

Suggested solutions for exam

Version Preparatory course in mathematics

SF0003 Introductory Course in Mathematics Friday, August 25, 2017

1. Simplify $\frac{\frac{7}{16} - \frac{5}{8}}{\frac{7}{10} - \frac{3}{5}}$ by writing over a common denominator. The answered should be reduced as much as possible.

Suggested solution: We have

$$\frac{7/16 - 5/8}{7/10 - 3/5} = \frac{16}{16} \cdot \frac{7/16 - 5/8}{7/10 - 3/5} = \frac{7 - 10}{16(7/10 - 3/5)}$$
$$= \frac{10}{10} \cdot \frac{-3}{16(7/10 - 3/5)} = \frac{-30}{16(7 - 6)} = -\frac{15}{8}$$

2. Simplify $\frac{2}{x^2 - 4} - \frac{1}{x^2 + 2x}$ as much as possible.

Suggested solution: We have $x^2 - 4 = (x + 2)(x - 2)$ and $x^2 + 2x = x(x + 2)$, so the smallest common denominator is x(x + 2)(x - 2). This gives

$$\frac{2}{x^2 - 4} - \frac{1}{x^2 + 2x} = \frac{2}{(x+2)(x-2)} - \frac{1}{x(x+2)}$$
$$= \frac{2x}{x(x+2)(x-2)} - \frac{x-2}{x(x+2)(x-2)}$$
$$= \frac{2x - (x-2)}{x(x+2)(x-2)}$$
$$= \frac{x+2}{x(x+2)(x-2)}$$
$$= \frac{1}{x(x-2)}.$$

3. Determine a quadratic equation on the form $ax^2 + bx + c = 0$ which has the roots $3 + \sqrt{7}$ and $3 - \sqrt{7}$.

Suggested solution: One such equation is $(x - (3 + \sqrt{7}))(x - (3 - \sqrt{7})) = 0$. To get the equation on the wanted form we multiply and simplify to get

$$0 = (x - (3 + \sqrt{7}))(x - (3 - \sqrt{7}))$$

= $((x - 3) - \sqrt{7})((x - 3) + \sqrt{7}))$
= $(x - 3)^2 - (\sqrt{7})^2$
= $x^2 - 6x + 9 - 7$
= $x^2 - 6x + 2$.

4. Solve the equation $e^{x^2+2x} = 1$.

Suggested solution: The equation $e^{x^2+2x} = 1$ is satisfied precisely when $x^2 + 2x = 0$. This equation has the solutions x = 0 and x = -2.

5. Determine the centre and the radius of the circle which is given by the equation $x^2+6x+y^2-4y = -4$.

Suggested solution: We complete the square and find

$$-4 = x^{2} + 6x + y^{2} - 4y$$

= $x^{2} + 6x + 9 - 9 + y^{2} - 4y + 4 - 4$
= $(x + 3)^{2} - 9 + (y - 2)^{2} - 4$.

or

$$9 = (x+3)^2 + (y-2)^2$$

This is the equation for a circle with centre (x, y) = (-3, 2) and radius r = 3.

6. Solve the equation $\sin x = \sin \frac{\pi}{5}$.

Suggested solution: We note immediately that $x = \pi/5$ is one solution to the equation, and considering the unit circle we conclude that $x = \pi - \pi/5 = 4\pi/5$ is the only further solution between 0 and 2π .

We get all solutions to the equation by adding integer multiples of 2π ,

$$x = \frac{\pi}{5} + 2n\pi$$
 and $x = \frac{4\pi}{5} + 2n\pi$,

where *n* is an arbitrary integer.