
An Elixir ray tracer
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

The goal of this assignment is that your should practice representing data
using tuples and structs and, understand how a program can be divided into
modules to implement abstract data structures.

This is also an exercise in how to model a complex system and refresh your
knowledge of vector arithmetic. Hopefully it’s also quite fun to see how you
can create your own images of a three dimensional world.

1 A ray tracer

In order to explain a ray tracer in a three dimensional world, we will de-
scribe all necessary steps using a two dimensional model. Since we will
describe everything using vector arithmetic it can easily be extended to a
three dimensional model. Images generated in a two dimensional world will
of course not be very thrilling but we will be able to describe the necessary
steps.

In Fig. 1 we see a sphere in a two dimensional Cartesian coordinate system.
A camera is also positioned in the room consisting of a canvas and an eye.
When generating an image we need to trace as many rays as possible starting
in the eye of the camera and passing through the pixels of the canvas. If
we can determine that a ray intersect with an object we can color the pixel
thus generating an image on the canvas.

The beauty of vector arithmetic is that if we understand how to do the
necessary calculations in a two dimensional space then we also know how

ID1019 KTH 1 / 20

x

y

Eye

Canvas
Camera

Intersection

Figure 1: A model of the world.

to do it in a three dimensional space. If we extend this model to a three
dimensional world, we would have a sphere instead of a circle and the canvas
would be a rectangular plane. The eye would still be a point in this space
and we would track rays from the eye through each x-y pixel of the canvas.

To model our world and do the necessary computations we need to solve the
following problems:

• represent and do calculations on vectors

• represent objects such as spheres

• represent rays

• determine if a ray intersects an object

• represent a camera i.e. the location of the eye and the canvas

When we solve these problems we will try to separate them as much as
possible form each other. We will divide our system into modules were each
module is responsible for one sub-problem or abstraction. If we do it right
the main program can describe operations in a much higher level; instead
of talking about x, y and z coordinates it can talk about rays, objects and
intersections.

ID1019 KTH 2 / 20

2 Vectors

The first task is to create a module that will handle all vector operations.
We will need to represent vectors and be able to do the following operations.

• a~x : scalar multiplication

• ~x− ~y : subtraction

• ~x + ~y : addition

• ‖~x‖ : norm, or length, of a vector

• ~x · ~y : scalar product (dot product)

• |~x| : normalized vector

If we restrict the system to only work with three dimensional vectors we
have a natural way of representation: a tuple with three elements, the x, y
and z components i.e. {x, y, z}.

Create a new file vector.ex and declare a new module with the following
exported functions.

defmodule Vector do

def smul({x1, x2, x3}, s) do ... end

def sub({x1, x2, x3}, {y1, y2, y3}) do ... end

def add({x1, x2, x3}, {y1, y2, y3}) do ... end

def dot({x1, x2, x3}, {y1, y2, y3}) do ... end

def normalize(x) do ... end

def norm({x1, x2, x3}) do ... end

end

The first functions, scalar multiplication, addition and subtraction should
be quite easy to implement.

ID1019 KTH 3 / 20

〈x1, x2, x3〉s = 〈x1s, x2s, x3s〉

〈x1, x2, x3〉+ 〈y1, y2, y3〉 = 〈x1 + y1, xx + y2, x3 + y3〉

To implement the norm, dot product and normalization of a vector you
might have to go through your book in linear algebra but you should have
it up and running quite quickly.

‖~x‖ =
√
x21 + x22 + x23

~x · ~y = 〈x1 · y1 + x2 · y2 + x3 · y3〉

|~x| = ~x/‖~x‖

In this implementation we actually expose the representation of a vector i.e.
the users of this module will know that vectors are represented by tuples
with three elements. This is not the best solution but unfortunately a very
convenient solution.

3 Objects

Our next task is to create a module that can represent the objects in our
world. We will keep things simple and only handle rays and spheres.

When we decide on the representation we need to think about the operations
we should perform; a representation is efficient if it allows the operations to
be efficiently implemented. When we are talking about rays and spheres,
we might not have much choice but it’s important to start thinking about
the operations that should be performed.

