by

B
£ KTH %

% VETENSKAP %
o9 OCH KONST
5&9 ge‘ﬁ

TINES

ID2223 Scalable Machine Learning and Deep Learning

Examiner: Jim Dowling
Associate Prof @ KTH
jdowling@kth.se

Course Assistants
Alex Ormenisan aaor@kth.se
Kamal Hakimzadeh kamal2@kth.se



mailto:jdowling@kth.se
mailto:aaor@kth.se
mailto:kamal2@kth.se

Cllmblng Deep Learnlng Mountain

Machine Translation —
Speech Recognition

Computer Vision
Anomoly Detection

2017-11-02 [https://www.pinterest.se/pin/328199891571564768/] 2/94




ng Deep Learning Mountain Deep Learning

: Machine Translation @ Computer Vision
Speech Recognition

-~

o o
A

iy

i”é?K?I—;%% 2017-11-02 ID2223, Large Scale Machine Learning and Deep Learning, Jim Dowling 3/94

VETENSKAP

28, OCH KONST 2%

e




ID2223 Scalable Machine Learning

eDistributed Machine Learning Algorithms

- Linear Regression, Logistic Regression
- Spark ML

eDeep Learning
- Stochastic Gradient Descent
- Training/Regularization/Optimization
- Convolutional Neural Networks
- Recurrent Neural Networks

eReinforcement Learning
- Deep Reinforcement Learning
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Learning Objectives

e Be able to re-implement a classical machine learning
algorithm as a scalable machine learning algorithm

e Be able to design and train a layered neural network system

e Apply a trained layered neural network system to make
useful predictions or classifications in an application area

e Be able to elaborate the performance tradeoffs when
parallelizing machine learning algorithms as well as the
limitations in different network environments

e Be able to identify appropriate distributed machine learning
algorithms to efficiently solve classification and pattern
recognition problems.
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eDeep Learning, Yoshua Bengio, Ian Goodfellow and
Aaron Courville, MIT Press.

- Pre-print available on course homepage

eOther course material (large-scale ML, SparkML)
gleamed from various sources
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Examination

eLAB1 - Programming Assignments, 3.0

-Lab 1

- 20 % of coursework grade.
- Grading will happen on 20t November at “redovisning” time.

- Lab 2

- 20 % of coursework grade.
- Grading will happen on 29t November at “redovisning” time.

- Project
- 60% of coursework grade. Grading will happen in early January.

LAB1 passing grade: 50% or more from any
combination of labs and the project

eExamination, 4.5, grade scale: A, B, C, D, E, FX, F
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Labs/Project

oSelf-selected Groups of 2 (group of 1 ok) for labs.
oSelf-selected Groups of 2-4 for the project.

eLabs will include Scala/Python programming

- Spark ML — Graded on 18th November at lab
- Tensorflow Python — Graded on 30t November at lab
eProject

- Selection of a large dataset and Method (Deep Learning):
- Dec 12t - project discussion session.
- Dec 15™ - project description due.

- Early/mid January — demonstrated as a demo and short report
delivered to Canvas.
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Large Data Sets Available on SICS ICE

oSICS ICE
- 36 node Hadoop Cluster 4 >
- Nvidia GTX 1080 \

eWWW.hops.site

- Spark

- Tensorflow RI

- Large Data Sets SE

- Notebooks: SICS ICE: A datacenter research

- Zeppelin and Jupyter and test environment
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Scalable Machine Learning

Data
Parallel

Processing
. Supervised ML
Mach%ne . Distributed
Learning Deep Learning Systems

Deep RL

A

1D2223 Topics
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Deep Learning is the new Steam Engine

e1765 Water Pump
¢1819 Steamship
1825 Locomotive
1852 Airship
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Brief History of Deep Learning

©*1950s/94s
- Perceptron, XOR Problem Bias

¢1980s o) "
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2009 Speech Recognition

e Acoustic modelling with a

183 labels pre-trained deep neural net
not pre-trained T (Mohamed, Dahl, and
2000 binary hidden units Hinton, 2009)
)
2000 binary hidden units
1 . *23% phone error rate vs
b AL T previous best of 24.4% on
2000 binary hidden units TIMIT
1
11 frames of ° c 7 :
e By 2012, Android’s acoustic

model was a DL network
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2012 Image Recognition

