
Tildatenta​ ​2017-10-20​ ​Lösningsskiss

E-delen

1. KMP​ ​​ ​PAPPAPARTY

​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​next[i]​ ​=​ ​0​ ​​ ​1​ ​​ ​0​ ​​ ​​ ​​ ​2​ ​​ ​1​ ​​ ​0​ ​​ ​​ ​​ ​4​ ​​ ​3​ ​​ ​1​ ​​ ​1

2. Parent-pekare

​ ​Utskriftfunktionen​ ​fungerar​ ​så​ ​här:

1. Om​ ​noden​ ​inte​ ​är​ ​None
a. gör​ ​vi​ ​först​ ​ett​ ​rekursivt​ ​anrop​ ​med​ ​den​ ​nod​ ​som​ ​parent​ ​pekar​ ​på
b. och​ ​sen​ ​skriver​ ​vi​ ​ut​ ​nodens​ ​ord

Vi​ ​anropar​ ​med​ ​första​ ​noden,​ ​gör​ ​ett​ ​rekursivt​ ​anrop,​ ​men​ ​sparar​ ​först​ ​på​ ​stacken.
Samma​ ​sak​ ​för​ ​nästa​ ​osv...​ ​I​ ​fjärde​ ​rekursiva​ ​anropet​ ​är​ ​parent​ ​None,​ ​rekursionen
avbryts.​ ​Sen​ ​poppas​ ​föregående​ ​anrop​ ​från​ ​stacken,​ ​print-satsen​ ​utförs,​ ​osv.

3. Kryptering

One-time​ ​pad:​ ​​viktigt​​ ​med​ ​säker​ ​nyckelöverföring.​ ​Bägge​ ​parter​ ​måste​ ​ha​ ​nyckeln
(samma​ ​nyckel​ ​används​ ​vid​ ​kryptering​ ​och​ ​dekryptering).
RSA:​​ ​​inte​ ​viktigt​​ ​med​ ​säker​ ​nyckelöverföring.​ ​Den​ ​som​ ​krypterar​ ​meddelandet​ ​kan
använda​ ​offentliga​ ​(publika)​ ​nyckeln,​ ​den​ ​som​ ​dekrypterar​ ​har​ ​sin​ ​egen​ ​privata
nyckel,​ ​som​ ​inte​ ​behöver​ ​föras​ ​över​ ​till​ ​någon​ ​annan.

4. Hasha​ ​pappor

5. Komplexitet

1. Vilken​ ​Ordo-klass?
a. O(nlogn)
b. O(n²)
c. O(n)
d. O(n²)
e. O(logn)
f. O(k^n)

2. Rangordning:​ ​O(logn),​ ​O(n),​ ​O(nlogn),​ ​O(n²),​ ​O(k^n)
..dvs​ ​​ ​​ ​​ ​​ ​​ ​E​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​C​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​A​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​B/D​ ​​ ​​ ​​ ​​ ​​ ​​ ​F

6. Syntax​ ​för​ ​faderskapstest

a)​ ​TH01​ ​06,07 Godkänns​ ​inte,​ ​<Barn>​ ​och​ ​<Pappa>​ ​saknas/<Antal>​ ​start​ ​ej​ ​0:a
b)​ ​D5S818​ ​vWA​ ​CSF1PO​ ​TH01 Godkänns​ ​inte,​ ​för​ ​många​ ​<Locus>/<Mamma>​ ​etc​ ​saknas
c)​ ​CSF1PO​ ​19,21​ ​19,19​ ​10,21 Godkänns
d)​ ​vWA​ ​15,16​ ​CSF1PO​ ​14,14​ ​TH01​ ​7,9 Godkänns​ ​inte,​ ​<Locus>​ ​istället​ ​för​ ​<Barn>

C-delen
7. Komprimering

Många​ ​olika​ ​jämförelser​ ​möjliga.

egenskap Huffmankodning Lempel-Ziv

antal​ ​koder

Det​ ​finns​ ​m​ ​=​ ​100​ ​000​ ​tecken​ ​(ca
2¹⁷).​ ​Varje​ ​tecken​ ​får​ ​en​ ​egen
binär​ ​kod​ ​(totalt​ ​m​ ​koder)​ ​​ ​på​ ​17
bitar​ ​per​ ​tecken​ ​i​ ​medel.​ ​Om​ ​vissa
tecken​ ​är​ ​vanligare​ ​får​ ​dessa
kortare​ ​koder​ ​med
Huffmankodning.