The operations that we will perform over and over again is to determine if a
ray intersects with another object such as a sphere. If we model our objects
in a Cartesian space we will be able to determine intersections quite easily.
A ray will have an origin and a sphere will have an origin and a radius. An
origin is represented by a vector, a direction by a normalized vector and a
radius by an integer.

ID1019 KTH 4 / 20

When we choose a representation of rays and spheres we will use Elixir
structs. Structs are very similar to tuples but they are identified by a name
and also have named elements. We will later add more properties to these
objects and the struct implementation makes it much easier to modify our
code.

defmodule Sphere do

defstruct radius: 2, center: {0, 0, 0}

def sphere(radius, center) do

struct(Sphere, radius: radius, center: center)

end

end

defmodule Ray do

defstruct origin: {0, 0, 0}, direction: {1, 1, 1}

def ray(origin, direction) do

struct(Ray, origin: origin, direction: direction)

end

end

Structs are defined in a module of the same name. The first two functions
for the Sphere and Ray structs will simply return objects of specified types.
You see how we use the structs to construct and initiate the named elements.

The tricky part is of course to determine if a ray will intersect a sphere but
this is actually easily determined if we remember our linear algebra.

In Fig. 2 we see a ray intersecting a circle. We want to find the intersection
points ~i1 and ~i1.We can do this by first calculate the length a and this is
done by taking the dot product of ~k and ~l. The dot product will project the
vector ~k on ~l thus giving us the length a. The vector ~k is of course easily
calculated since we know the origin of the ray ~o and the center of the circle
~c.

Note that we here talk about the circle while our real model would contain
a sphere - this is fine, the operations are the same.

ID1019 KTH 5 / 20

~c

~o

~l

~i1

~i2

~k

r

h

a

t

Figure 2: Intersection of ray and sphere.

The length of the vector ~k is of course ‖~k‖ and if we know this we can
calculate h using Pythagoras’ theorem. Since we know that the radius of
the sphere is r we can again rely on Pythagoras and calculate t2.

t2 = r2 − h2

If it turns out that t2 is a negative value, it means that the ray does not
intersect the sphere. This is our criteria for answering if we intersect the
object or not. If t2 is positive we calculate t and then of course obtain
two alternatives t and −t. We now calculate two distances d1 = a − t and
d2 = a+ t. This is the distance to the points of intersections from the origin
of the ray ~o. If either value is negative it means that the intersection point is
behind us; if only one value is negative we are actually inside the sphere. If
both values are positive we return the smallest value since this is the surface
that we will actually see.

Implement the function intersect/2 that checks if ray intersects a sphere;
return :no if it does not and {:ok, d}, where d is the closest distance, if it
does. Do some experiments to see that it works.

defmodule Objects do

def intersect(sphere, ray) do ... end

end

ID1019 KTH 6 / 20

4 The camera

We have now done half of the job, you will soon create your first image but
we first need to represent the camera. It turns out that we have a lot of
options when defining what the camera looks like; we of course need to define
where in the room it is and where it is pointing but also what kind of lens
it has. This is probably the most complicated part of the implementation
but we will give it a try.

4.1 The name of the game

In the end we would like to have a representation of a camera that will allow
us to ask for a ray that starts in the focal point (or origin) of the camera
and runs through a given 〈x, y〉 coordinate of the canvas. If we know that
the canvas is of size 800×600 then we can ask for the ray that runs through
〈230, 170〉 and be given a a ray. This ray will then be compared to all the
objects in the world and the closest intersection point will determine the
color of the 〈230, 170〉 pixel.

When you think about representation, then always think about what you’re
going to use the object for. This will allow you to represent the object in a
way that makes the operations easier to perform. Also think about how you
would like to talk about the object, the easiest way to describe an object
might not be the bets way to represent it.

4.2 Properties of a camera

If you have not used a large camera you might not have thought about how
different lenses changes the picture but think about the difference between a
“fish-eye” and telephoto lens. The difference has to to with the focal length,
the length from the lens to the focal point; the important factor is the ratio
between the width of the film and the focal length. When using a 35mm
film a focal length of 50mm gave a “normal” lens i.e. a lens that gave images
that looked normal.

