My malloc: mylloc and
mhysa

ID1206 OPERATING SYSTEMS




malloc(size)

* Used to allocate memory dynamically (at runtime) on the heap
* Needed when you do not know how much memory will be used until the program runs

* Return value:

- a pointer (variable that holds an address) to the beginning of the allocated memory

- or NULL if the memory can’t be allocated



malloc() - example

* Declaring an array with n number of elements
- You do not know the number of elements from the beginning

- It is given as an input from the user

- The input n is taken at runtime and that much memory is allocated using malloc




sbrk(size)

Ask for more memory on the heap by using the program break

The program break points to the end of the heap

Increments the program break by the defined size in bytes

Return value:
- the previous program break

- or -1 on error

sbrk(0) — returns current location of the program break



brk(address)

e Similar to sbrk but takes an address instead

» Sets the program break to the specified address

* Return value:
- 0 on success

- or-1on error



free(pointer)

* Deallocates the memory that malloc() points to

* Takes the pointer that was returned from malloc to find the memory

* Itis the user’s job to deallocate the space when it is not needed anymore

* To know how much memory that is supposed to be freed, the memory block keeps the size of
the in a header that lies just before the actual memory




Free |ist

* Data structure used for dynamic memory allocation

* Contains blocks of the available free space on the heap

* There exist different strategies used to select the appropiate memory that is requested from
the user: best fit, worst fit, first fit, next fit, buddy allocation




Splitting and coalescing

* Common techniques used in memory allocation
* Split a memory block in the free list
- Return the needed amount to the user
- Keep the rest
* When coalescing you merge two blocks of free memory that lies next to each other

- Good to make sure that the heap is not divided into several small blocks of memory



Buddy allocation

* Used to make coalescing easier
* The free memory is seen as 2*n

* When a request for memory is made the memory is recursively splitted in two until an
appropiate size is found

* Pros — Easy to determine if two blocks can be merged together

* Cons — Internal fragmentation as only blocks of size 2*n can be given



Buddy allocation - example

* 64 KB free space

» User request for 7 KB block of memory

64 KB

32 KB

32 KB

l

l

16 KB

16 KB




Best fit

* Searches through the free list and finds a memory block that is equal or larger than the
requested memory

* Returns the requested amount to the user and keeps the rest

* Pros — Reduces the amount of wasted memory

* Cons — A lot of performance is required to search through the whole list




Worst fit

» Searches through the free list and finds the largest amount of free memory
* Returns the requested amount to the user and keeps the rest

* Pros — Reduces the amount of small memory, leaves big pieces of memory free

* Cons — A lot of performance, the whole list needs to be searched through, takes away large
chunks of memory that could be needed




First fit

Finds the first block of memory that is large enough

Returns the requested amount to the user and keeps the rest

Pros — Quick, no need to search through the whole list

Cons — Could leave small blocks of memory in the beginning of the list




Next fit

* Similar to first fit but has an extra pointer that keeps track of where you were last time and
begins the search from there next time

* Performance is similar to first fit




Free memory strategies - example

Free list: head —» 10 —» 30 —» 20 —» NULL

Which block will each strategy choose for a request of size 15?
* Best fit: 20
* Worst fit: 30
 First/Next fit: 30