Research

(  Revolution of Depth 28.2

25.8

152 layers

\\
\
‘ 22 layers ‘ ‘ 19 Iayers ‘

357 l_ I 8 layers | | 8Iayers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

[slide from Kaiming He]
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End-to-End Deep Learning (Speech)

Old State-of-the-Art «

Acoustic Model \ cat”
Decoder |mm|“door”
B i f 13 D)
%ﬁa}?uf a&!ﬁ‘i — Feature / SCTVET
¢ .
Audio Representation I
Pronunciation Language
Model Model

Deep Supervised Learning

:::%; & ’ Cccat,’

l‘* : g‘f 1 :“\ . . 113 99
z'&’lg ik ) Deep Learning Acoustic Models mmm) | “door
Audio “server”
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End-to-End Deep Learning (Vision)

State-of-the-Art 2012

(14

. Support cat”
l — Hand Engineered )| Vector m) | “door”

Features Machine “sorver”

AlexNet 2012: Deep Supervised Learning

“Cat,’
l ) 8-layer NN with 60 million params | mmmp| “door”

“server”’

1.2 million training images from ImageNet
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Automated Image Captioning
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A person riding a Two dogs play in the grass. Adogis ]uplng to catcha
frisbee.

motorcycle on a dirt road.
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A group of young people Two hockey players are fighting

playing a game of frisbee. over the puck. A refrigerator filled with lots of

food and drinks.

A herd of elephants walking A close up of a cat laying A red motorcycle parked on the A yellow school bus parked in
across a dry grass field. on a couch. side of the road. a parking lot.

[Image captioning, Vinyals et al. 2015]
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Convnets for Music Recommendation




Convnets for Art

1
||llllllll!l

NeuralStyle, Gatys et al. 2015
deepart.i0, Prisma, etc.

DeepDream reddit.com/r/deepdream
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Email Smart Reply with RNNs

X I ®© v | | X K ®© v

Turkey! Server issues

o dcorrado 537PM o ’ Dan Mané 522PM
to me * to me :

Hi all, Hi team,

We wanted to invite you to join us for an early

Thanksgiving on November 22nd, beginning The server appears to be dropping about 10% of

around 2PM. Please bring your favorite dish! RSVP by requests (see attached dashboards). There hasn't been

next week. a new release since last night, so I'm not sure what's

going on. |s anyone looking into this?
Dave

c Reply = c Reply =

I'll seeif | can find

Sorry, we won't be : . ; )
y ' I'll check on it. I'm on it.

@ Count us in! we'll be there!

Y 14 able to make it out.
FRTHS 2017-11-02 20/94
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DeepRL for Playing Games

Z{LIJI \!—_‘\ OO
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m D ) | (choz)

— T -0 CeO

Biseante oo AlphaGo
I g

AlphaGo, Silver et al 2016
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Self-Driving Cars
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DeepMind WaveNet

A deep generative model of raw audio waveforms
- Has to be heard to be believed

US English Mandarin Chinese
|
4.55
4.21 4.21
4.08
3.86
3.79
3.67
3.47
Concatenative Parametric WaveNet Human Speech Concatenative Parametric WaveNet Human Speech

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Learning Large-Scale ML
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Large-Scale Machine Learning at Google

Machine
Resource Monitoring
. Management
Configuration Data Collection Serving
Infrastructure

Analysis Tools

Feature

\ Process
Extraction

Management Tools

Figure 1: Only a small fraction of real-world ML systems i1s composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

[Hidden Technical Debt in Machine Learning Systems, Schulley et Al, NIPS 2015]
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Large Scale Machine Learning in Industry

eMachine learning is key to every part of our
business, from image recognition, to advertising
targeting, to search rankings, to abuse detection, to
personalization...

eInstead of just using a “click” as the basic unit of
engagement, machine learning enables us to track
exactly how long a person spends reading an article,
or if they are reading related stories.....

- Peter Cnudde, VP of Engineering, Yahoo

https://www.infoq.com/articles/peter-cnudde-yahoo-big-data 26194




Large Scale Machine Learning in Industry

e\We developed a distributed word embedding
algorithm to match user queries against ads with
similar semantic vectors, instead of traditional
syntactic matching....

eDeep learning powers Flickr’'s scene detection, object
recognition, and computational aesthetics.....

o With Esports, we detect game highlights
automatically...