It is thus important that we can describe a canvas: its size, orientation and
position in relation to the origin of the camera. In Fig. 3 we see the elements
that we need to represent: the origin described by a vector ~o, a vector ~f that
give us the direction and distance to the center of the canvas and two vectors
that give us the vertical, ~v, and horizontal, ~h, direction of the canvas.

ID1019 KTH 7 / 20

We might take for granted that the plane of the canvas is orthogonal to the
direction; this is not strictly necessary but if it is not, we will have very
strange projections of the image (a technique that is actually used and if
you want to know more you can search for the “Scheimpflug principle”).

Note that the vertical and horizontal orientation are represented as two
vectors. This will allow us to create a ray from the origin through any
coordinate of the canvas.

~o
~f

~v

~h

Figure 3: Representing a camera.

A camera with a normal lens, positioned at 〈0, 0, 0〉 and pointing straight
into the picture, could be described as follows:

• position: 〈0, 0, 0〉

• direction: 〈0, 0, 1200〉

• horizontal: 〈960, 0, 0〉

• vertical: 〈0, 540, 0〉

This would give us a canvas of size 1920×1080 at a distance from the origin
of 1600 (which will approximately give us a “normal” lens).

To minimize the computation needed when calculating the rays we could
represent the camera by a position and a vector to the upper left corner
of the canvas ~c. If we then have two vectors that represent the distance
between pixels moving to the right ~r and moving down ~d, we can easily
calculate the normalized vector to any pixel in the canvas.

ID1019 KTH 8 / 20

pixel(x, y) = |~c + x ∗ ~r + y ∗ ~d|

We therefore represent the camera by position, direction to the upper left
corner and the two vectors that describes the distance to the first pixel to
the right and the first pixel down. Why the upper corner, why move down,
why not lower left corner? Turns out that when we talk about images we
often count the rows going down so this will makes things easier. We also
keep the size of the canvas so we know which rays that we should produce.

Open up a module Camera and defined the following struct.

defmodule Camera do

defstruct pos: nil, corner: nil, right: nil, down: nil, size: nil

end

You should also define, and export, a function camera/5 that will return a
camera given the properties. It will also be very handy to have a function
that returns a default camera so that we don’t have to think about the
different parameters. This default camera can be positions at 〈0, 0, 0〉 and
point straight forward (in the z direction). We can give it a parameter that
is the size of the image that we want to generate; you will have to calculate
the rest of the parameters.

def camera(pos, corner, right, down, size) do

struct(Camera, pos: pos, corner: corner, right: right, down: down, size: size)

end

def normal(size) do

{width, height} = size

d = width * 1.2

h = width / 2

v = height / 2

corner = ...

camera({0, 0, 0}, corner, ..., ..., size)

end

Given a camera we now need to calculate a ray that passes through a given
coordinate or pixel. This should be straight forward given that we created
our representation with this mind.

ID1019 KTH 9 / 20

def ray(x, y, camera) do

origin = ... # the origin of the ray

x_pos = ... # a vector from the corner to the X column

y_pos = ... # a vector from the corner to the Y row

pixle = ... # a vector from origin to the pixle

dir = ... # the normalized vector

Ray.ray(origin, dir)

end

Also implement a function size/1 that returns the size of a camera and
then you’re done with the camera module.

5 The world

The world is simply a list of objects. We will extend the world to also hold
other things but for our first test this will be sufficient.

defmodule World do

defstruct objects: []

def world(objects) do

struct(World, objects: objects)

end

end

That completes all the modules that we need, high time to generate some
images.

6 The tracer

Open a module called Tracer; this will be the main module where the images
are created. We will define a function that takes a camera and a description
of the world and returns an image.

An image will be represented by a list of rows where each row is a list of
rgb values. The rgb values are tuples of three elements where each element

ID1019 KTH 10 / 20

is a floating point value between 0 and 1. A green-blue color could thus be
represented by the tuple {0, 0.8, 0.3} We will later use a procedure to
print this image to a file that you hopefully can open in a viewer of your
choice.

We will start slowly and render a black and white image. This will not
impress anyone but your mother, but it will be a start that we then will
extend quite easily. We will build the tracer bottom up which will give us
the opportunity to test things as we implement it.

