

Department of Mathematics SF1626 Calculus in Several Variable

SF1626 Calculus in Several Variable Solutions to the exam 2017-06-05

Del A

1. The height of a hill is given by $z=60-0,02 x^{2}-0,01 y^{2}$ where the unit is meter on all three coodrinate axes.
(a) In which direction in the $x y$-plane should we move in order to descend fastest possible if we are at the point $(50,100,-90)$?
(b) What is the rate of change in height at the point $(50,100,-90)$ if we move in the direction according to part (a) with a speed of $1 \mathrm{~km} / \mathrm{h}$ seen from above?
(2 p)

Solution.

(a) The function $z(x, y)$ grows fastest in the direction of its gradient

$$
(-0,02 \cdot 2 x,-0,01 \cdot 2 y)=\frac{1}{100}(-4 x,-2 y) .
$$

Hence, the fastest descent is given by the reverse direction

$$
-\frac{1}{100}(-4 \cdot 50,-2 \cdot 100)=(2,2)
$$

(b) The directional derivative in the direction of the negative gradient is

$$
-|(2,2)|=-2 \sqrt{2} .
$$

Moving with speed $1000 \mathrm{~m} / \mathrm{h}$ in $x y$-direction gives us the following rate of change in z-direction

$$
2 \sqrt{2} \cdot 1000 \mathrm{~m} / \mathrm{h}
$$

Answer.
(a) $(1 / \sqrt{2}, 1 / \sqrt{2})$.
(b) $2 \sqrt{2} \mathrm{~km} / \mathrm{h}$, approximately $2,8 \mathrm{~km} / \mathrm{h}$.
2. Prove the formula $V=\frac{4 \pi a^{3}}{3}$ for the volume of a spherical ball with radius a by introducing spherical coordinates in the triple integral

$$
\begin{equation*}
V=\iiint_{K} d V \tag{4p}
\end{equation*}
$$

where the ball K is given by $x^{2}+y^{2}+z^{2} \leq a^{2}$.
Solution. We know that $\iiint_{K} d V$ gives the volume of the ball K. In spherical coordinates the ball with radius a and center at the origin is given by $0 \leq r \leq a, 0 \leq \phi \leq \pi$, $0 \leq \theta \leq 2 \pi$. Hence the integral in spherical coordinates is

$$
\begin{aligned}
\iiint_{K} d V & =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{a} r^{2} d r \\
& =[\theta]_{0}^{2 \pi}[-\cos \phi]_{0}^{\pi}\left[\frac{r^{3}}{3}\right]_{0}^{a} \\
& =2 \pi \cdot(-(-1)-(-1)) \cdot \frac{a^{3}}{3} \\
& =\frac{4 \pi a^{3}}{3}
\end{aligned}
$$

which proves the folrumla.
3. Determine which of the fields

$$
\mathbf{F}(x, y, z)=\left(x(z-1),-y z, z-x^{2}\right)
$$

and

$$
\mathbf{G}(x, y, z)=\left(y^{2}+(2 x-y) z, x(2 y-z), x(x-y)\right)
$$

that is conservative and determine a potential for that field.
Solution. Observe that irrotation fields defined in the entire \mathbb{R}^{3} are always conservative fields, otherwise they may not necessarily be conservative.

Computations give

$$
\begin{aligned}
\operatorname{rot} \mathbf{F} & =\left(\frac{\partial}{\partial y}\left(z-x^{2}\right)-\frac{\partial}{\partial z}(-y z), \frac{\partial}{\partial z} x(z-1)-\frac{\partial}{\partial x}\left(z-x^{2}\right), \frac{\partial}{\partial x}(-y z)-\frac{\partial}{\partial y} x(z-1)\right) \\
& =(0-(-y), x-(-2 x), 0-0)=(y, x, 0) \neq(0,0,0)
\end{aligned}
$$

$$
\operatorname{rot} \mathbf{G}(x, y, z)=\left(\frac{\partial}{\partial y} x(x-y)-\frac{\partial}{\partial z} x(2 y-z), \frac{\partial}{\partial z}\left(y^{2}+(2 x-y) z\right)-\frac{\partial}{\partial x} x(x-y)\right.
$$

$$
\left.\frac{\partial}{\partial x} x(2 y-z)-\frac{\partial}{\partial y}\left(y^{2}+(2 x-y) z\right)\right)
$$

$$
=(-x-(-x), 2 x-y-(2 x-y), 2 y-z-(2 y-z))=(0,0,0)
$$

Hence \mathbf{G} is irrotational, but not \mathbf{F}. To determine the potential function \mathbf{G} we integrate first in x-direction to obtain

