
A LZW Encoder
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Getting started

Lempel-Ziv-Welch (LZW) is a compression algorithm that takes advantage
of frequent occurrence of sequences of characters. It will detect sequences
on the fly while doing the compression and thus create individual codes for
sequences as it goes along. The beauty of the algorithm is that the decoder
must not be told what these new codes mean - it will learn as it does the
decoding.

The encoder that we will implement will not use binary encoding i.e. codes
are fixed size and are represented by an integer. A real implementation
would start off by using, for example, a five-bit code and then increase
the code length as needed. By implementing this simpler form you will
understand the principles of the algorithm and you can easily extend it to
use variable size codes.

Before you start to implement this encoder and decoder you should do some
reading on the LZW algorithm so that you have a basic understanding of
the process. The devil is as always in the detail and we will see how these
are handled as we implement the encoder.

1 The table

The encoder and decoder have to agree on an initial alphabet (and in the
general case, the code size). We will here use a very small alphabet that
consists of the smaller cap letters and the space character. Given this we
construct an initial encoder/decoder table that is represented as a list of
character sequences and codes.

ID1019 KTH 1 / 3



defmodule LZW do

@alphabet 'abcdefghijklmnopqrstuvwxyz '

def table do

n = length(@alphabet)

numbers = Enum.to_list(1..n)

map = List.zip([@alphabet, numbers])

{n + 1, map}

end

end

The only sequences we know of in the beginning are the sequences consisting
of single characters. We have 28 characters in total so our table will look
like follows:

{28, [{97, 1}, {98, 2}, {99, 3}, ...]}

The number of sequences in the table is important to keep track of since we
will add new codes as we encode our text. Have in mind that the encoder
and decoder will both know the state of the initial table.

2 The encoder

So let’s start the encoding of a sequence of characters. If the sequence is
empty we’re done but the common case is of course if we have at east one
character. We use the first character to initiate the encoder. We pick up the
encoding table, that of course holds a code for the single character word.
We then call the encode/4 function that is given: the text, the word, the
code of this word and the coding table.

def encode([]), do: []

def encode([word | rest]) do

table = table()

{:found, code} = encode_word(word, table)

encode(rest, word, code, table)

end

ID1019 KTH 2 / 3



The function encode/4 is where all the action takes place. The base case
is simple, if there is not more characters in the text then we’re done. If we
have another character in the text we add this to the word we have read so
far and check if this extended word can be found in the table. If we find a
coding of the extended word we’re happy but we might be even happier if
we find an even longer world. This is where we continue with the extended
word and its code.

def encode([], _sofar, code, _table), do: [code]

def encode([word | rest], sofar, code, table) do

extended = [word | sofar]

case encode_word(extended, table) do

{:found, ext} ->

encode(rest, extended, ext, table);

{:notfound, updated} ->

{:found, cd} = encode_word(word, table)

[code | encode(rest, [word], cd, updated)]

end

end

If a code is not found for our extended word we will return a list starting
with the code of the word we had found so far. We will then continue the
encoding.

ID1019 KTH 3 / 3


