expressions allow concise, well-readable definitions
- however, there are also many drawbacks
- there is large, complicated code in the parser and pretty printer
 - this is outside the kernel
 - \blacktriangleright parsing a pretty-printed term can result in a non α -equivalent one
 - ▶ there are bugs in this code (see e.g. Issue #416 reported 8 May 2017)
- the results are hard to predict
 - ▶ heuristics involved in creating decision tree
 - ► however, it is beneficial that proofs follow this internal, volatile structure

- technical issues
 - ▶ it is tricky to reason about decision trees
 - rewrite rules about case-constants needs to be fetched from TypeBase
 - * alternative srw_ss often does more than wanted
 - partially evaluated decision-trees are not pretty printed nicely any more
- underspecified functions
 - ► decision trees are exhaustive
 - ▶ they list underspecified cases explicitly with value ARB
 - ► this can be lengthy
 - ▶ Define in contrast hides underspecified cases

267 / 321 268 / 321

Case Expression Example IIa – partial evaluation


```
Partial Proof Script
val _ = prove (''!11 12.
  (LENGTH 11 = LENGTH 12) ==>
  ((ZIP 11 12 = []) \iff ((11 = []) /\ (12 = []))),
ONCE_REWRITE_TAC [ZIP_def]
```

```
Current Goal
!11 12.
  (LENGTH 11 = LENGTH 12) ==>
  (((case (11,12) of
       ([],[]) \Rightarrow []
     |([],v4::v5)| => ARB
    | (x::xs',[]) => ARB
    | (x::xs',y::ys') => (x,y)::ZIP xs' ys') =
    []) <=> (11 = []) /\ (12 = []))
```

```
Partial Proof Script
val _ = prove (''!11 12.
 (LENGTH 11 = LENGTH 12) ==>
 ((ZIP 11 12 = []) <=> ((11 = []) /\ (12 = [])))'',
ONCE_REWRITE_TAC [ZIP_def] >>
REWRITE_TAC[pairTheory.pair_case_def] >> BETA_TAC
```

```
Current Goal
 (LENGTH 11 = LENGTH 12) ==>
 (((case 11 of
      [] => (case 12 of [] => [] | v4::v5 => ARB)
    | x::xs' => case 12 of [] => ARB | y::ys' => (x,y)::ZIP xs' ys') =
    []) <=> (11 = []) /\ (12 = []))
```

270 / 321

Case Expression Example IIb — following tree structure

Case Expression Summary

Partial Proof Script

```
val _ = prove (''!11 12.
 (LENGTH 11 = LENGTH 12) ==>
 ((ZIP 11 12 = []) \iff ((11 = []) / (12 = []))),
ONCE_REWRITE_TAC [ZIP_def] >>
Cases_on '11' >| [
 REWRITE_TAC[listTheory.list_case_def]
```

Current Goal (LENGTH [] = LENGTH 12) ==> (((case ([],12) of ([],[]) => [] |([],v4::v5) => ARB $| (x::xs',[]) \Rightarrow ARB$ | (x::xs',y::ys') => (x,y)::ZIP xs' ys') =[]) <=> (12 = []))

- case expressions are natural to functional programmers
- they allow concise, readable definitions
- however, fancy parser and pretty-printer needed
 - trustworthiness issues
 - ► sanity check lemmata advisable
- reasoning about case expressions can be tricky and lengthy
- proofs about case expression often hard to maintain
- therefore, use top-level pattern matching via Define if easily possible

271 / 321 272 / 321

Part XV

Maintainable Proofs

Nice Properties of Proofs

Formatting

- maintainability is closely linked to other desirable properties of proofs
- proofs should be
 - ► easily understandable
 - ▶ well-structured
 - ▶ robust
 - ★ they should be able to cope with minor changes to environment
 - ★ if they fail they should do so at sensible points
 - ▶ reusable
- How can one write proofs with such properties?
- as usual, there are no easy answers but plenty of good advice
- I recommend following the advice of ProofStyle manual
- parts of this advice as well as a few extra points are discussed in the following