The first thing we will do is to determine which object a ray intersects, if
any, from a list of objects. We know that we can call intersect/2 form the
Objects module but now we have a list of objects and we want to find the
closest point of intersection.

The intersect/2 function returns either {:ok, d} or :no so it should be
an easy task to find the object with the closest point of intersection. We will
here use the higher order construct List.foldl/3 but you could implement
it by hand in just as many lines.

def intersect(ray, objects) do

List.foldl(objects, {:inf, :no}, fn object, sofar ->

{dist, _} = sofar

case Objects.intersect(object, ray) do

{:ok, d} when d < dist ->

{d, object}

_ ->

sofar

end

end)

end

So the function intersect/2 will tell us if a ray intersects an object and it
will also tell us the distance to this object. If the ray does not intersect an
object it will return {:inf, :no} (using a value like this is called a sentinel,
a value that we know will be higher than any other value).

We now define a two functions: trace/4 and trace/2. The latter will use
intersect/2, check the outcome and then return either a black or white
rgb-value depending on if we intersected an object. The first will use the
latter but here we give the x and y values of the pixel that we are looking
for.

ID1019 KTH 11 / 20

def trace(x, y, camera, objects) do

ray = ...

trace(ray, objects)

end

def trace(ray, objects) do

case intersect(ray, objects) do

... ->

@black

... ->

@white

end

end

The only thing that is left is to trace every possible ray of the camera; this
is neatly done using list comprehension. The function tracer/2 will return
a list of rows where each row is a list of rgb values that describes the image.

def tracer(camera, objects) do

{w, h} = camera.size

xs = Enum.to_list(1..w)

ys = Enum.to_list(1..h)

for y <- ys, do: for(x <- xs, do: trace(x, y, camera, objects))

end

We of course want to look at the image we have created and to do this we
somehow have to convert it into a image file. There are many image formats
to choose from but most are compressed and it is not trivial to write a jpeg
encoder. The file format that we will use is very inefficient but it is very
easy to generate a file. In the appendix App A you will find a module that
will take an image, as we generates it, and writes a ppm file. Not all image
viewers can open a ppm file so you might have to try several before finding
one that works.

It is now quite easy to generate an image, all we have to do is to describe the
world and then take a snap shot. Create a module called Test and describe
your first image.

ID1019 KTH 12 / 20

defmodule Test do

def snap do

camera = Camera.normal({800, 600})

obj1 = Sphere.sphere(140, {0, 0, 700})

obj2 = Sphere.sphere(50, {200, 0, 600})

obj3 = Sphere.sphere(50, {-80, 0, 400})

image = Tracer.tracer(camera, [obj1, obj2, obj3])

PPM.write("test.ppm", image)

end

end

If you look at your picture you will hopefully see three white circles on a
black background. One circle (the image of obj3 in the description above)
is closer to the camera and is partly blocking the larger circle (that is the
image of obj1). This is not very existing but you will see that it is very easy
to extend this simple ray tracer.

7 Extensions

Can you provide a better strategy for the philosophers so that they can eat
and dream without ending up in a deadlock? What happens if you provide a
waiter that controls how many philosophers that can eat at any given time.
How would this help the situation? How many philosophers can try to eat
without ending up in a deadlock? How smart does the waiter need to be?

We will do three extensions to the tracer: colors, lights and reflections. The
first extension is quite simple while the last one requires that you repeat you
knowledge i geometry.

7.1 Adding colors

Turning the image into a color image is two simple changes. First of all
we extend the Sphere struct structure to also include a color element. We
can have a default color if we want so that all spheres have colors; we also
provide a function sphere/3 that will create colorful spheres.

ID1019 KTH 13 / 20

@color {1.0, 0.4, 0.4}

defstruct radius: 2, center: {0, 0, 0}, color: @color

def sphere(radius, center, opt) do

color =

case List.keyfind(opt, :color, 0) do

{:color, c} -> c

nil -> @color

end

struct(Sphere, radius: radius, center: center, color: color)

end

The way we choose to implement sphere/3 is a bit over-kill but we now
have a simple way of adding more properties as we go (and we will).