$$
\Phi(x, y, z)=x y^{2}+x^{2} z-x y z+H(y, z) .
$$

Differentiating $\Phi(x, y, z)$ w.r.t. y and z we arrive at

$$
\frac{\partial \Phi}{\partial y}=2 x y-x z+\frac{\partial H}{\partial y} \quad \text { och } \quad \frac{\partial \Phi}{\partial z}=x^{2}-x y+\frac{\partial H}{\partial z}
$$

and sine $2 x y-x z=x(2 y-z)$ and $x^{2}-x y=x(x-y)$ can we choose (it is up to us which one we choose) $H(y, z)=0$. Therefore $\Phi(x, y, z)=x y^{2}+x^{2} z-x y z$ is a potential function to G .

Answer. The vector field \mathbf{G} is conservative with potential function $\Phi(x, y, z)=x y^{2}+x^{2} z-$ $x y z$. The vector filed \mathbf{F} is not conservative.

Del B

4. The elliptic cylinder $9 x^{2}+25 y^{2}=225$ and the plane $4 y+3 z=0$ intersect in a curve \mathcal{C}.
(a) Give a parametrization of the curve \mathcal{C}.
(b) Compute the length of the curve \mathcal{C}.

Solution.

(a) The ellipsen E in the plane $z=0$ is given by $9 x^{2}+25 y^{2}=225$, i.e.,

$$
\frac{1}{5^{2}} x^{2}+\frac{1}{3^{2}} y^{2}=1
$$

Parametrising this we have $(5 \cos (t), 3 \sin (t))$, where $0 \leq t \leq 2 \pi$. The curve we look for is above the ellipse E, for which z is given by $4 y+3 z=0$, i.e. $z=-\frac{4}{3} y$. Hence the curve \mathcal{C} is given by

$$
\mathbf{r}(t)=(x(t), y(t), z(t))=(5 \cos t, 3 \sin t,-4 \sin t)
$$

för $0 \leq t \leq 2 \pi$.
(b) The length of the curve is given by

$$
\begin{aligned}
\int_{\mathcal{C}} d s & =\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} \sqrt{(-5 \sin t)^{2}+(3 \cos t)^{2}+(-4 \cos t)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{25 \sin ^{2} t+9 \cos ^{2} t+16 \cos ^{2} t} d t \\
& =\int_{0}^{2 \pi} \sqrt{25} d t=2 \pi \cdot 5=10 \pi
\end{aligned}
$$

(Observe that the curve is a circle with radius 5 . If we had chosen intersection with a different plane, the answer could well have been an ellipse. Such an integral would not have been easy to compute.)

Answer.

(a) A parametrisation is given by $\mathbf{r}(t)=(x(t), y(t), z(t))=(5 \cos t, 3 \sin t,-4 \sin t)$.
(b) The lenght of the curve is 10π length unit.
5. Let $f(x, y)=x^{2}+2 x y-5 y^{2}$ and $g(x, y)=x^{2}-2 x y+2 y^{2}$.
(a) Determine the maximum and minimum values for $f(x, y)$ given that $g(x, y)=10$ if such values exist.
(b) Determine the maximum and minimum values for $g(x, y)$ given that $f(x, y)=10$ if such values exist.

Solution. By Lagranges condition $\nabla f(x, y)=(2 x+2 y, 2 x-10 y)$ and $\nabla g(x, y)=(2 x-$ $2 y,-2 x+4 y$), should be parallell. This can be written as

$$
\left\{\begin{array} { r l }
{ 2 x + 2 y } & { = \lambda (2 x - 2 y) } \\
{ 2 x - 1 0 y } & { = \lambda (- 2 x + 4 y) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
2 x-2 y & =\lambda(2 x+2 y) \\
-2 x+4 y & =\lambda(2 x-10 y)
\end{array}\right.\right.
$$

This in turn gives $(2 x+2 y)(-2 x+4 y)=(2 x-2 y)(2 x-10 y)$ which can be simplified to $2 x^{2}-7 x y+3 y^{2}=0$. Solving these we arrive at

$$
x=\frac{7 y}{4} \pm y \sqrt{\frac{49}{16}-\frac{3}{2}}=\frac{7 y}{4} \pm y \sqrt{\frac{25}{16}}=\frac{7 y}{4} \pm \frac{5 y}{4}
$$