Motivation

- proofs are hopefully still used in a few weeks, months or even years
- often the environment changes slightly during the lifetime of a proof
 - ▶ your definitions change slightly
 - ▶ your own lemmata change (e.g. become more general)
 - ► used libraries change
 - ► HOL changes
 - ★ automation becomes more powerful
 - ★ rewrite rules in certain simpsets change
 - ★ definition packages produce slightly different theorems
 - ★ autogenerated variable-names change
 - ***** ...
- even if HOL and used libraries are stable, proofs often go through several iterations
- often they are adapted by someone else than the original author
- therefore it is important that proofs are easily maintainable

274 / 321

- format your proof such that it easily understandable
- make the structure of the proof very clear
- show clearly where subgoals start and stop
- use indentation to mark proofs of subgoals
- use empty lines to separate large proofs of subgoals
- use comments where appropriate

275 / 321 276 / 321

Formatting Example II

Bad Example Subgoals

Cases >>

DECIDE TAC)

REWRITE_TAC[] >>

REPEAT STRIP_TAC >>

Bad Example Term Formatting

```
prove (''!11 12. 11 <> [] ==> LENGTH 12 <
LENGTH (11 ++ 12)'',
...)</pre>
```

Good Example Term Formatting

Improved Example Subgoals

At least show when a subgoal starts and ends

```
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >> (
    REWRITE_TAC[]
) >>
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)
```

prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>

277 / 321

278 / 321

Formatting Example II 2

Formatting Example II 3

Good Example Subgoals

Make sure REWRITE_TAC is only applied to first subgoal and proof fails, if it does not solve this subgoal.

```
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >- (
   REWRITE_TAC[]
) >>
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >>
DECIDE_TAC)
```

Alternative Good Example Subgoals

Alternative good formatting using THENL

```
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >| [
   REWRITE_TAC[],

REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
   REPEAT STRIP_TAC >>
   DECIDE_TAC
])
```

Another Bad Example Subgoals

Bad formatting using THENL

```
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >| [REWRITE_TAC[],
REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
REPEAT STRIP_TAC >> DECIDE_TAC])
```

279 / 321 280 / 321

Some basic advice

KISS and Premature Optimisation

- use semicoli after each declaration
 - ► if exception is raised during interactive processing (e.g. by a failing proof), previous successful declarations are kept
 - ▶ it sometimes leads to better error messages in case of parsing errors
- use plenty of parentheses to make structure very clear
- don't ignore parser warnings
 - especially warnings about multiple possible parse trees are likely to lead to unstable proofs
 - ▶ understand why such warnings occur and make sure there is no problem
- format your development well
 - ► use indentation
 - ► use linebreaks at sensible points
 - don't use overlong lines
 - **.** . . .
- don't use open in middle of files
- personal opinion: avoid unicode in source files

- follow standard design principles
 - ► KISS principle
 - "premature optimization is the root of all evil" (Donald Knuth)
- don't try to be overly clever
- simple proofs are preferable
- proof-checking-speed mostly unimportant
- conciseness not a value in itself but desirable if it helps
 - readability
 - maintainability
- abstraction is often desirable, but also has a price
 - ▶ don't use too complex, artificial definitions and lemmata

281 / 321

282 / 321

Too much abstraction

Too clever tactics

Too much abstraction Example

```
val TOO_ABSTRACT_LEMMA = prove (''
!(size :'a -> num) (P : 'a -> bool) (combine : 'a -> 'a -> 'a).
   (!x. P x ==> (0 < size x)) /\
   (!x1 x2. size x1 + size x2 <= size (combine x1 x2)) ==>
   (!x1 x2. P x1 ==> (size x2 < size (combine x1 x2)))'',
   ...)

prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
   some proof using ABSTRACT_LEMMA
)</pre>
```

- a common mistake is to use too clever tactics
 - ▶ intended to work on many (sub)goals
 - ▶ using TRY and other fancy trial and error mechanisms
 - ▶ intended to replace multiple simple, clear tactics
- typical case: a tactic containing TRY applied to many subgoals
- it is often hard to see why such tactics work
- if something goes wrong, they are hard to debug
- general advice: don't factor with tactics, instead use definitions and lemmata

