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KTH Royal Institute of Technology

Abstract
School of Computer Science and Communication

A Comparison of Resampling Techniques to Handle the Class Imbalance
Problem in Machine Learning

Conversion prediction of Spotify Users - A Case Study

by Michelle JAGELID

Maria MOVIN

Spotify uses a freemium business model, meaning that it has two main products, one
free limited and one premium for paying customers. In this study we investigated ma-
chine learning models’ abilities, given user activity data, to predict conversion from
free to premium. Predicting which of the users convert from free to premium was a
class-imbalanced problem, meaning that the ratio of converters and non-converters
was skewed.

Three methods were investigated: logistic regression, decision trees, and gradi-
ent boosting trees. We also studied if different resampling methods, which balance
the train datasets, can improve classification performance of the models.

We showed that machine learning models are able to find patterns in user data
that could be used to predict conversion. Additionally, for all our investigated clas-
sification methods, we showed that resampling increased the models’ performances.
The methods with best performances in our study were logistic regression and gradi-
ent boosting tree trained with oversampled data up to equal numbers of converters
and non-converters.

http://www.kth.se/en
http://www.kth.se/en/csc


Kungliga Tekniska Högskolan, KTH

Sammanfattning
Skolan för Datavetenskap och Kommunikation

Samplingmetoder för att hantera obalanserade klasser i maskininlärning
En fältstudie om prediktion av Spotify-användardes vilja att uppgradera produkten.

av Michelle JAGELID

Maria MOVIN

I den här studien undersökte vi om det går att, givet användardata från Spotify-
användare, prediktera vilka användare som konverterar från gratisversionen till
premiumversionen. Eftersom det finns fler användare som inte konverterar än som
konverterar, var detta ett problem med obalancerade klasser. Obalancerade klasser
är ett välkänt problem inom maskininlärning.

Tre maskininlärningsmetoder undersöktes: Logistic regression, Decision trees och
Gradient Boosting Trees. Förbehandlingsmetoder som leder till att träningsdata får
jämnare fördelning mellan klasserna undersöktes. Detta för att se om sådana förbe-
handlingar kunde öka modellernas förmåga att klassificera nya användare.

Vi visade att det var möjligt att med maskininlärningsmetoder, givet användard-
ata, hitta mönster i data som kunde användas för att prediktera vilka användare som
konverterar. För alla tre maskininlärningsmetoder visade det sig att förbehandling
av träningsdata till jämnare fördelning mellan klasserna gav bättre resultat.

Av de undersökta modellerna presterade Logistic regression och Gradient Boosting
Tree bäst då de tränats med förbehandlad data, så att slumpmässiga dubbletter av
användare som konverterat lagts till i datasetet upp till helt jämn fördelning.

http://www.kth.se
http://www.kth.se/csc
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1 Introduction

1.1 Definition of the research space

In recent years there has been an immense increase in the amount of data collected
by companies. Valuable information is hidden in the data, and enables companies
to improve decision making. One way to extract useful knowledge from data is by
using predictive machine learning methods. Predictive machine learning methods
have been used in different domains such as predicting prices and trends in the
stock market [1], cancer detection in the biomedical sector [2], and credit scoring in
the financial sector [3].

Another area in which predictive machine learning methods have been proved
useful is by using historical customer data, to predict customer future behavior [4,
5, 6, 7]. Many companies collect data on their user’s behavior and one such com-
pany is Spotify, developing on-demand services for music streaming. Spotify uses
a freemium business model, meaning that it has two main products, one free lim-
ited and one premium for paying customers [8]. A great quantity of the company
income comes from paying customers, referred to as premium users, and there is a
large interest in keeping the amount of users converting from free to premium high.
A model that can predict conversion from free to premium makes it possible to take
well-founded design decisions, hopefully leading to higher conversion rate and thus
increased income.

Spotify has more free users than premium users [8]. Thus, predicting conversion
from free to premium can be expected to be a class-imbalanced problem. Class-
imbalanced problem means that the number in one class (the majority class) is con-
siderably greater than the number in the other class (the minority class), i.e. more
non-converting users than converting users. When the number of users in the minor-
ity class is much lower compared to the majority class, it can be difficult for machine
learning models to learn to correctly predict new data [9]. This is a well-known
problem, known as the class imbalance problem. There are three main solutions to
the problem: resampling, cost-sensitive learning, and ensemble methods [9]. Resam-
pling means that the data used for training the machine learning models are prepro-
cessed by adjusting the ratio between the classes to be more balanced. For some but
not all class-imbalanced datasets [9, 6], resampling improves the machine learning
models performance. The best resampling ratio depends both on the dataset and the
classifier [10]. However, no conclusion is drawn on which resampling method and
ratio to use for conversion prediction.