- Peter Cnhudde, VP of Engineering, Yahoo

ap, : : :
Fesyy 20171102 https://www.infoq.com/articles/peter-cnudde-yahoo-big-data a
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What Changed?
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What changed?

Weight Initialization Non-Linearity
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Increasing Data Volumes

2017-11-02

2016 INTERNETMINUTE?
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More data means Bigger DNN Models

Performance Large DNN

Small DNN

Traditional Al

1 |
\ I

TTveo Amount Labelled Data
Hand-crafted

can outperform
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Graphical Processing Units (GPUs)

Peak Double Precision FLOPS Peak Memory Bandwidth
GFLOPS GB/s
3500 600
3000 K80 K80
500
2500
400
2000
300
1500 M2090
2
1000 M2090 %~ M1060
Haswell Haswell
. : Ivy Bridge
estmere __o—oo—9
5 o———o— o I =
2008 2009 2010 2011 2012 2013 2014 2008 2009 2010 2011 2012 2013 2014
~#—NVIDIA GPU —#—x86 CPU ~#—NVIDIA GPU —#—x86 CPU

[nvidia.com]
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What changed?

|

“The Godfather é'}» 0

of deep learning

l(?ggl
>
- 4
“~ o
.

UDACITY TALKS

Yann LeCun

Director of Al Research

facebook
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Combining Systems and AI Research

eTo build bigger models with
more data, we need systems
experts

o Jeff Dean: expert systems
researcher led the development
of DistBelief

eOpenAl, Baidu, Google,
Microsoft, Facebook all
organized with collaborating
systems and Al teams

34/94



Machine Learning Papers have Changed

4.1. Image Features and Kernels

We selected or designed several state-of-art features that
are potentially useful for scene classification. GIST features
[21] are proposed ifically for scene gnition tasks.

layout.

GIST: The GIST descriptor [21] computes the output en-
ergy of a bank of 24 filters. The filters are Gabor-like filters
tuned to 8 orientations at 4 different scales. The square out-
put of each filter is then averaged on a4 x 4 grid.

HOG2x2: First, histogram of oriented edges (HOG)
descriptors [4] are densely extracted on a regular grid at
steps of 8 pixels. HOG features are computed using the
code available online provided by [9], which gives a 31-
dxmensmn dcscnptor for each node of the grid. Then, 2 x 2

Dense SIFT features are also found to perform very well at
the 15-category dataset [17]. We also evaluate sparse SIFTs
as used in “Video Google™” [27]. HOG features pmvldc ex-

s are stacked together to form
descriptor with 124 di i

LBP: Local Binary Pattens (LBP) [20] is a powerful
texture feature based on occurrence histogram of Iocal bi-

ment. This method of image hing has been ined

lhomughly by Torralba et al. [28] for the purpose of object
ion and scene i

nary patterns. We can regard the scene i as a
texture classification problem of 2D images, and therefore
apply this model to our problem. We also try the rotation
invariant extension version [2] of LBP to examine whether
rotation invariance is suitable for scene recognition.
Sparse SIFT histograms: As in “Video Google™ [27],
we build SIFT features at Hessian-affine and MSER [19] in-
terest points. We cluster each set of SIFTs, independently,

p The stacked d
spaually overlap. This 2 x 2 neighbor stacking is important
because the higher feature dlmcnslonahly provndcs more

cellent performance for object and human g tasks
[4, 9], so it is interesting to examine their utility for scene
recognition. While SIFT is known to be very good at find-
ing repeated image content, the self-similarity descriptor
(SSIM) [26] relates images using their internal layout of lo-
cal self-similarities. Unlike GIST, SIFT, and HOG, which
are all local gradient-based approaches, SSIM may provide
a distinct, complementary measure of scene layout that is
somewhat appearance invariant. As a baseline, we also in-
clude Tiny Images [28], color histograms and straight line
histograms. To make our color and texton histograms more
invariant to scene layout, we also build histograms for spe-
cific geometric classes as determined by [13]. The geomet-
ric classification of a scene is then itself used as a feature,
hopefully being invariant to appearance but responsive to

descriptive power. The d d into 300

into dictionaries of 1,000 visual words using k-means. An
image is represented by two histograms counting the num-
ber of sparse SIFTs that fall into each bin. An image is

by two 1,000 di ion hi where each

are
visual words by k-means. With this visual word rep
tation, three-level spatial hi are puted on grids
of 1 x 1,2 x 2 and 4 x 4. Histogram intersection[17] is
used to define the similarity of two histograms at the same
pyramid level for two images. The kemel matrices at the
three levels are normalized by their respective means, and
lincarly combined together using equal weights.