283 / 321 284 / 321

Too Clever Tactics Example I

Too Clever Tactics Example II

Bad Example Subgoals prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'', Cases >> (REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >> REPEAT STRIP TAC >> DECIDE_TAC))

```
Alternative Good Example Subgoals II
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >> SIMP_TAC list_ss [])
prove (''!11 12. 11 <> [] ==> (LENGTH 12 < LENGTH (11 ++ 12))'',
Cases >| [
 REWRITE_TAC[],
  REWRITE_TAC[listTheory.LENGTH, listTheory.LENGTH_APPEND] >>
  REPEAT STRIP_TAC >>
 DECIDE_TAC
1)
```

```
Bad Example
```

```
val oadd_def = Define '(oadd (SOME n1) (SOME n2) = (SOME (n1 + n2))) /\
                       (oadd
                                                 = NONE) :
val osub_def = Define '(osub (SOME n1) (SOME n2) = (SOME (n1 - n2))) /\
                                                 = NONE) ';
val omul_def = Define '(omul (SOME n1) (SOME n2) = (SOME (n1 * n2))) /\
                       (omul
                                                 = NONE) :
val onum_NONE_TAC =
 Cases on 'o1' >> Cases on 'o2' >>
 SIMP_TAC std_ss [oadd_def, osub_def, omul_def];
val oadd_NULL = prove (
 "'!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \setminus/ (o2 = NONE)".
 onum_NONE_TAC);
val osub_NULL = prove (
 ''!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)''.
 onum_NONE_TAC);
val omul_NULL = prove (
 ''!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)'',
 onum NONE TAC):
```

286 / 321

Too Clever Tactics Example II

285 / 321

Use many subgoals and lemmata


```
Good Example
val obin_def = Define '(obin op (SOME n1) (SOME n2) = (SOME (op n1 n2))) /\
                       (obin _ .
                                                    = NONE)';
val oadd_def = Define 'oadd = obin $+';
val osub_def = Define 'osub = obin $-';
val omul_def = Define 'omul = obin $*';
val obin_NULL = prove (
  ''!op o1 o2. (obin op o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)'',
 Cases_on 'o1' >> Cases_on 'o2' >> SIMP_TAC std_ss [obin_def]);
val oadd_NULL = prove (
  ''!o1 o2. (oadd o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)'',
  REWRITE_TAC[oadd_def, obin_NULL]);
val osub_NULL = prove (
  ''!o1 o2. (osub o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE)'',
  REWRITE_TAC[osub_def, obin_NULL]);
val omul_NULL = prove (
  ''!o1 o2. (omul o1 o2 = NONE) <=> (o1 = NONE) \/ (o2 = NONE) '',
  REWRITE_TAC[omul_def, obin_NULL]);
```

- often it is beneficial to use subgoals
 - ► they structure long proofs well
 - ▶ they help keeping the proof state clean
 - ▶ they mark clearly what one tries to proof
 - ▶ they provide points where proofs can break sensibly
- general enough subgoals should become lemmata
 - this improves reusability
 - proof script for main lemma becomes shorter
 - proofs are disentangled

287 / 321 288 / 321

Subgoal Example

Subgoal Example II

- the following example is taken from exercise 5
- we try to prove !1. IS_WEAK_SUBLIST_FILTER 1 1
- given are following definitions and lemmata

```
val FILTER_BY_BOOLS_def = Define '
FILTER_BY_BOOLS bl 1 = MAP SND (FILTER FST (ZIP (bl, 1)))';

val IS_WEAK_SUBLIST_FILTER_def = Define 'IS_WEAK_SUBLIST_FILTER 11 12 =
    ?(bl : bool list). (LENGTH bl = LENGTH 11) /\ (12 = FILTER_BY_BOOLS bl 11)';

val FILTER_BY_BOOLS_REWRITES = store_thm ("FILTER_BY_BOOLS_REWRITES",
    ''(FILTER_BY_BOOLS [] [] = []) /\
    (!b bl x xs. (FILTER_BY_BOOLS (b::bl) (x::xs) =
    if b then x::(FILTER_BY_BOOLS bl xs) else FILTER_BY_BOOLS bl xs))'',

REWRITE_TAC [FILTER_BY_BOOLS_def, ZIP, MAP, FILTER] >>
Cases_on 'b' >> REWRITE_TAC [MAP]);
```

First Version

- the proof mixes properties of IS_WEAK_SUBLIST_FILTER and properties of FILTER_BY_BOOLS
- it is hard to see what the main idea is

289 / 321

290 / 321

Subgoal Example III

Subgoal Example IV

- the following proof separates the property of FILTER_BY_BOOLS as a subgoal
- the main idea becomes clearer