1.2 Aim and research questions

The aim of this study was to investigate machine learning models’ abilities to predict
conversion, and to examine if different resampling methods could improve perfor-
mance of the models when predicting conversion.
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Specifically, the goal of the study was to answer the following questions:

• Can machine learning classification models learn from user data to predict conversion
with higher performance compared to a classifier assigning all users to the majority
class, i.e. non-converting users?

• Can preprocessing the data with resampling methods, adjusting the ratio between con-
verters and non-converters to 30/70 or 50/50, improve the performance of the classi-
fiers?

1.3 Scope

In this study we investigated three different machine learning classifiers: Logistic
Regression (LR), Decision Trees (DT) and Gradient Boosting trees (GB). Our focus
was not on tuning the parameters of the models to state-of-art performance. Rather
the focus was to answer the question if models can be trained with user data, to find
patterns valuable for classifying users as converters or non-converters. In this study,
the performance of the models was examined based on the area under the receiver
operating characteristics curve (AUC).

The resampling methods investigated in this study are the two most common
oversampling methods, Random Oversampling (ROS) and Synthetic Minority Over-
sampling Technique (SMOTE), and the most common undersampling method, Ran-
dom Undersampling (RUS) [9]. Resampling ratios investigated were 30/70 and
50/50.

Features on user demographic, user activity and product performance were con-
sidered. Other features can be of interest when predicting conversion but were not
considered in this report. Specifically, data from Spotify users, joining at ten distinct
dates (20170131-20170209), were used.
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2 Background

2.1 Binary classifiers and supervised learning

Similar to an earlier study on conversion prediction [11], we approached the prob-
lem as a binary classification task. Either a user is classified as a non-converting
user (class 0) or as a converting user (class 1) based on user’s historical data. Super-
vised machine learning classifiers are classifiers that can be trained using historical
data with known outcome. Training of the model means iteratively updating pa-
rameters in order to reduce the classification error on training data. The aim of the
trained model is thereafter to be able to classify unseen (testing) data correctly [12].
One well known problem for supervised machine learning models is the problem
of overfitting. Overfitting occurs when the model is too well trained to classify the
training data, but cannot generalize to the testing data. By restricting the model to
not have too many parameters the problem of overfitting can be reduced [12].

Several machine learning classifiers exists today e.g. LR, DT and GB. A more
detailed description of these methods will follow in the sections below.

2.1.1 Logistic Regression (LR)

LR is a linear classification model, meaning that the goal of the model is to represent
a hyperplane that separates the classes in feature space [13]. Each user is represented
by a number of features, and thus the users can be placed in the feature space. To
model the plane, each input feature is multiplied by a weight and then all products
are summed together and a bias term is added. The bias term makes it possible to
shift the plane from origo in feature space. This linear sum is thereafter processed
with a non-linear logistic function transforming the sum to a probability of belong-
ing to class 1 (range [0,1]). An overview of the model and its parameters are shown
in Figure 2.1.

During training, the weights and the bias term are updated. They are updated
by iteratively optimizing the loss function, which is to minimize the classification
error on the training data [13].

To reduce the problem of overfitting, a penalizing term on the weights’ sizes can
be added to the loss function. By doing so, the optimization will lead to a solution
with low classification error, and in addition, with many weights near to zero. One
common way is to use L2-regularization, which adds the sum of the squares of the
weights as penalizing term to the loss function [12].
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FIGURE 2.1: Overview of the logistic regression model
X1, ..., Xn represent features to be investigated, w1, ..., wn are the corre-
sponding weights of the features. b is the bias term.

2.1.2 Decision Tree (DT)

DT is a classification method that uses the features in a tree based way to classify
users. An example of a DT is shown in Figure 2.2. To classify a new user, a path in
the tree is followed, depending on the features of the user, from the top down to a
leaf. The leaf belongs to a class, and assigns the new user to that class.

