
My malloc: mylloc and
mhysa
ID1206 OPERATING SYSTEMS

malloc(size)

• Used to allocate memory dynamically (at runtime) on the heap

• Needed when you do not know how much memory will be used until the program runs

• Return value:

- a pointer (variable that holds an address) to the beginning of the allocated memory

- or NULL if the memory can’t be allocated

malloc() - example

• Declaring an array with n number of elements

- You do not know the number of elements from the beginning

- It is given as an input from the user

- The input n is taken at runtime and that much memory is allocated using malloc

sbrk(size)

• Ask for more memory on the heap by using the program break

• The program break points to the end of the heap

• Increments the program break by the defined size in bytes

• Return value:

- the previous program break

- or -1 on error

• sbrk(0) – returns current location of the program break

brk(address)

• Similar to sbrk but takes an address instead

• Sets the program break to the specified address

• Return value:

- 0 on success

- or -1 on error

free(pointer)

• Deallocates the memory that malloc() points to

• Takes the pointer that was returned from malloc to find the memory

• It is the user’s job to deallocate the space when it is not needed anymore

• To know how much memory that is supposed to be freed, the memory block keeps the size of
the in a header that lies just before the actual memory

Free list

• Data structure used for dynamic memory allocation

• Contains blocks of the available free space on the heap

• There exist different strategies used to select the appropiate memory that is requested from
the user: best fit, worst fit, first fit, next fit, buddy allocation

Splitting and coalescing

• Common techniques used in memory allocation

• Split a memory block in the free list

- Return the needed amount to the user

- Keep the rest

• When coalescing you merge two blocks of free memory that lies next to each other

- Good to make sure that the heap is not divided into several small blocks of memory

Buddy allocation

• Used to make coalescing easier

• The free memory is seen as 2^n

• When a request for memory is made the memory is recursively splitted in two until an
appropiate size is found

• Pros – Easy to determine if two blocks can be merged together

• Cons – Internal fragmentation as only blocks of size 2^n can be given

Buddy allocation - example

• 64 KB free space

• User request for 7 KB block of memory

Best fit

• Searches through the free list and finds a memory block that is equal or larger than the
requested memory

• Returns the requested amount to the user and keeps the rest

• Pros – Reduces the amount of wasted memory

• Cons – A lot of performance is required to search through the whole list

Worst fit

• Searches through the free list and finds the largest amount of free memory

• Returns the requested amount to the user and keeps the rest

• Pros – Reduces the amount of small memory, leaves big pieces of memory free

• Cons – A lot of performance, the whole list needs to be searched through, takes away large
chunks of memory that could be needed

First fit

• Finds the first block of memory that is large enough

• Returns the requested amount to the user and keeps the rest

• Pros – Quick, no need to search through the whole list

• Cons – Could leave small blocks of memory in the beginning of the list

Next fit

• Similar to first fit but has an extra pointer that keeps track of where you were last time and
begins the search from there next time

• Performance is similar to first fit

Free memory strategies - example

Free list:

Which block will each strategy choose for a request of size 15?

• Best fit: 20

• Worst fit: 30

• First/Next fit: 30