Dense SIFT: As with HOG2x2, SIFT descriptors are
densely extracted [17] using a flat rather than Gaussian win-
dow at two scales (4 and 8 pixel radii) on a regular grid at
steps of 5 pixels. The three descriptors are stacked together
for each HSV color channels, and quantized into 300 visual
words by k-means, and spatial pyramid histograms are used
as kernels[17].

SIFT is soft d, as in [22], to its nearest cluster cen-
ters. Kernels are compuled with x? distance.

SSIM: Self- i [26] are on
a regular grid at steps of five pixels. Each descriptor is ob-
tained by computing the correlation map of a patch of 5 x 5
in a window with radius equal to 40 pixels, then quantizing
it in 3 radial bins and 10 angular bins, obmmmg 30 dimen-
sional descri vectors. The d are then quan-
tized into 300 visual words by k-means and we use x? dis-
tance on spatial histograms for the kernels.

Tiny Images: The most trivial way to match scenes is
to compare them dm:cl]y in color image space. Reducing
the image di i makes this h more

computationally feasible and less sensitive to exact align-

Line Features: We detect straight lines from Canny
edges using the method described in Video Compass [15].
For each image we build two histograms based on the statis-
tics of detected lines— one with bins corresponding to line
angles and one with bins corresponding to line lengths.
We use an RBF kemel to compare these unnormalized his-
tograms. This feature was used in [11].

Texton Histograms: We build a 512 entry universal tex-
ton dictionary [18] by clustering responses to a bank of fil-
ters with 8 orientations, 2 scales, and 2 elongations. For
each image we then build a 512-dimensional histogram by
assigning cach pixel’s set of filter responses to the nearest
texton dictionary entry. We compute kernels from normal-
ized 2 distances.

Color Histograms: We build joint histograms of color
in CIE L*a*b* color space for each image. Our histograms
have 4, 14, and 14 bins in L, a, and b respectively for a total
of 784 dimensions. We compute distances between these
histograms using x? distance on the normalized histograms.

Geometric Probability Map: We compute the geomet-
ric class probabilities for image regions using the method of
Hoiem et al. [13]. We use only the ground, vertical, porous,
and sky classes because they are more reliably classified.
We reduce the probability maps for each class to 8 x 8 and
use an RBF kemel. This feature was used in [11].

G ry Specific Histograms: Inspired by “Tllumi-
nation Context” [16], we build color and texton histograms
for each geometric class (ground, vertical, porous, and sky).
Specifically, for each color and texture sample, we weight
its contribution to each histogram by the probability that it
belongs to that geometric class. These eight histograms are
compared with x? distance after normalization.

‘Run the image through 20 layers of 3x3

convolutions and train the filters with SGD.

Mk

* to the first order

[Karpathy, BayArea DL School, 16]

i
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New frameworks for DL.

Theano

import theano
import theano.tensor as T

# Batch size, input dim, hidden dim, num classes
N, D, H, C = 64, 1000, 100, 10

T.matrix('x")

T.vector('y', dtype='int64")
T.matrix('wl')
T.matrix('w2")

TensorFlow

# Forward pass: Co
f(w) a = x.dot(wl)
weights) a_relu = T.nnet.relu(a)

: Cafte-on-Spark

¢ o pss: copte st toss No need to write codet
S T A, Convert data (run a script)
G S T ] 2. Define net (edit prototxt)
ORI e 3. Define solver (edit prototxt)

4. Train (with pretrained weights)

lder(tf.fl
tf. Tl

* np
outputs=[loss, scores, dwl, dw2],
robs))

ning_rate).minimiz

Keras

from keras.models import Sequential

from keras.layers.core import Dense, Activation
from keras.optimizers import 5GD

feed dletey from keras.utils import np utils

D, H, C = 1868, 160, 18

model = Sequential()
model.add(Dense(input_dim=D, output dim=H))
model . add (Activation(’ relu
model.add(Dense(input_dim=H, output_dim=C))
model.add(Activation( softmax'))

sgd = SGD(lr=1e-3, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)