i.e., $x=3 y$ or $x=y / 2$.
(a) The solutions set to $g(x, y)=10$ gives an ellipse, since we can rewrite it as $(x-y)^{2}+$ $y^{2}=10$. Frome here we conclude that both maximum and minimum for $f(x, y)$ are achieved on this compact set. Since there are no singular points Lagrange condition must be fulfilled. Inserting $x=3 y$ in the equation we obtain $9 y^{2}-6 y^{2}+2 y^{2}=10$, i.e, $5 y^{2}=10$. Therefore the solution is give by $y= \pm \sqrt{2}$ and we have $f(3 y, y)=$ $9 y^{2}+6 y^{2}-5 y^{2}=10 y^{2}=20$. When we insert $x=y / 2$, i.e., $y=2 x$ in the equation we obtain $x^{2}-4 x^{2}+8 x^{2}=10$, i.e., $5 x^{2}=10$ and $x= \pm \sqrt{2}$ and we have $f(x, 2 x)=x^{2}+4 x^{2}-20 x^{2}=-15 x^{2}=-30$. Det largest value is $f(3 \sqrt{2}, \sqrt{2})=$ $f(-3 \sqrt{2},-\sqrt{2})=20$ and the smallest one $f(\sqrt{2}, 2 \sqrt{2})=f(-\sqrt{2},-2 \sqrt{2})=-30$.
(b) The solution set to $f(x, y)=10$ is an unbounded curve. We can rewrite this as $(x+y)^{2}-6 y^{2}=10$, which gives $x=-y \pm \sqrt{10+6 y^{2}}$. Therefore the function $g(x, y)$ can obtain any large value. However, $g(x, y)$ is bounded from below, since $g(x, y)=(x-y)^{2}+y^{2} \geq 0$. The smallest value for the function must be achieved on a compact set, and Lagrange condition must be fulfilled, since there are no singular points.
Setting $x=3 y$ in the equation we obtain $9 y^{2}+6 y^{2}-5 y^{2}=10$, i.e., $10 y^{2}=10$. From here we conclude that solutions are given by $y= \pm 1$, which implies $g(3 y, y)=$ $9 y^{2}-6 y^{2}+2 y^{2}=5 y^{2}=5$. When we set in $x=y / 2$, i.e., $y=2 x$ in the equation we obtain $x^{2}+4 x^{2}-20 x^{2}=10$, i.e., $-15 x^{2}=10$ which has no solution.
The function has no largest value (it is unbounded from above) and its smallest value is given by $f(3,1)=f(-3,-1)=5$.

Answer.

(a) Maximum is 20 and minimum -30 .
(b) Maximum is not achieved and minimum is 5 .
6. A snowball has the form of a spherical ball with center in the origin and with radius a. It is lit by the sun which is far away in the positive y-direction.

Determine the incoming effect

$$
-\iint_{S}(0,-I, 0) \cdot \hat{\boldsymbol{n}} d S
$$

where S is the part of the surface of the ball that satisfies $y>0$ and hence is lit by the sun, I is the intesity of the sun, $\hat{\boldsymbol{n}}$ is the normal direction of the surface and $d S$ is the area element.

Solution. The surface are of upper hemisphere can be described in spherical coordinates as

$$
r=a, \quad \phi: 0 \rightarrow \pi, \quad \theta: 0 \rightarrow \pi .
$$

In particular

$$
\begin{aligned}
\hat{\boldsymbol{n}} d S & =r \sin \phi \boldsymbol{r} d \phi d \theta \\
& =a \sin \phi(a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi) d \phi d \theta .
\end{aligned}
$$

The incoming effect of the ray is

$$
\begin{aligned}
-\iint_{S}(0,-I, 0) \cdot \hat{\boldsymbol{n}} d S & =\iint_{\substack{\phi: 0 \rightarrow \pi \\
\theta: 0 \rightarrow \pi}} a \sin \phi \cdot a \sin \phi \sin \theta I d \phi d \theta \\
& =a^{2} I \int_{0}^{\pi} \sin ^{2} \phi d \phi \int_{0}^{\pi} \sin \theta d \theta \\
& =a^{2} I \int_{0}^{\pi}\left(\frac{1-\cos (2 \phi)}{2}\right) d \phi \int_{0}^{\pi} \sin \theta d \theta \\
& =a^{2} I \cdot\left[\frac{\phi}{2}-\frac{\cos (2 \phi)}{4}\right]_{0}^{\pi} \cdot[-\cos \theta]_{0}^{\pi} \\
& =a^{2} I \cdot \pi / 2 \cdot 2 \\
& =\pi a^{2} I
\end{aligned}
$$

One may possibly use the divergence theorem to solve the problem. Since the vector filed is constant and hence divergence free. Add a two-dimensional disk to the problem so that you have a complete closed surface and use divergence theorem. Then you have to subtract the two-dimensional disk, from the problem. The computation on the disk is easier.