Subgoal Version

- the subgoal is general enough to justify a lemma
- the structure becomes even cleaner
- this improves reusability

Lemma Version

```
val FILTER_BY_BOOLS_REPL_T = store_thm ("FILTER_BY_BOOLS_REPL_T",
    ''!1. FILTER_BY_BOOLS (REPLICATE (LENGTH 1) T) 1 = 1'',
Induct >> ASM_REWRITE_TAC [REPLICATE, FILTER_BY_BOOLS_REWRITES, LENGTH]);

val IS_WEAK_SUBLIST_FILTER_REFL = store_thm ("IS_WEAK_SUBLIST_FILTER_REFL",
    ''!1. IS_WEAK_SUBLIST_FILTER 1 1'',
GEN_TAC >>
REWRITE_TAC[IS_WEAK_SUBLIST_FILTER_def] >>
Q.EXISTS_TAC 'REPLICATE (LENGTH 1) T' >>
SIMP_TAC list_ss [FILTER_BY_BOOLS_REPL_T, LENGTH_REPLICATE])
```

291 / 321 292 / 321

Avoid Autogenerated Names

- KTH
- Autogenerated Names Example

- many HOL-tactics introduce new variable names
 - ► Induct
 - ► Cases
 - **.** . . .
- the new names are often very artificial
- even worse, generated names might change in future
- proof scripts using autogenerated names are therefore
 - ► hard to read
 - ► potentially fragile
- therefore rename variables after they have been introduced
- HOL has multiple tactics supporting renaming
- most useful is rename1 'pat', it searches for pattern and renames vars accordingly

Bad Example

```
prove (''!1. 1 < LENGTH 1 ==> (?x1 x2 l'. l = x1::x2::l')'',
GEN_TAC >>
Cases_on '1' >> SIMP_TAC list_ss [] >>
Cases_on 't' >> SIMP_TAC list_ss [])
```

Good Example

```
prove (''!1. 1 < LENGTH 1 ==> (?x1 x2 1'. 1 = x1::x2::1')'',

GEN_TAC >>

Cases_on '1' >> SIMP_TAC list_ss [] >>

rename1 'LENGTH 12' >>

Cases_on '12' >> SIMP_TAC list_ss [])
```

Proof State before rename1

```
1 < SUC (LENGTH t) ==> ?x2 l'. t = x2::1'
```

Proof State after rename1

```
1 < SUC (LENGTH 12) ==> ?x2 1'. 12 = x2::1'
```

293 / 321

294 / 321

Overview of HOL 4

Part XVI

Overview of HOL 4

- in this course we discussed the basics of HOL 4
- you were encouraged to learn more on your own in exercises
- there is a lot more to learn even after the end of the course
 - ► many more libraries
 - proof tools
 - ► existing formalisations
 - ▶ ...
- to really use HOL well, you should continue learning
- to help getting started, a short overview is presented here

HOL Bare Source Directories

The following source directories are the very basis of HOL. They are required to build hol.bare.

- src/portableML common stuff for PolyML and MoscowML
- src/prekernel
- src/0 Standard Kernel
- src/logging-kernel Logging Kernel
- src/experimental-kernel Experimental Kernel
- src/postkernel
- src/opentheory
- src/parse
- src/bool
- src/1
- src/proofman

HOL Basic Directories II

- src/simp simplifier
- src/holyhammer tool for finding Metis proofs
- src/tactictoe machine learning tool for finding proofs
- src/IndDef (co)inductive relation definitions
- src/basicProof library containing proof tools
- src/relation relations and order theory
- src/one unit type theory
- src/pair tuples
- src/sum sum types
- src/tfl defining terminating functions
- src/option option types

HOL Basic Directories I

On top of hol.bare, there are many basic theories and tools. These are all required for building the main hol executable.

- src/compute fast ground term rewriting
- src/HolSat SAT solver interfaces
- src/taut propositional proofs using HolSat
- src/marker marking terms
- src/q parsing support
- src/combin combinators
- src/lite some simple lib with various stuff
- src/refute refutation prover, normal forms
- src/metis first order resolution prover
- src/meson first order model elimination prover

297 / 321

298 / 321

HOL Basic Directories III

- src/num numbers and arithmetic
- src/pred_set predicate sets
- src/datatype Datatype package
- src/list list theories
- src/monad monads
- src/quantHeuristics instantiating quantifiers
- src/unwind lib for unwinding structural hardware definitions
- src/pattern_matches pattern matches alternative
- src/bossLib main HOL lib loaded at start

bossLib is one central library. It loads all basic theories and libraries and provides convenient wrappers for the most common tools.