The tree is built up during the training phase. The train dataset is used to decide
which features that should be in the nodes to split the dataset. The goal is to split
the dataset in a way such that all leaves only have users from one of the classes.
The training is done from the top, choosing a feature that best splits the data and use
that at the top. Thereafter recursively find the features that best split each sub dataset
until each leave only has one class or until the branch has reached a maximum depth.
By limit the depth of the tree, overfitting can be reduced. If the depth is limited and a
leave has more than one class, the class with majority of users is used for that leave.
To decide which split that is best for a given dataset Gini impurity or information
gain can be used [12].

2.1.3 Ensemble methods and Gradient Boosting Tree (GB)

Ensemble methods mean that a prediction is made by a number of simpler classi-
fiers. Theoretically any classifier could make up an ensemble, although a very com-
mon classifier to use is DT [14]. One such ensemble method constructed of DTs is
GB. In GB, narrow DTs are combined iteratively. The impact of the different trees are
weighted by minimizing the loss function with gradient decent [14].
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FIGURE 2.2: Example of a Decision Tree.
The colored circles at the bottom of the tree represent users from training
data. The red circle at the top represent a user from testing data being classi-
fied.

2.2 Classification with imbalanced data

An imbalanced dataset in a binary classification problem refers to unequal number
of users between the classes. The class imbalance problem is well known [9]. One
reason is the tendency of binary classifiers learning only to classify data as if belong-
ing to the majority class. However,in our context, correctly classifying the converters
was of interest. In other areas, correctly classifying the minority class might be even
more important e.g. when predicting diseases. In the following section examples of
solutions is presented.

2.2.1 Solutions to the class-imbalance problem

In order to handle the class-imbalance problem there are three main categories of
solutions: resampling, cost-sensitive learning and ensemble methods [9]. Resam-
pling aims to balance the ratio between the classes of data. For binary classification,
it can either be performed by duplicating samples of the minority class (oversam-
pling) or by eliminating samples of the majority class (undersampling) [9]. Cost-
sensitive learning opposes the imbalance problem by penalizing misclassification of
the minority class with a higher cost than with samples from the majority class dur-
ing training [9]. Ensemble methods consists of multiple classifiers combined, such
as GB. Each classifiers’ output is weighted depending on how it classifies minority
samples [14].

2.2.2 Resampling methods

Three widely used methods for resampling are: ROS, RUS and SMOTE [9]. ROS
duplicates randomly selected users from the minority class and add these to the
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dataset until a preferred ratio has been reached. RUS does the opposite i.e randomly
eliminates users from the majority class until preferred ratio has been reached [9].
SMOTE as presented by Chawla et al. [15] is an oversampling method which creates
synthetic users similar but not equal to existing minority users and add those to the
dataset. By selecting a random user in the minority class, and investigating an other
minority user similar to the randomly chosen user, SMOTE creates a new synthetic
user which is a mix of the two users considered.

2.3 Related work

Researchers have not treated conversion prediction in much detail. Sifa et al. [11]
compared models for premium conversion in free-to-play games. They concluded
that it was possible to valuably predict premium conversion with machine learn-
ing models (overall accuracy: 0.997 and recall: 0.439) [11]. Specifically, DT, random
forest and support vector machine were investigated. When training data were pre-
processed with oversampling, all models performed better regards to correctly clas-
sifying converting users [11].

While the body of literature available in conversion prediction is limited [11],
work in associated domains, such as churn prediction, have a more established his-
tory. Churn prediction studies extend across various of markets, such as the telecom-
munication industry [4, 5, 6], the energy sector [7] and the gaming industry [16, 17,
18]. Beyond different markets there is a large variety in which methods the studies
investigate; LR [4, 5, 6] , DT [4, 5, 6, 17, 16] and GB [6] have been investigated.

Churn prediction and the effect of oversampling to 50/50 ratio were studied by
Verbeke et al. [6]. They used several different churn datasets, and investigated sev-
eral different classifiers. Preprocessing training data with oversampling improved
performance for some, but not for all, datasets. No significant general improvement
of performance using oversampling was shown [6]. On the other hand, Burez et
al. [10] who also studied churn prediction and resampling methods, showed that
resampling improved performance on all their churn datasets. Additionally, they
showed that undersampling can improve performance.