Once we have spheres with colors, we simply change the trace/3 function
so that it will return the color of the object rather than the default white.
Describe a new snap-shot where you have some colorful spheres and see what
the image looks like.

7.2 Lights

We will do two things in this extension; we will introduce a world-object
that holds general information about the world and then we will add lights.
Extend the World module and describe a world object:

@background {0, 0, 0}

defstruct objects: [], lights: [], background: @background

def world(objects, lights, opt) do

background =

case List.keyfind(opt, :background, 0) do

{:background, b} -> b

nil -> @background

end

struct(

World,

objects: objects,

ID1019 KTH 14 / 20

lights: lights,

background: background

)

end

We use the same scheme as for the spheres and have a function that can
create a world given a list of objects, a list of lights and an list of additional
properties. One of the properties we will add right now is the background
color.

The question is now what a light source looks like; we create a new module
Light that will handle all aspects of it. The lights themselves are simple to
model since we only give them a position and a color.

defmodule Light do

defstruct origin: nil, color: {1.0, 1.0, 1.0}

def light(origin, color) do

struct(Light, origin: origin, color: color)

end

end

The question now is how we are going to use the lights; we could probably
have a whole course on how light sources are combined in a ray tracer but
we will try to keep it simple.

Let’s look at the trace function, it detects if a ray hits an object and then
returns the object and the distance to this object. Since we know the direc-
tion of the ray we can easily describe the point in space where the ray hits
the object. Now what if we ask if a ray starting in this point, in the direction
of a light source, hits any object in the world - if not the point should be
illuminated by the light source. If we examine all light sources we would
determine which sources that illuminates the point and combined with the
color of the object we can determine what the color of the corresponding
pixel. Note that you have all the pieces of this puzzle, it’s just a matter of
combining light sources and the color of the object.

ID1019 KTH 15 / 20

defp trace(ray, world) do

objects = world.objects

case intersect(ray, objects) do

{:inf, _} ->

world.background

{d, obj} ->

o = ray.origin

l = ray.direction

i = Vector.add(o, Vector.smul(l, d - @delta))

normal = Sphere.normal(i, obj)

visible = visible(i, world.lights, objects)

illumination = Light.combine(i, normal, visible)

Light.illuminate(obj, illumination, world)

end

end

In the code above there are two things that needs some explanation: the
@delta and the use of the normal vector. The delta is a hack that we need to
do since floating points are not exact, or rather since a point that is actually
“in” the surface of an object might be shadowed by the object it self. By
raising the point a small distance from the surface we avoid being lured into
thinking that we are in the surface or even worse below the surface; the
delta that I use is 0.001 and it works fine.

The second thing is the normal vector that we calculate use when combining
the light sources. A light that hits the surface at an angle will contribute to
less illumination compared to a light that hits it straight from above. You
can first try to combine the light sources without taking this into effect but
you will see that the light is very sharp, either it illuminates the surface or
it does not. Using the normal vector does require that you do some more
vector arithmetic but it turns out to be quite simple.

The normal vector ~n is easily calculate since we know the point of intersec-
tion ~i and the center of the sphere ~c. If we have other objects we would of
course have to do something else.

~n = |~i− ~c|

The contribution a of a light source at ~s to the point ~i on a surface with
normal vector ~n is:

ID1019 KTH 16 / 20

a = |~s−~i| · ~n

What we are doing here is to first calculate the vector from ~i to ~s and then
normalize this. Then we do the dot product with the normal vector to
obtain a number between 0 and 1. An light source that is orthogonal to the
normal vector will not contribute at all while a light source in exactly the
same direction will contribute with its full strength.

All the light sources can be added together but we of course need to do the
addition in a special way. When you add two probabilities p and q then you
would write:

1− ((1− p)× (1− q))

And we should do the same thing here (do some thinking). If you get it right
your images will get a lot more live and will start to look like something that
you could show to someone besides your mother.

7.3 Reflections

The third extension that we will look at is reflections; sounds tricky but it
turns out to be even simpler than adding lights. What we wan to do is to
calculate a reflecting ray in the point of intersection and then calculate the
contribution from this angle. The contribution can of course be calculated
using a recursive step since this is exactly what the tracer module will do;
given a origin and a normal vector calculate what is visible in this direction.