N, N_batch = 1008, 32
np.random. randn(N, D)
np.random. randint(C, size=N)
¥y = np_utils.to_categorical(y)

model.fit(X, y, nb_epoch=5, batch_size=N_batch, verbose=2)

£KTHY 36/58

{Ks VETENSKAP ﬂ}

28, OCH KONST 2%

e




Machine Learning Background
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Scientific Method

example -  mental model (hypothesis) = evaluate

update
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Machine Learning

Input predicted
example - ML model (hypothesis) =2 example
evaluate +
update
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Machine Learning

Input predicted
example - ML model - example
update loss evaluate

(loss function)
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Machine Learning

“A field of study that gives computers the ability to
learn without being explicitly programmed”
- Arthur Samuel

eMachines take as input some data and attempt to
identify patterns in the data

eMachines take as input some data and attempt to
imitate patterns in the data, either directly or
indirectly

i
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Machine Learning Definition

* A computer program is said to learn from experience E with
respect to some class of tasks T and performance
measure P, If its performance at tasks in T, as measured by

P, improves with experience E.
[Mitchell, T., Machine Learning: An algorithmic perspective]
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Study of Machine Learning

oStudy of algorithms and systems that
- improve their performance P
-at some task T
- with experience E

eWe need a well-defined learning task: <P, T,E>

2017-11-02 ID2223, Large Scale Machine Learning and Deep Learning, Jim Dowling 43/94




Quick Hello to Deep Learning
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Supervised ML with Back Propagation

Compare outputs with correct
answer to get error signal

Back-propegate
the gradient
vector to change
the weights.

Feeny
ooy, 11-
figun ) 2017-11-02 46/94



Classes of Deep Learning Networks

Pattern Recognition Sequence Models
Convnets (CNNs) RNN/LSTM

General DNNs Unsupervised DNNs
Feed-forward Deep RL

1 2017-11-02 ID2223, Large Scale Machine Learning and Deep Learning, Jim Dowling 47/94
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Image Classification

\ fully

Convnet - connected
layer

L i

e.g. vector of 1000 numbers giving
probabilities for different classes.

224x224x3

[Karpathy, BayArea DL School, 16]
48/94




Image Captioning

A person on a beach flying a kite.

\

Convnet

L i

A sequence of 10,000-dimensional
vectors giving probabilities of different
words in the caption.

[Karpathy, BayArea DL School, 16]

RNN

224x224x3
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Reinforcement Learning

. fully connected
>

e.g., vector of 8 numbers giving
probability of wanting to take any of
the 8 possible ATARI actions.

[Karpathy, BayArea DL School, 16]

. e

Mnih et al. 2015

\

Convnet

-

160x210x3
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Transfer Learning

Train on Imagenet Small Dataset Medium Dataset
image | image | image |
conv-64 conv-64 conv-64
conv-64 conv-64 conv-64
maxpool maxpool maxpool
conv-128 conv-128 conv-128
conv-128 conv-128 conv-128
maxpool maxpool maxpool
conv-256 conv-256 conv-256
maxpool ‘maxpool maxpool
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool
gSonv:512 conv-512 conv-512
comesl2 conv-512 conv-512
maxpool

’ maxpool maxpool
FC-4096 FC-4096 FC-4096
a00e FC-4096
FC-1000 ~ FC-1000 FC-1000

softmax ,
——— softmax softmax

) Train this Train this
3 2017-11-02 51/94
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Understanding Deep Learning Systems
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DL vs Human-Level Performance

eIn the old days we had to prove convergence of our
ML algorithms

- Limited to convex optimization problems

eHuman-level accuracy is useful for evaluating the
performance of deep-learning systems.

eHow do we define human-level performance?
- typical human
- expert human
- team of experts
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Adverserial Deep Learning

Imperceptibly modified image,
Tiny adversarial perturbation. classified as a gibbon with 99%
confidence.

Original image classified as a
panda with 60% confidence.