Interestingly, Zous [19] argued that undersampling can be superior to oversam-
pling because it can lead to same performance but needs less computational power.
Regarding resampling ratio, Burez et al. [10] showed that 50/50 ratio is not always
the preferable ratio. The best resampling ratio depended both on the dataset and the
classifier [10].
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3 Method

3.1 Data collection of Spotify data

Data were collected from Spotify users registered to the free version on ten distinct
days. The registration dates reach from 31th of January 2017 (Day 1) to 9th of Febru-
ary 2017 (Day 10). For each of the ten dates, a cohort of approximately 50, 000 users,
with no missing data, was randomly selected to give a dataset with 2% converting
users (n ≈ 1000). Not all users registered at the inclusion dates were included in the
cohort, since real numbers can reveal business critical data.

For each user, the following areas of data were collected: user activity, demo-
graphics and the applications performance in the means of startup time. All data
collected were from the users first seven days since registration, except for the out-
put. The output, conversion, was defined as being a paying premium user at exactly
14 days after registration. A summary of the input features used is presented in
Table 3.1.

TABLE 3.1: Summary of features.
Cat: Categorical feature, Cont: Continuous feature

Feature Type
Registration country Cat
First platform Cat
Free or Premium (Day 2 and 7) Cat
Active (Day 1, 2 and 7) Cat
Total active days (Day 1, 2 and 7) Cont
Total consumed hours Cont
Number of sessions (Day 1 and 7) Cont
Total session length (Day 1 and 7) Cont
Shortest session (Day 1 and 7) Cont
Longest session (Day 1 and 7) Cont
Length of first session Cont
Number of sessions < 10 min (Day 7) Cont
Number of sessions > 10 min and < 60 min (Day 7) Cont
Number of sessions > 60 min (Day 7) Cont
Mean startup (slow, fast, superfast, no-startup) (Day 1, 2 and 7) Cat
Max startup (slow, fast, superfast, no-startup) (Day 1, 2 and 7) Cat
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3.2 Data formatting

The ten datasets (Day 1 - Day 10) were each split into a train dataset (2/3) (following
referred to as the baseline dataset) and a test dataset (1/3). Before the datasets were
used in the machine learning models the categorical data were encoded as numbers.
All categories, for each categorical feature, were given an own feature representation
where users belonging to that category got a value 1. All the other users got a value
0 for that feature. Further, normalization is acknowledged to increase accuracy for
various machine learning methods [12]. Thus all data were normalized. Since test
data cannot be seen before testing, the mean and variance calculated on training data
were used to normalize test data.

3.2.1 Resampling

The ten datasets (Day 1 - Day 10) were heavily imbalanced with a initial class-ratio of
2/98 (converters/non-converters). To handle the imbalance there are three solutions:
resampling, cost-sensitive learning and ensemble methods, as mentioned in section
2.2.1. Resampling was the main focus of this study due to its simplicity and compat-
ibility with existing machine learning models at Spotify. For resampling the baseline
datasets, this research utilized three different techniques: ROS, RUS and SMOTE.
ROS and SMOTE were chosen as oversampling methods because of its widely us-
age [9]. Furthermore, ROS is an intuitive way of balancing data, whereas SMOTE is
more complex creating synthetic samples. For undersampling RUS is chosen, since
it is considered both simple yet effective [9].

Each resampling method was used with two different ratios: 50/50 and 30/70.
Instead of only fully balancing the datasets, i.e. ratio 50/50, a ratio in between 50/50
and the baseline ratio (2/98) was chosen. This was done since Burez et al. [10]
showed that 50/50 does not always lead to the best performance. Due to limited
scope, not all ratios tested by Burez et al. [10] were tested in this study. Resampling
of the training data thus resulted in a total of 70 train datasets (1 baseline, 2 ROS, 2
RUS and 2 SMOTE per day). An overview of the dataset modifications, splitting and
resampling, can be seen in Figure 3.1. Importantly no baseline dataset (Day 1 - Day
10) share the same users and thus are independent. However, the datasets made
from the same baseline dataset share users, and thus are not independent from each
other.

3.3 Training the classification models

All train datasets (70 in total) were used to train learnable classification methods
of three different kinds: LR, DT and GB. LR is chosen because of the simplicity of
the method. DT and GB were chosen since Sifa et al. [11] showed that tree-based
classifiers had great performance on a similar conversion problem. The models’
performances depend on hyperparameter settings and the amount of training. The
settings of the models are presented below.