So if we do a recursive step and find that the reflection has a particular color
then we need to ask ourselves how much of this color should be added to the
point of intersection. This is where you will start to think about brilliance
i.e. how much the surface acts as a mirror. Again, you could spend the rest
of the week thinking about how a metal surface is different from wood but
we might also just describe the level of reflection by a number from 0 to 1.

Add a property to the sphere object that gives us the brilliance and then use
this value when you calculate how much the reflection should be visible. You
then modify the tracer/2 function so it takes another argument which will
be the depth, or number of reflections. If the depth is zero we’re done and
simply return the background color, otherwise we calculate the intersection
point, calculate the contribution from light sources and then also add the

ID1019 KTH 17 / 20

reflection that you obtain from a recursive call to the function (remember
to decrement the depth value).

Once we have the brilliance we might want to change the way we add light
sources since a light source that is in the direction of the reflection would
be visible in a sphere with high brilliance. If you start to dig into this you
will find that you have enough to do for a day or two.

7.4 And more

Another thing that we might want to explore is of course to add more objects.
A plane would be fairly easy to describe and the intersection can be found
if you do some reading.

We could also start to add texture or images to the surface of objects. An
image could of course be mapped to a rectangular plane or cylinder and you
would see the distorted photo in your rendered image.

A fairly simple thing to add is transparency; an object can be made to look
like colored glass. To do this you would simply calculate two contributing
rays at a point of intersection. One is in the direction of the reflection but
the other one is continuing through the object, this is called the refraction.
The refraction is of course, if you remember what you learned in secondary
school, slightly bent depending on the index of the material. You would
thus use the refraction index to calculate the direction of the ray and then
take the transparency into account when you add the contribution of the
refraction.

8 Summary

This tutorial was not about ray tracing but about how you can work with
tuples, structs and modules to build a larger program where try to hide the
internal data representation as much as possible.

If you have programmed in for example Java, which is a statically typed
object orientated language, you have seen better ways of doing this. The
dynamically typed languages have for good and worse less support to achieve
this; the struct construct in Elixir is a addition to the language that gives
you some support but it’s only half way.

If your familiar with object orientated languages you have probably thought

ID1019 KTH 18 / 20

about describing out objects in a hierarchical way; all object have a position
and color, spheres are object that have a radius etc. This would definitely
make our life easier but again, the dynamic nature of Elixir makes it harder
to provide.

When looking at you program you could see the different modules as the
building blocks of abstractions. If you have done it right only the vector
module knows how vectors are handled (all though we cheated and anyone
that creates an object must also know how a vector is represented. Anything
that is dealing with rays, objects and intersections should be in the objects
module and everything that handles colors and lights should be in the light
module. Dividing you program up in modules gives you a similar tool for
abstractions as the classes in Java (not exactly by similar). Learning how
to divide a program into different modules of abstraction is maybe the most
important skill of a good programmer.

Even if the tutorial was not about ray tracing, I hope that you have gener-
ated some nice images and have a better understanding of what your graphic
card is doing when you spawn in BF.

ID1019 KTH 19 / 20

A Module ppm.ex

defmodule PPM do

write(Name, Image) The image is a list of rows, each row a list of

tuples {R,G,B} where the values are flots from 0 to 1. The image

is written using PMM format P6 and color depth 0-255. This means that

each tuple is written as three bytes.

def write(name, image) do

height = length(image)

width = length(List.first(image))

{:ok, fd} = File.open(name, [:write])

IO.puts(fd, "P6")

IO.puts(fd, "#generated by ppm.ex")

IO.puts(fd, "#{width} #{height}")

IO.puts(fd, "255")

rows(image, fd)

File.close(fd)

end

defp rows(rows, fd) do

Enum.each(rows, fn r ->

colors = row(r)

IO.write(fd, colors)

end)

end

defp row(row) do

List.foldr(row, [], fn({r, g, b}, a) ->

[trunc(r * 255), trunc(g * 255), trunc(b * 255) | a]

end)

end

end

ID1019 KTH 20 / 20