Answer. The incoming effect is $\pi a^{2} I$.

Del C

7. A region that lies on one side of a plane section through a sphere is called a spherical cap. Determine the area of the spherial cap given by

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=a^{2}, \quad z \geq h \tag{4p}
\end{equation*}
$$

where a and h are constants with $0<h<a$.
Solution. Through parametrisation of the spherical cap we have

$$
\mathbf{r}(x, y)=\left(x, y, \sqrt{a^{2}-x^{2}-y^{2}}\right)
$$

where $(x, y) \in D$, and the latter is given by $x^{2}+y^{2} \leq a^{2}-h^{2}$. The area of the cap Y is then

$$
\begin{aligned}
\iint_{Y} d S & =\iint_{D}\left|\left(\frac{x}{\sqrt{a^{2}-x^{2}-y^{2}}}, \frac{y}{\sqrt{a^{2}-x^{2}-y^{2}}}, 1\right)\right| d x d y \\
& =\iint_{D} \sqrt{\frac{x^{2}+y^{2}}{a^{2}-x^{2}-y^{2}}+1} d x d y \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\sqrt{a^{2}-h^{2}}}\left(\sqrt{\frac{r^{2}}{a^{2}-r^{2}}+1}\right) r d r \\
& =2 \pi \int_{0}^{\sqrt{a^{2}-h^{2}}}\left(\sqrt{\frac{r^{2}+a^{2}-r^{2}}{a^{2}-r^{2}}}\right) r d r \\
& =2 \pi a \int_{0}^{\sqrt{a^{2}-h^{2}}}\left(\frac{1}{\sqrt{a^{2}-r^{2}}}\right) r d r=\left\{u=a^{2}-r^{2}, d u=-2 r d r\right\} \\
& =2 \pi a \int_{a^{2}}^{h^{2}} \frac{1}{\sqrt{u}}\left(-\frac{1}{2}\right) d u \\
& =\pi a \int_{h^{2}}^{a^{2}} \frac{1}{\sqrt{u}} d u=\pi a[2 \sqrt{u}]_{h^{2}}^{a^{2}}=2 \pi a(a-h) .
\end{aligned}
$$

We may also use spherical coordinates through $r=a$, where $0 \leq \phi \leq \arccos (h / a)$ and $0 \leq \theta \leq 2 \pi$, which gives the area

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\arccos (h / a)} a^{2} \sin \phi d \phi d \theta & =a^{2}[\theta]_{0}^{2 \pi}[-\cos \phi]_{0}^{\arccos (h / a)} \\
& =2 \pi a^{2}(-h / a-(-1))=2 \pi a(a-h)
\end{aligned}
$$

Answer. The area of the cap is $2 \pi a(a-h)$ unit area.
8. At the origin, the curve $\cos (x+y)+\cos (x-y)+4 y^{2}=2$ has a branch point and it decomposes into four curve segments meeting there. Determine the directional vectors for these curve segments at the origin.

The curve $\cos (x+y)+\cos (x-y)+4 y^{2}=2$ and the direction vectors in question.

Solution. By Taylor's formula $\cos t=1-t^{2} / 2+O\left(t^{3}\right)$, applied to the left hand side of the equation, we have

$$
2-x^{2}+3 y^{2}+O\left(r^{3}\right)=2 \quad \Leftrightarrow \quad(\sqrt{3} y-x)(\sqrt{3}+y)+O\left(r^{3}\right)=0
$$

where $r=|(x, y)|=\sqrt{x^{2}+y^{2}}$.
Divide both sides with $r^{2}=x^{2}+y^{2}$,

$$
\frac{\sqrt{3} y-x}{\sqrt{x^{2}+y^{2}}} \cdot \frac{\sqrt{3} y+x}{\sqrt{x^{2}+y^{2}}}+O(r)=0 .
$$

Letting $(x, y) \rightarrow(0,0)$, we have

$$
\frac{\sqrt{3} y-x}{\sqrt{x^{2}+y^{2}}} \cdot \frac{\sqrt{3} y+x}{\sqrt{x^{2}+y^{2}}} \rightarrow 0
$$

By continuity of the above expressions (in the punctured disk around the origin) and that the curve is connected we obtain

$$
\text { (1) } \frac{\sqrt{3} y-x}{\sqrt{x^{2}+y^{2}}} \rightarrow 0 \quad \text { or } \quad \text { (2) } \frac{\sqrt{3} y+x}{\sqrt{x^{2}+y^{2}}} \rightarrow 0
$$

i.e.,

$$
\text { (1) } x=\sqrt{3} y+o(r) \quad \text { eller (2) } x=-\sqrt{3} y+o(r) \text {. }
$$