[http://www.kdnuggets.com/2015/07/deep-learning-adversarial-examples-misconceptions.html ]
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Hardware Numbers that you should know
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Key (Network/Bus) Bandwidths

Main Memory (GDDRY) SSD (PCl-attached)

~10 Gb/s
Network

CPU

Magnetic Harddisk
(SATA—Z) 56/94
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Linear Algebra Review

i
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A Matrix is a 2-d array eNotation:

- Matrices are denoted by
(bold) uppercase letters

dy, Qp o Ay, - A; denotes the entry in
ith ith
a, a, - a, | rO.W and j c.:olumn
A:(aij)z : — : -If Ais m x n, it has
‘ ‘ T m rows and n columns
_aml Apy e amn_ -If Aism X n,

then 4 € RM*n
 n = # of columns

em = # of rows
e dimensions =m x n
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Vectors

e A vector, v, of dimension n is an n X 1 matrix rectangular
array of elements

(1.1
v=10.5
19.4.

eNotation:
- Vectors are denoted by (bold) lowercase letters
- v, denotes the ith entry
- If v is n dimensional, then v € R"
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Vector Addition

il M g 1 R e
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Matrix Addition/Subtraction

* Addition
a b i fl |ate b+f
c d g h B c+g d+h Add the elements
e Subtraction
a bl |e f| |a-e b-f
c d g h B c—g d-h Subtract the elements

eFor addition and subtraction, the matrices must
have the same dimensions

i
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Matrix Transpose

A
\ .
L 1] 6 3 &)
6 1 :> 4| = (3] 4 1]
4, 1 5
_3 5_ - _1_
3x2 2x3 3x1 1x3

(AT)2s
eSwap the rows and columns of a matrix
e Properties of matrix transposes:

-A; = (A7) (A+ B)T A" +B'
- I T 1
IfAism x n,then ATisn X m (AB)T:BTAT
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Inverse of a Matrix

oIf A is a square matrix, the inverse of A, called A,
satisfies

AAl=1 and AlA=1,

eWhere I, the identity matrix, is a diagonal matrix
with all 1’s on the diagonal.

—
|1

—

1
o o -
O -, O
_ O O
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Matrix Scalar Multiplication

e Multiply each matrix element by the scalar value

1 6 3 4 24 12
X —
o ol =lis

4 9 6 36 24

w
|
=
U1

—0.5 X

Q0
|l
I

N

=
I
N
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Inner Product

o A function that maps two vectors to a scalar
- Called the dot product or inner product

SENE)
8112 =31
41 13

3x1+8x2+4x3=31

eMultiplies the vector elements pairwise
eBoth vectors must be the same dimension
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Scalar Product

*Vectors assumed XT W y
to be in column -
form

I I
| | — scalar product

eTransposed vectors
are row vectors

l Xn nxl scalar

eCommon notation for the scalar product: x™w
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Matrix-Scalar Multiplication

eInvolves repeated scalar products

11

3Xx14+4X2+6x3 =29
2x14+3x24+1x3=11

am—
w
N
o
—
['wl\ar—\J
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Matrix-Matrix Multiplication

eInvolves repeated scalar products

B a6 [?] 3] _po s
2 3 1] 411 _51__[3 8]

Bx2+4x1+6x4=234
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Matrix-Matrix Multiplication

eInvolves repeated scalar products

e ] e e
1231J45 11 8

3%x34+4x—-1+6x%x5=35
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Matrix-Matrix Multiplication

eInvolves repeated scalar products

2] 3°
3 4 6] [ ~.1_[34 35
23 10|, 51_— 5|

2x2+3x1+1x4=11
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Matrix-Matrix Multiplication

eInvolves repeated scalar products

_2 ?
3 4 6] Sl _[34 35
23l |, |7l

(2x34+3x—-14+1x5=8]|
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Matrix Product

Let A = (a;) denote an m x n matrix and B = (b))
denote an n x k matrix

Then the m x k matrix C = (c;;) where

IS called the product of A and B and Is denoted
by A-B
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Matrix Multiplication Properties

e Associative
(AB)C = A(BC)

e Not commutative
AB # BA
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Outer Product

e Matrix-Matrix Multiplication involving two vectors

*C;; is the inner product of it entry of x and j*" entry
of w

X wT C

nxl 1 xm nxXm
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L” Norm for Vectors

eNorms are functions that measure how large a vector is
- A scalar has a magnitude/length: its absolute value

L1 Norm for x € R"
Ixlly = ) |l
l

o2 Norm (Euclidean norm)

ol = [ bl = [k + g + o+ 2
\ @

1/p

Il = | ) lxl?
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Special Matrices and Vectors

oA Unit vector has a magnitude of 1:
-x=|lxll; =1

eSymmetric Matrix:
- AT=A

eOrthogonal Matrix:
-ATA = AAT =1

2017-11-02 ID2223, Large Scale Machine Learning and Deep Learning, Jim Dowling 77/94