3.3.1 Logistic regression (LR)

In order to prevent overfitting a L2-regularization term (a penalizing tern) was added
to the loss function. A parameter search with 5-fold cross validation was conducted
to set the impact of the regularization term.
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FIGURE 3.1: Overview of datasets used.
Numbers in italic are the ratio between converters/non-converters in the
dataset.
ROS: Random Oversampling, RUS: Random Undersampling, SMOTE: Syn-
thetic Minority Oversampling Technique.

3.3.2 Decision Tree (DT)

The structure of the tree was set to a maximal depth of 10 and the minimum number
of samples required to be at a leaf node was set to 5. As a criterion to value the
quality of a split the Gini Impurity function was used [13].

3.3.3 Gradient Boosting Classifier (GB)

The gradient boosting classifiers were built on a tree structure with a maximal depth
of 6. In order to prevent overfitting, L2-regularization was used. Moreover, the
learning rate was tuned to 0.3.

3.4 Model evaluation

TABLE 3.2: Confusion matrix

Predicted true Predicted false

Actual true True Positive False Negative
Actual false False Positive True Negative

In our models, two fundamental errors may occur: classifying a non-converter
falsely as a converter, and classifying a converter falsely as a non-converter. These
errors are more commonly known as false positive and false negative results. Other
possible classifications will be correct i.e. true positive and true negative results. The
correlation between these are presented in a confusion matrix in Table 3.2.
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3.4.1 Performance metric - AUC

Looking at the percentage of correctly classified users (accuracy) is problematic for
class-imbalanced data. Classifying only the majority class (non-converters) correctly
would result in a high accuracy, although the minority class (converters) is of inter-
est. Thus a more complex and widely used metric for imbalanced data is the AUC
[9]. It minimize the negative influence of class-imbalance, by examinating both true
positive rate and false positive rate and was therefore adapted in this report. The
following paragraph will describe the AUC metric in more detail.

AUC is the area under the receiver operating characteristics curve (ROC). ROC is
used to visualize true positive rate in relation to false positive rate. For a single run
of a classifier, every user retrieved a probability value. A threshold value was then
run through the result, starting from 1 decreasing down to 0. All probability values
higher than the threshold were classified as positive (converters) whereas the rest
were classified as negative (non-converters). For each threshold, the true positive
rate and the false positive rate were calculated which generates a point on the ROC-
curve [12]. An example of a ROC curve is presented in Figure 3.2.

FIGURE 3.2: Example of a ROC curve.
AUC is defined as the area under the ROC curve. Figure taken from Scikit
Learn [20].
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A perfect run would generate a point with 100% true positive and no false posi-
tive i.e. a point at (0,1). Thus, an optimal ROC curve is fully extended in the top-left
corner leading to AUC 1 [13]. A classifier that assigns all as the majority class, would
result in AUC 0.5. Hence, a good performance would be an AUC in between 0.5 and
1 where the higher the AUC score, the better the classifier.

3.4.2 Experiments and statistical tests

Three main experiments were conducted. Firstly, one comparing the AUC perfor-
mance of the classifiers on the baseline datasets to a classifier assigning all users as
non-converters. Secondly, independently for each classifier, compare the difference
in AUC performance between the different sampling settings. Thirdly, compare the
classifiers to each other, by comparing the best sampling setting for each classifier to
one another.

In all experiments, Friedman test with post hoc Nemenyi tests were used to test
if differences in AUC performance were significant, a procedure inspired by Demsar
et al [21]. Friedman test is a non-parametric test, using the average rank of the dif-
ferent settings. When comparing different classifiers, the rank is calculated for each
classifier; When comparing the sampling settings, the rank is calculated for each
sampling setting. Friedman test statistic is defined in Equation 3.1, with Rj as the
average rank for the setting j = 1, ..., k, and N as the number of datasets.

χ2
F =

12N

k(k + 1)
[
∑
j

R2
j −

k(k + 1)2

4
] (3.1)

Under the null hypothesis that there is no difference in AUC performance be-
tween the different settings, χ2

F has a χ2 distribution with k − 1 degrees of freedom.
The null hypothesis is rejected if the p-value, calculated by the means of χ2 cumula-
tive density function, is less than decided significance level. In all our tests, p-values
less than 0.05 were considered significant.

