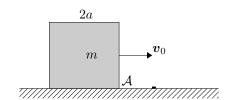
Rigid Body Dynamics (SG2150) Exam, 2017-10-27, 14.00-18.00

Arne Nordmark Institutionen för Mekanik Tel: 790 71 92 Mail: nordmark@mech.kth.se

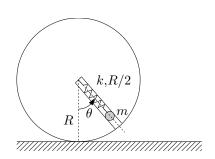
Each problem gives a maximum of 3 points, so that the total maximum is 18. Grading: 1-3 F; 4-5 FX; 6: E; 7-9 D; 10-12 C; 13-15 B; 16-18 A.

Allowed equipment: Handbook of mathematics and physics. One one-sided A4 page with your own compilation of formulae.



Problem 1. A homogeneous cube of mass m and with side length 2a is sliding on a smooth horizontal plane with initial velocity v_0 to the right, when the lower right corner \mathcal{A} encounters a low stop in the plane. The impact causes the corner \mathcal{A} to loose all velocity. Compute the angular velocity of the cube immediately after the impact.

If the initial velocity $v_0 \leq v_c = \sqrt{8ga/3}$, then the corner \mathcal{A} will remain in contact with the stop after impact for tilt angles up to $\pi/4$. Show that $v_0 = v_c$ is enough initial velocity to reach tilt angle $\pi/4$ (which will make the cube overturn instead of falling back).



Problem 2. A light cylindrical shell of radius R is rolling on a rough horizontal plane. On the inside surface of the shell a thin hollow radial light tube of length R is attached. Inside the smooth tube, a particle of mass m can slide, and the particle is connected with the inner end point of the tube through a spring with spring constant k = 4mg/R and unstressed length R/2.

Find a stable equilibrium solution for the system, and find the frequencies of small oscillations about this equilibrium.

Problem 3. A thin homogeneous circular disc of mass m and radius r is rolling on a horizontal rough plane. At the centre \mathcal{A} of the disc, a light perpendicular axis \mathcal{AB} of length 2r is attached, and at the end point \mathcal{B} a point mass m is attached. We introduce a basis triad B such that e_3^B points in the direction \mathcal{BA} , e_1^B is horizontal, and e_2^B has a positive vertical up component. Let the angular velocity of the body be $\omega = \omega_1 e_1^B + \omega_2 e_2^B + \omega_3 e_3^B$. Now assume that the motion happens to be such that the axis \mathcal{AB} remains horizontal. Using this assumption show that

- $\omega_1 = 0$ for all time.
- Both ω_2 and ω_3 are constant in time.
- There is a relation giving $\omega_3(\omega_2)$.

If possible, also try to describe the path the contact point $\mathcal C$ traces out on the plane.

Problem 4. For the rigid body (disc + point mass) of Problem 3, compute all three principal moments of inertia about the contact point C.

Problem 5. Spherical coordinates. Starting with the fixed triad $O:[e_x,e_y,e_z]=[e_1^O,e_2^O,e_3^O]$, first perform a simple rotation about the e_3^O axis by an angle φ , followed by a simple rotation about the new 2-axis an angle θ to get a final triad A. Relabel the basis vectors in the triad A as $e_r=e_3^A$, $e_\theta=e_1^A$, and $e_\varphi=e_2^A$, and finally let the position vector of a point be $\mathbf{r}=re_r(\theta,\varphi)$. The variables $r(t),\theta(t),\varphi(t)$ are the spherical coordinates of the point. Use this construction the compute the angular velocity ${}^O\omega^A$ of the triad A and then use this to compute the velocity

$$oldsymbol{v} = rac{{}^O doldsymbol{r}}{dt} = rac{{}^A doldsymbol{r}}{dt} + {}^O oldsymbol{\omega}^A imes oldsymbol{r}.$$

of the point. Both vectors ${}^{O}\omega^{A}$ and v should be expressed using the spherical basis vectors $e_{r}, e_{\theta}, e_{\varphi}$.

Problem 6. Routh's method for cyclic coordinates. In a system with two generalised coordinates q_1 and q_2 , let q_2 be cyclic so the Lagrange function can be written $L(q_1, \dot{q}_1, \dot{q}_2, t)$. The generalised momentum corresponding to q_2 is

$$p_2 = \frac{\partial L}{\partial \dot{q}_2}(q_1, \dot{q}_1, \dot{q}_2, t).$$

Solve this relation for \dot{q}_2 to get $\dot{q}_2=\dot{q}_2(q_1,\dot{q}_1,p_2,t)$. Define the Routh function

$$R(q_1, \dot{q}_1, p_2, t) = L(q_1, \dot{q}_1, \dot{q}_2, t) - p_2 \dot{q}_2.$$

Show that for any values of q_1, \dot{q}_1, p_2, t with corresponding \dot{q}_2 , we have

 $\frac{\partial R}{\partial \dot{q}_1} = \frac{\partial L}{\partial \dot{q}_1}$ and $\frac{\partial R}{\partial q_1} = \frac{\partial L}{\partial q_1}$

(Remember that when taking partial derivatives, L is a function of $q_1,\dot{q}_1,\dot{q}_2,t$, whereas R is a function of $q_1,\dot{q}_1,p_2,t!$)