299 / 321 300 / 321

HOL More Theories I

HOL More Theories II

Besides the basic libraries and theories that are required and loaded by hol, there are many more developements in HOL's source directory.

- src/sort sorting lists
- src/string strings
- src/TeX exporting LaTeX code
- src/res_quan restricted quantifiers
- src/quotient quotient type package
- src/finite_map finite map theory
- src/bag bags a. k. a. multisets
- src/n-bit maschine words

- src/ring reasoning about rings
- src/integer integers
- src/llists lazy lists
- src/path finite and infinite paths through a transition system
- src/patricia efficient finite map implementations using trees
- src/emit emitting SML and OCaml code
- src/search traversal of graphs that may contain cycles

301 / 321

302 / 321

HOL More Theories III

- src/rational rational numbers
- src/real real numbers
- src/complex comples numbers
- src/HolQbf quantified boolean formulas
- src/HolSmt support for external SMT solvers
- src/float IEEE floating point numbers
- src/floating-point new version of IEEE floating point numbers
- src/probability some propability theory
- src/temporal shallow embedding of temporal logic

. . . .

HOL Selected Examples I

The directory examples hosts many theories and libraries as well. There is not always a clear distinction between an example and a development in src. However, in general examples are more specialised and often larger. They are not required to follow HOL's coding style as much as developments in src.

- examples/balanced_bst finite maps via balanced trees
- examples/unification (nominal) unification
- examples/Crypto various block ciphers
- examples/elliptic elliptic curve cryptography
- examples/formal-languages regular and context free formal languages
- examples/computability basic computability theory

303 / 321 304 / 321

HOL Selected Examples II

HOL Selected Examples III

- examples/set-theory axiomatic formalisation of set theory
- examples/lambda lambda calculus
- examples/acl2 connection to ACL2 prover
- examples/theorem-prover soundness proof of Milawa prover
- examples/PSL formalisation of PSL
- examples/HolBdd Binary Decision Diagrams
- examples/HolCheck basic model checker
- examples/temporal_deep deep embedding of temporal logics and automata

- examples/pgcl formalisation of pGCL (the Probabilistic Guarded Command Language)
- examples/dev some hardware compilation
- examples/STE symbolic trajectory evalutation
- examples/separationLogic formalisation of separation logic
- examples/ARM formalisation of ARM architecture
- examples/13-machine-code |3 language
- examples/machine-code compilers and decompilers to machine-code
- ...

305 / 321

Concluding Remarks

some useful tools are a bit hidden in the HOL sources

- moreover there are developments outside the main HOL 4 sources
 - ► CakeML https://cakeml.org
- keep in touch with community to continue learning about HOL 4
 - ► mailing-list hol-info
 - ► GitHub https://github.com/HOL-Theorem-Prover/HOL
 - ▶ https://hol-theorem-prover.org
- if you continue using HOL, please consider sharing your work with the community

306 / 321

Part XVII

Other Interactive Theorem Provers

Other Interactive Theorem Provers

HOL 4

- at the beginning we very briefly discussed other theorem provers
- now, with more knowledge about HOL 4 we can discuss other provers and their differences to HOL 4 in more detail
- HOL 4 is a good system
- it is very well suited for the tasks required by the PROSPER project
- however, as always choose the right tool for your task
- you might find a different prover more suitable for your needs
- hopefully this course has enabled you to learn to use other provers on your own without much trouble

- based on classical higher order logic
- logic is sweet spot between expressivity and automation
- + very trustworthy thanks to LCF approach
- + simple enough to understand easily
- + very easy to write custom proof tools, i. e. own automation
- + reasonably fast and efficient
- decent automation
- no user-interface
- no special proof language
- no IDE, very little editor support

309 / 321

310 / 321

HOL Omega

- mainly developed by Peter Homeier http://www.trustworthytools.com/
- extension of HOL 4
 - $+ \ \ \text{logic extended by kinds}$
 - + allows type operator variables
 - $+ \ \ \text{allows quantification over type variables}$
- + sometimes handy to e.g. model category theory
- not very actively developed
- HOL 4 usually sufficient and better supported