Friedman test answers the question if there is a difference between the settings.
Thus, if Friedman test reject the null hypothesis, post hoc tests need to be conducted
to decide which settings differs from each other. Nemenyi post hoc test is one such
test [21]. Nemenyi test uses critical distance (CD) calculated as defined in equation
3.2. The qα is chosen from tables dependent on the number of settings and signifi-
cance level: k and α [21]. In this report α is chosen to be 0.05. If the average rank
for one setting differs more than CD from the average rank for another setting, the
difference in AUC is considered to be statistically significant.

CD = qα

√
k(k + 1)

6N
(3.2)

For the first experiment, when the three classifiers were compared to a classi-
fier that assigns all users as non-converters, the AUC was evaluated for each model
trained with the baseline datasets (Day 1 - Day 10). For each test dataset, the clas-
sifiers got a rank between 1 and 4. The classifier getting the highest AUC value got
rank 1 and the one with the lowest got rank 4. The average rank for each classi-
fier was calculated. Thereafter, Friedmans test statistic was calculated according to
equation 3.1 with k = 4 and N = 10. Pairwise comparisons of the classifiers were
thereafter performed with Nemenyi test, calculating the CD according to equation
3.2 with k = 4 and q0.05 = 2.569.
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In the second experiment, conducted independently for each classifier, Friedman
test was performed to examined if the difference in mean AUC performance for the
7 different sampling settings was due to chance. The ranking was calculated for each
test dataset giving each sampling setting a ranking between 1 and 7. Friedman test
statistic was calculated according to equation 3.1 with k = 7 and N = 10. Post hoc
Nemenyi test with pairwise comparisons of the sampling settings was performed
with k = 7 and q0.05 = 2.949.

In the third experiment, comparing the best sampling setting for each classifier
to one another, the Friedman test was performed similarly to the first experiment.
The rank was this time calculated for the three best performing classifiers. Since
we during this experiment compared three classifiers, as opposed to four in the first
experiment (which included the classifier assigning all as non-converters), we used
k = 3 instead of k = 4. For Nemenyi test we thus used q0.05 = 2.343

3.5 Implementation frameworks

For the purpose of implementing data formatting and model training, Sci-kit learn
and NumPy were used [20]. Both Sci-kit learn and NumPy are open source libraries
for machine learning in Python. The hypothesis testing was done in another open
source library named Scipy [22], designed for mathematics in Python. The gradi-
ent boosting classification model was implemented using a python library named
XGBoost [23].
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4 Results

The result section is divided into four parts. The first part describes the resulting
baseline datasets after the data collection. The second part describes the results from
experiments focusing on the first research question. The third part describes results
from experiments focusing on the second research question. Finally, the fourth part
describes results on which classifier of the ones tested that performed best overall.

4.1 Baseline datasets

The data collection resulted in data from 523,838 unique users. Description of the
baseline datasets (Day 1 - Day 10) are presented in Table 4.1. Given our method, the
dataset before splitting into train and test sets had 2 % converters. As seen in Table
4.1 the random splitting into train datasets resulted in datasets with approximately
2 % converting users each.

TABLE 4.1: Descriptive statistics of baseline datasets.

Dataset #Users #Converters

Day 1 34604 712
Day 2 35040 692
Day 3 34939 704
Day 4 34973 699
Day 5 37753 761
Day 6 37418 743
Day 7 33700 681
Day 8 33231 683
Day 9 34202 678
Day 10 33365 702

4.2 Ability to predict conversion

Separately for each classifier method, mean value and standard deviation of AUC
measurements from models trained on the 10 baseline datasets (Day 1 - Day 10,
no sampling) are presented in Table 4.2. Friedman test showed that there was a
significant difference in AUC performance between the classifiers and thus Nemenyi
test was performed. The results of the Nemenyi test when the classifiers are pairwise
compared to a classifier assigning all users as non-converters, show that LR, DT and
GB perform significantly better regarding mean AUC performance (p<0.05) (4.2).
No difference was shown between the other classifiers (LR, DT, GB).
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TABLE 4.2: Mean AUC performance of the 10 models of each clas-
sifier that were trained with the baseline datasets.
DT: Decision Tree, GB: Gradient Boosting, LR: Logistic Regression, SD: Stan-
dard deviation.
∗ Results from Nemenyi test for comparison with a classifier assigning all
users as non-converters.