EigenVectors and Eigenvalues

eEigenvector and eigenvalue:
Av = v

Any vector that points directly to the right or left with no vertical component is an eigenvector
of this transformation (shear mapping) because the mapping does not change its direction.
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Effect of Eigenvalues

Before multiplication After multiplication

3 | | | T | 3 | T | | |
_(ll
2k _ 2 A v
I e y 1 -
g Of 15 Or < :
(2) (2
—1r 1 1t |
—2F 1 =2t |
_3 ] ] | ] ] _3 ] ] ] ] ]
-3 -2 -1 0 1 2 3 -3 -2 —1 0 1 2 3
CCO £
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Tensors

oA tensor is an array of numbers, that may have
- zero dimensions, and be a scalar
- one dimension, and be a vector
- two dimensions, and be a matrix
- Or more dimensions.
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Learning linear algebra

eDo a lot of practice problems

eStart out with lots of summation signs and indexing
into individual entries

eEventually you will be able to mostly use matrix and
vector product notation quickly and easily
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Probability Theory

[Slides Adapted from Deep Learning BooK, Goodfellow et alL]
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Random Variable

e If a variable can take on any value between two specified values,
it 1s called a continuous variable; otherwise, 1t 1s called a discrete
variable.

e A random variable has a probability distribution, which specifies
the probability that its value falls 1n any given interval.
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Probability Mass Function (Discrete)

The domain of P must be the set of all possible states of x.

Vo € x,0 < P(x) < 1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

> wex P(x) = 1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.
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Probability Density Function (Continuous)

The domain of p must be the set of all possible states of x.

Vo € x,p(x) > 0. Note that we do not require p(z) < 1.
[ p(z)dz = 1.
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Computing Marginal Probability with the Sum Rule

i/j 1 2 3 4 5 6 px(i)
1 1/36 1/36 1/36 1/36 1/36 1/36 1/6
2 1/36 1/36 1/36 1/36 1/36 1/36 1/6
3 1/36 1/36 1/36 1/36 1/36 1/36 1/6
4 1/36 1/36 1/36 1/36 1/36 1/36 1/6
5 1/36 1/36 1/36 1/36 1/36 1/36 1/6
| 6 1/36 1/36 1/36 1/36 1/36 1/36 1/6
py(i) 1/6 1/6 1/6 1/6 1/6 1/6

Ve € x, P(x = x) :ZP(X:x,y:y).
Uy

p(x) = [ p(z.y)dy.
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Conditional Probability

e If 60% of the class passed both labs and 80% of the class passed
the first test. What percent of those who passed the first test also
passed the second test?

Ply=ylx=1)=
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Chain Rule of Probability

* Natural Language Processing.
“Play it again “- Humphrey Bogart

 Probability of the next word (assuming a 4-Gram)?
P(w4d | wl, w2, w3)

PxW, . x™) = pxMI, Px® | xD o xE),

(;

ahy
ik -11- , Large Scale Machine Learning and Deep Learning, Jim Dowling
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Independence

* The event of getting a 6 the first time a die Is rolled and the
event of getting a 6 the second time are independent.

* The event of getting a 6 the first time a die is rolled and the
event that the sum of the numbers seen on the first and
second trials is 8 are not independent.

Veex,y€y, px=z,y=vy) =px =2)p(y =vy).
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Expectation

eExpected value of a dice 1-6 is 3.5 (weighted mean)

4“XNP Z P

linearity of expectations:

2 [ f(z) + Bg(x)] = By [f(2)] + ABylg(x)
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Variance and Covariance

e The covariance between two Random Variables X
and Y measures the degree to which X and Y are
linearly related.

Var(f(2)) = E | (f(x) — E[f(2)))?].
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Functions of Interest
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Logistic Sigmoid

1.0 |-

0.8 _

0.6 | _

o(x)

0.2 _

0.0 -

—10 —5 0 5) 10
Figure 3.3: The logistic sigmoid function.
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The SoftPlus Function

¢ ()

—10 —d 0 5 10

Figure 3.4: The softplus function.
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Reading Instructions

eChapter 1
eChapter 2.1-2.7
eChapter 3

eReferences
- Linear Algebra, Gilbert Strang.

- Probability Notes:
http://web.mit.edu/13.42/www/handouts/reading-probability.pdf
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