ф 1101

- mainly developed by John Harrison
- https://github.com/jrh13/hol-light
- cleanup and reimplementation of HOL in OCaml
- little legacy code
- however, still very similar to HOL 4
- + much better automation for real analysis
- + cleaner
- OCaml introduces some minor issues with trustworthiness
- some other libs and tools of HOL 4 are missing
- HOL 4 has bigger community

311 / 321 312 / 321

Isabelle

- Isabelle is also a descendant of LCF
- originally developed by Larry Paulson in Cambridge https://www.cl.cam.ac.uk/research/hvg/Isabelle/
- meanwhile also developed at TU Munich by Tobias Nipkow http://www21.in.tum.de
- huge contributions by Markarius Wenzel http://sketis.net
- Isabelle is a generic theorem prover
- most used instantiation is Isabelle/HOL
- other important one is Isabelle/ZF

Isabelle / HOL - Engineering

- + a lot of engineering went into Isabelle/HOL
- + it has a very nice GUI
 - ► IDE based on JEdit
 - special language for proofs (Isar)
 - ► good error messages
 - ▶ ...
- + very good automation
- + efficient implementations
- + many libraries (Archive of Formal Proof)
- + excellent code extraction
- + good documentation
- $+\,$ easy for new users

Isabelle / HOL - Logic

- logic of Isabelle / HOL very similar to HOL's logic
 - meta logic leads to meta level quantification and object level quantification
 - + type classes
 - + powerful module system
 - + existential variables
 - ▶ ...
- Isabelle is implemented using the LCF approach
- it uses SML (Poly/ML)
- many original tools (e.g. simplifier) similar to HOL
- focused as HOL on equational reasoning
- many tools are exchanged between HOL 4 and Isabelle / HOL
 - Metis
 - Sledgehammer
 - ▶ ...

313 / 321

314 / 321

Isabelle / HOL - Isar

- special proof language Isar used
- this allows to write declarative proofs
 - ▶ very high level
 - ► easy to read by humans
 - ▶ very robust
 - very good tool support
 - ▶ ...
- however, tactical proofs are not easily accessible any more
 - ► many intermediate goals need to be stated (declared) explicitly
 - ► this can be very tedious
 - ▶ tools like verification condition generators are hard to use

315 / 321 316 / 321

Isabelle / HOL - Drawbacks

Coq

- + Isabelle/HOL provides excellent out of the box automation
- + it provides a very nice user interface
- + it is very nice for new users
- however, this comes at a price
 - ► multiple layers added between kernel and user
 - ► hard to understand all these layers
 - ► a lot of knowledge is needed to write your own automation
- hard to write own automation
- Isabelle/HOL due to focus on declarative proofs not well suited for e.g. PROSPER

- Coq is a proof assistant using the Calculus of Inductive Constructions
- inspired by HOL 88
- backward proofs as in HOL 4 used
- however, very big differences
 - ► much more powerful logic
 - ▶ dependent types
 - ► constructive logic
 - ▶ not exactly following LCF approach
- + good user interface
- + very good community support

317 / 321

Coq - Drawbacks

318 / 321

Coq - Logic

- + Coq's logic is very powerful
- + it is very natural for mathematicians
- + very natural for language theory
- + allows reasoning about proofs
- allows to add axioms as needed
- as a result, Coq is used often to
 - ► formalise mathematics
 - ► formalise programming language semantics
 - ► reason about proof theory

- Coq's power comes at a price
- there is not much automation
- $-\,$ proofs tend to be very long
 - ► they are very simple though
 - + comparably easy to maintain
- Coq's proof checking can be very slow
- when verifying programs or hardware you notice that HOL was designed for this purpose
 - need for obvious termination is tedious
 - ► missing automation
 - ▶ very slow

319 / 321 320 / 321

Summary

- there are many good theorem provers out there
- pick the right tool for your purpose
- the HOL theorem prover is a good system for many purposes
- for PROSPER it is a good choice
- I encourage you to continue learning about HOL and interactive theorem proving in general
- if you have any questions feel free to contact me (Thomas Tuerk, email tuerk@kth.se or thomas@tuerk-brechen.de)