mean SD Nemenyi test∗

LR 0.822 0.014 Difference
DT 0.824 0.013 Difference
GB 0.822 0.014 Difference

4.3 Comparing sampling settings

Mean AUC performance of models trained on differently sampled datasets (average
over 10 models per sampling setting) are presented in Table 4.3. For all classifica-
tion methods, the Friedman test showed that the differences in AUC between the
sampling settings were not due to chance (p<0.001). Therefore, independently for
each classifier method, post hoc Nemenyi tests were conducted. Results from the
pairwise Nemenyi tests, comparing the sampling settings to baseline, are presented
in Table 4.3. Mean AUC values that were significantly different from baseline AUC
values are in bold. The highest value for each classifier is underlined. The difference
between the best value and the other bold marked values was not significant regard-
ing Nemenyi test for any of the classifiers. For all classifiers, models trained with
ROS 50-50 ratio performed best and were significantly better than models trained
with the baseline dataset.
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TABLE 4.3: Mean AUC performance for different sampling settings
averaged over 10 models of type A: Logistic Regrssion, B: Decision
Tree, C: Gradient Boosting tree.
For each classifier, bold marked results are significantly better than classi-
fying the baseline distribution. Underlined results show the best sampling
setting for each classifier. ROS: Random Oversampling, RUS: Random Un-
dersampling, SMOTE: Synthetic Minority Oversampling Technique
∗ Class ratio: converter/non-converter

Panel A. Logistic Regression

Sampling Baseline ROS RUS SMOTE
2/98∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗

AUC 0.822 0.866 0.869 0.865 0.867 0.844 0.861

Panel B. Decision Tree

Sampling Baseline ROS RUS SMOTE
2/98∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗

AUC 0.824 0.850 0.854 0.849 0.831 0.828 0.828

Panel C. Gradient Boosting tree

Sampling Baseline ROS RUS SMOTE
2/98∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗ 30/70∗ 50/50∗

AUC 0.822 0.865 0.873 0.867 0.870 0.822 0.825

4.4 Comparing the classifiers

For each classifier, mean AUC performance of the model that performed best in the
sampling experiment (Table 4.3) is represented in Table 4.4. For all classifiers, the
best sampling setting was ROS with 50-50 sampling ratio. Friedman test showed that
the difference between AUC performance for these models was not due to chance
(p<0.001), and thus Nemenyi test was performed. The results of the Nemenyi test
showed that there was no significant difference between the AUC for LR and GB
(p<0.05, Table 4.4). Conversely, DT had significantly lower AUC performance com-
pared to the other two (p<0.05).

TABLE 4.4: Comparing the classifiers to each other.
DT: Decision Tree, GB: Gradient Boosting, LR: Logistic Regression, ROS: Ran-
dom Oversampling, RUS: Random Undersampling, SMOTE: Synthetic Mi-
nority Oversampling Technique
∗ Results from Nemenyi test for comparison with the classifier with highest
mean AUC (GB ROS 50-50).

mean Nemenyi test ∗

LR with ROS 50-50 0.869 No difference
DT with ROS 50-50 0.854 Difference
GB with ROS 50-50 0.873 -
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5 Discussion

5.1 Discussion of the results

In this report, three machine learning methods’ abilities to predict conversion and
the effect of resampling on those models were investigated. The results of this study
showed that machine learning methods can be trained with user data to predict con-
version with higher AUC performance compared to a classifier assigning all users as
non-converters. Additionally, the results showed that the performance of the classi-
fiers can be improved by preprocessing the data with resampling.

Our results are in alignment with those obtained by Sifa et al. [11]. As described
in section 2.3, they observed that machine learning classifiers were able to correctly
classify both the majority class and the minority class with relatively high accuracy
[11] and that the performance improved with oversampling. They investigated DT,
random forest and support vector machine. Thus, our results are in agreement with
Sifa et al. [11] regarding DT and bring new insights for the effect of resampling when
predicting conversion with LR and GB.

It is interesting to note that all classifiers got significantly better results when
training data were preprocessed with ROS, at both 30/70 and 50/50 sampling ratio.
Thus, if there is enough computational power, ROS could be suggested as a prepro-
cessing technique when building conversion prediction models. Additionally, it is
worth noting that LR and GB were actually able to perform significantly better than
baseline when training data were preprocessed with RUS 50/50. This is interesting
since RUS with ratio 50/50 only train on ∼4 % of the train dataset and this is com-
putationally very beneficial. These results are in line with Zous’ [19] conclusion that
RUS are superior to oversampling methods when the minority class have hundreds
of observations.