Tabellen​ ​kommer​ ​att​ ​innehålla
inte​ ​bara​ ​de​ ​enskilda​ ​tecknen​ ​utan
också​ ​vanliga
teckenkombinationer,​ ​alltså​ ​får
tabellen​ ​storleken​ ​m+x
Om​ ​vissa​ ​följder​ ​av​ ​tecken
förekommer​ ​flera​ ​gånger​ ​hamnar
dessa​ ​i​ ​tabellen​ ​och​ ​får​ ​egna
koder.​ ​Tabellen​ ​blir​ ​mycket​ ​stor.
(Värsta​ ​fallet:​ ​Anta​ ​att​ ​vi​ ​blandar
alfabeten,​ ​och​ ​att​ ​varje​ ​namn​ ​är​ ​k
tecken​ ​långt.​ ​Totala​ ​antalet
permutationer​ ​är​ ​m!/(m-k)!)
Förslag:​ ​Begränsa​ ​längden​ ​på​ ​de
teckenföljder​ ​som​ ​kan​ ​läggas​ ​in
(maxlängd​ ​för​ ​ett​ ​namn).

tidskomplexitet​ ​=

tiden​ ​för​ ​att

1. skapa​ ​koderna
2. komprimeringen:​ ​slå​ ​upp

koden​ ​för​ ​varje​ ​tecken

m​ ​=​ ​antal​ ​tecken​ ​i​ ​skriftspråken

n​ ​=​ ​antal​ ​tecken​ ​i​ ​namnlistan

1.Skapa​ ​koderna:
- sorting​ ​(O(mlogm)
- grenar​ ​O(mlogm)

2.Komprimeringen:
- hashtabell​ ​O(m)
- koda​ ​O(n)

Totalt:
O(mlogm)​ ​+​ ​O(n)

Vi​ ​går​ ​bara​ ​igenom​ ​texten​ ​en​ ​gång
(O(n))​ ​och​ ​komprimerar​ ​samtidigt
som​ ​vi​ ​skapar​ ​tabellen.​ ​För​ ​varje
tecken​ ​i​ ​namnen​ ​måste​ ​vi​ ​slå​ ​upp​ ​i
tabellen,​ ​och​ ​ev.​ ​lägga​ ​in​ ​en​ ​ny
kod.
Bäst​ ​att​ ​i​ ​förväg​ ​skapa​ ​hashabell
av​ ​storlek​ ​m+x.

8. Heap​ ​eller​ ​binärt​ ​sökträd

1. Lösning

a. Se​ ​ovan​ ​till​ ​vänster.​ ​Hepvillkoret​ ​måste​ ​vara​ ​uppfyllt,​ ​dvs​ ​föräldern​ ​större​ ​än
barnen​ ​(eller​ ​tvärtom​ ​för​ ​min-heap),​ ​för​ ​varje​ ​nod.

b. Se​ ​ovan​ ​till​ ​höger.​ ​Mindre​ ​sorteras​ ​till​ ​vänster,​ ​större​ ​till​ ​höger,​ ​gäller​ ​för​ ​varje
nod.

c. Struktur​ ​och​ ​ordning,​ ​t​ ​ex​ ​något​ ​av​ ​följande:
i. En​ ​heap​ ​måste​ ​vara​ ​komplett,​ ​det​ ​måste​ ​inte​ ​ett​ ​binärtäd
ii. I​ ​en​ ​heap​ ​måste​ ​heapvillkoret​ ​vara​ ​uppfyllt​ ​för​ ​varje​ ​nod,​ ​binärträdet

har​ ​mindre​ ​värden​ ​till​ ​vänster​ ​och​ ​större​ ​till​ ​höger.
iii. En​ ​heap​ ​lagras​ ​i​ ​en​ ​array,​ ​ett​ ​binärträd​ ​har​ ​noder​ ​med​ ​left-​ ​och

right-pekare
iv. Även​ ​praktiska​ ​experiment​ ​duger​ ​som​ ​svar,​ ​t​ ​ex​ ​“prova​ ​att​ ​stoppa​ ​in

ett​ ​nytt​ ​element”,​ ​“skriv​ ​ut​ ​trädet”
d. Snabb​ ​sökning.
e. Sortering​ ​(heapsort)​ ​eller​ ​prioritetskö​ ​eller​ ​bästaförstsökning.