In case (1) we have
$\frac{(x, y)}{\sqrt{x^{2}+y^{2}}}=\frac{(\sqrt{3} y, y)+o(r)}{\sqrt{y^{2}+3 y^{2}+o\left(r^{2}\right)}}=\frac{y}{|y|} \frac{1}{2}(\sqrt{3}, 1)+\frac{o(r)}{r} \rightarrow \begin{cases}\frac{1}{2}(\sqrt{3}, 1), & \text { om } k \rightarrow 0+ \\ -\frac{1}{2}(\sqrt{3}, 1), & \text { om } k \rightarrow 0-\end{cases}$
In case (2) we have
$\frac{(x, y)}{\sqrt{x^{2}+y^{2}}}=\frac{(-\sqrt{3} y, y)+o(r)}{\sqrt{y^{2}+3 y^{2}+o\left(r^{2}\right)}}=\frac{y}{|y|} \frac{1}{2}(-\sqrt{3}, 1)+\frac{o(r)}{r} \rightarrow \begin{cases}\frac{1}{2}(-\sqrt{3}, 1), & \text { om } k \rightarrow 0+ \\ \frac{1}{2}(\sqrt{3},-1), & \text { om } k \rightarrow 0-\end{cases}$
The four directions are är alltså $\pm \frac{1}{2}(\sqrt{3}, 1)$ and $\pm \frac{1}{2}(-\sqrt{3}, 1)$.
An alternative way is to rewrite the equation as

$$
2 \cos x \cos y+4 y^{2}=2
$$

The gradient of the left hand side is är $\left(-2 \sin x \cos y, 8 y^{2}-\cos x \sin y\right)$ and we can solve y as a function of x by implicit funktion theorem. Differentiating the equation twice we obtain

$$
2 \sin x \cos y-2 y^{\prime} \cos x \sin y+8 y^{\prime} y=0
$$

and

$$
\begin{array}{r}
-2 \cos x \cos y+2 y^{\prime} \sin x \sin y-2 y^{\prime \prime} \cos x \sin y+2 y^{\prime} \sin x \sin y \\
-2\left(y^{\prime}\right)^{2} \cos x \cos y+8 y^{\prime \prime} y+8\left(y^{\prime}\right)^{2}=0
\end{array}
$$

Uppon approaching the origin the limits of $\sin x, \sin y$ and y wil be zero, while the limit of $\cos x$ and $\cos y$ is one. If α is the limit for y^{\prime} and β for $y^{\prime \prime}$ we obtain

$$
-2 \cdot 1 \cdot 1+2 \alpha \cdot 0 \cdot 0-2 \beta \cdot 1 \cdot 0+2 \beta \cdot 0 \cdot 0-2 \alpha^{2} \cdot 1 \cdot 1+8 \beta \cdot 0+8 \alpha^{2}=0
$$

which gives $6 \alpha^{2}=2$, i.e., $\alpha= \pm 1 / \sqrt{3}$. The directions will be as mentioned above.

Answer. The four directions are $\frac{1}{2}(\pm \sqrt{3}, \pm 1)$.
9. Let the curve \mathcal{C} be the triangle with vertices at the points $(3,4),(-4,0),(2,-3)$, oriented clockwise. Compute

$$
\begin{equation*}
\oint_{\mathcal{C}} \frac{-y d x+x d y}{x^{2}+y^{2}} . \tag{4p}
\end{equation*}
$$

Solution. The vector field

$$
\mathbf{F}=\left(F_{1}, F_{2}\right)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

satisfies

$$
\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}
$$

outside the origin. We may apply Greens theorem in a different way, and change the integration path, as follows. Define a new curve \mathcal{C}^{\prime} (this is the unit circle) parametrized by

$$
(x(t), y(t))=(\cos t, \sin t), \quad 0 \leq t \leq 2 \pi
$$

The integral we are looking for can now be transformed (through Greens theorem) as follows

$$
\begin{aligned}
\oint_{\mathcal{C}} \frac{-y d x+x d y}{x^{2}+y^{2}} & =\oint_{\mathcal{C}^{\prime}} \frac{-y d x+x d y}{x^{2}+y^{2}} \\
& =\int_{0}^{2 \pi} \frac{-\sin t(-\sin t)+\cos t \cos t}{\cos ^{2} t+\sin ^{2} t} d t \\
& =\int_{0}^{2 \pi} d t \\
& =2 \pi
\end{aligned}
$$

Answer. $\oint_{\mathcal{C}} \frac{-y d x+x d y}{x^{2}+y^{2}}=2 \pi$.