Interestingly, resampling with SMOTE did not lead to improved performance
(except in one case). Since SMOTE for each added user creates a user who is a mix
of two converters [15], this could indicate that the classes of converters and non-
converters overlap in feature space. By mixing two converters, if the classes overlap,
the new user might finishes in feature space where it is more alike a non-converter.
Thus, in such case, SMOTE resampling might just increase the overlap of the classes
and thus not make it easier for the classifier to learn the decision boundary.

In agreement with Burez et al. [10], who examined class imbalance in churn
prediction, we see that 50/50 resampling ratio was not always the best ratio. We
see that DT performed significantly better with RUS with ratio 30/70 compared to
RUS with ratio 50/50. A possible explanation to this might be that RUS with ratio
50/50 discarded too much valuable information for DT to be able to find informative
decision features.

The findings of this study showed that although ROS 50/50 gave the highest
performance for all classifiers, no significant difference was shown between ROS
50/50 ratio and RUS 30/70 ratio for any of the classifiers. Thus, a simple classifier
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such as LR run on preprocessed data with RUS 30/70 could be recommended for
this dataset, since it showed no significant difference in performance from the best
result and needs less computational power.

5.2 Limitations

The generalizability of our findings can be limited since we only look at data from
users joining Spotify in a specific timespan, ten days from the end of January to the
beginning of February 2017. It is possible that the user behavior is different at other
times of the year, and thus selection bias cannot be ruled out. Likewise, the research
was only conducted on Spotify’s specific data, therefore we cannot conclude the
result to be applicable for conversion prediction in general, thus further limiting the
generalizability. It is possible that the study will show different results for datasets
collected from other freemium companies.

Additionally, our findings may be somewhat limited by only investigating AUC
as a performance metric. Although the AUC minimizes the negative influence of the
class-imbalance, it cannot distinguish between the contribution of each class to the
overall AUC performance [24]. This means that different combinations of true pos-
itive rate and true negative rate may produce the same AUC result. Other metrics,
such as true positive rate, could have been interesting to analyze to see how many
of the converters that actually were correctly classified. However, for readability of
the report we focused on one metric and chose AUC since it is the most commonly
used for class-imbalanced problems [9].

Since the best ratio may differ between both classifiers and datasets [10], this
study is rather limited when investigating only two alternative ratios on one dataset.
Nevertheless, Burez et al. [10] showed that although the best ratio may vary be-
tween classifier and dataset the results between ratios up to 50/50 does not differ
significantly in many cases. Thus the limitation of two ratios in this study does not
necessarily have a negative impact on the results.

This study did not handle the technique of feature selection, which might limit
the performance of the classifiers by increasing the risk of overfitting. In the study
the classifiers were, however, modeled with L2 regularization and maximum tree
depth which contribute to counteract the risk of overfitting. Additionally, in a lower
dimensional space, which is a result of feature selection, the converters might be
closer to each other and thus resampling with SMOTE might work better. It would
have been interesting to investigate if feature selection would have led to better re-
sults for SMOTE. Due to time limitations this was out of the scope for this study.

5.3 Future work

In addition to resampling, there are two more main ways to handle the class imbal-
ance problem: cost-sensitive learning and ensemble methods [9]. Even though we
did look at one ensemble method (GB) further research should be undertaken to in-
vestigate ensemble methods in more detail and investigate cost-sensitive learning in
the process of predicting conversion.

In addition, it would be interesting to collecting data from users from more than
ten days to see if these results are generalizable over the seasons. The freemium
business model is common, and it would also be interesting to see if these findings
are applicable to more companies. Thus, doing similar studies at more companies



5.3. Future work 19

with the freemium business model would indicate if our results are generalizable to
other companies.

Except for DT with RUS and LR with SMOTE the results between 30/70 and
50/50 do not differ significantly. Therefore it would be interesting to investigate
more ratios in alignment with Burez et al. [10] and see if a ratio of for example 10/90
would generate an improvement in the same magnitude.
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6 Conclusion

The result of this study showed that machine learning classifiers are able to pre-
dict conversion from free to premium with higher AUC performance compared to
a classifier assigning all users as non-converters. Additionally, the performance of
the predicting classifiers can be improved by preprocessing the data with different
resampling methods.
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