A-delen

9. Lukes​ ​pappas​ ​problem
a)​ ​Algoritm
Indata:​ ​Darth:s​ ​startpunkt​ ​p​start

Rebellernas​ ​gömställe​ ​p​slut

Matrisen​ ​​connected​​ ​som​ ​anger​ ​vilka​ ​punkter​ ​som​ ​är​ ​förbundna​ ​med​ ​maskhål.
Utdata:​ ​Utskrift​ ​av​ ​en​ ​lista​ ​med​ ​punkter​ ​p​start​...p​slut​​ ​som​ ​ger​ ​kortaste​ ​vägen

1. Skpa​ ​en​ ​datastruktur​ ​​used​​ ​för​ ​använda​ ​punkter​ ​(se​ ​b)
2. Skapa​ ​en​ ​kö
3. Lägg​ ​in​ ​en​ ​nod​ ​p​start​ ​​med​ ​förälder​ ​None​ ​i​ ​kön
4. Markera​ ​p​start​​ ​som​ ​True​ ​i​ ​​used
5. Plocka​ ​ut​ ​en​ ​punkt​ ​​p​​ ​ur​ ​kön​ ​(med​ ​dequeue)
6. Gå​ ​igenom​ ​varje​ ​matriselement​ ​på​ ​p:s​ ​rad​ ​i​ ​matrisen​ ​​connected​:

a. Om​ ​p​i​​ ​inte​ ​redan​ ​är​ ​använd​ ​och​ ​om​ ​​connected​[​p​,p​i​]​ ​är​ ​True:
i. Lägg​ ​in​ ​en​ ​nod​ ​p​i​​ ​med​ ​​p​​ ​som​ ​förälder​ ​kön
ii. Lägg​ ​till​ ​p​i​​ ​till​ ​datastrukturen​ ​med​ ​använda​ ​punkter
iii. Avbryt​ ​om​ ​p​i​ ​​=​ ​p​slut​​ ​,​ ​skriv​ ​ut​ ​lösningen​ ​(enligt​ ​E-uppgift​ ​2)

7. Upprepa​ ​från​ ​punkt​ ​4​ ​så​ ​länge​ ​kön​ ​inte​ ​är​ ​tom
8. Om​ ​kön​ ​blev​ ​tom,​ ​berätta​ ​för​ ​Darth​ ​att​ ​ingen​ ​väg​ ​finns​ ​(om​ ​du​ ​vågar)

b)​ ​Datastrukturer

A. Boolesk​ ​lista​ ​​used​​ ​med​ ​n​ ​platser,​ ​använd[i]​ ​sätts​ ​till​ ​True​ ​i​ ​5.a.ii
B. Kö​ ​med​ ​noder
C. Noder​ ​med​ ​en​ ​punkt​ ​och​ ​en​ ​pappapekare
D. (och​ ​den​ ​givna​ ​matrisen​ ​connected)

c)​ ​Demonstrera​ ​hur​ ​algoritmen​ ​fungerar

d)​ ​Tidskomplexitet

Problemträdet​ ​blir​ ​aldrig​ ​större​ ​än​ ​de​ ​n​ ​punkterna
För​ ​varje​ ​punkt​ ​går​ ​vi​ ​igenom​ ​n-1​ ​matriselement
Att​ ​kontrollera​ ​dumbarn​ ​beror​ ​på​ ​vald​ ​datastruktur,​ ​men​ ​max​ ​n

Totalt​ ​​ ​​ ​n*(n-1​ ​+​ ​n)​ ​dvs​ ​O(n²)

:

