
Splay Trees
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

A splay tree is an ordered binary tree with the advantage that the last key
we looked for is found in the root of the tree. We will rearrange the tree in
every access, moving the key to the top and trying to keep the rest of the
tree balanced.

The amortized cost of operations (search, insert, delete) are all O(lg(n)).
There are worst case scenarios, since there is no guarantees that the tree
is balanced, but we accept this since the data structure has its advantages.
Frequently used keys will be found higher up in the tree so it is very good
to use in an application where we expect temporal locality i.e. if you have
used one key it is very likely that you will use this key again with in a short
period of time.

In this assignment you’re going to learn how to implement a quite tricky
algorithm using pattern matching. You should look up some tutorial on
splay trees so that you have a basic understanding of the algorithm but we
will explain the algorithm as we go along. We will first look at the general
idea of these operations using a graphical representation before going in to
how to implement it in Elixir.

1 The splay tree

In this implementation we will create a splay tree that keeps key-value pairs.
The key-values will reside in all of the nodes besides the leafs which are
empty branches. The tree is ordered with smaller values in left branches.

ID1019 KTH 1 / 13

Doing search in this tree is of course trivial but we will do a search where
we also change the structure of the tree. This is the key operation in all
splay tree operations; updating, lookup and insertion are essentially the
same algorithms since they all perform the same transformation.

In this description we will first look at the operation to update or insert a
value given a key. If the key is present we will update the value, if not we
will add the key-value pair. Once we understand how this is done it will be
easy to implement the other operations.

The splay operation is slightly different depending on if we are in the root
of the tree or doing a recursive operation further down in the tree. Before
explaining the general rules let’s look at the rules for the root.

1.1 Splay of the root

Assume that we want to update a value for a key in a tree. We will have
two very easy special cases when the tree is empty or if the key is found in
the root of the tree. In these cases we simply return a tree with one node
or update the existing root with the new value.

The splay operation comes in when we find the key in one of the branches.
We should then rearrange the tree in a way that moves the key to root of
the tree. The operation is quite straight forward as seen in the graph shown
in figure 1.

Note that the lefter-most sub-tree, A, of course contains keys that are less
than the key (K) that we’re looking for and it is safe to have it as the left
branch of the new tree. The sub-tree B contains keys that are greater than
the key we are looking for but smaller than the key of the root (R) . Its
position in the transformed tree is therefore sound. The same thing goes for
the sub-tree C that must contain keys that are greater than the key of the
root.

There is s corresponding splay operations when we find the key in the left
branch. Write it down using the same naming scheme as in in figure 1. This
will make the implementation step easier.

ID1019 KTH 2 / 13

R

K

A B

C

K

A R

B C

Figure 1: Zig: splay operation of the root when the key (K) is found in left
branch.

1.2 Splay further down the tree

In general the splay operation on a tree will result in a tree where the key
that we’re updating becomes the root of the tree. The operation looks very
similar to the operation that we have seen for the root of the tree, the only
difference is that we now look further down the tree before determining what
to do. We first describe the general rules before describing the special cases.

We have four cases and we could call them left-left, left-right etc but for
historic reasons we call them: zig-zig, zig-zag, zag-zig and zag-zag. We only
show the two first since the two other are mirror images of the two first.

When describing these rules we use the naming ’K’ for the node where the
key is found, ’P’ for the parent node and ’G’ for the grandparent. Sub-
trees that are moved around are called ’A’, ’B’ etc and we write them in an
order so that we know that all keys in for example sub-tree ’A’ are smaller
than keys in sub-tree ’B’. We will later use these names for variables in our
implementation so let’s try to be consistent.

Zig-zig

The zig-zig rule is used if we find the key in the lefter-left node. In figure 2
we see how we move the node holding the key we’re looking for (K) to the
root and rearrange the parent (P), and grandparent (G), to form the new
tree. Note the order of the sub-trees A, B, C and D. Make sure that you
understand why it is safe to do the transformation of the tree and why the
tree is still ordered.

ID1019 KTH 3 / 13

G

P

K

A B

C

D

K

A P

B G

C D

Figure 2: Zig-Zig: splay operation when key is found in left-left branch.

G

P

A K

B C

D

K

P

A B

G

C D

Figure 3: Zig-Zag: splay operation when the key (K) is found in left-right
branch.

Zig-zag

The second rule covers the case where we find the key in the left-right node.
The transformation is a little different but the aim is the same; move the
key to the root and rearrange the sub-trees to keep the tree ordered. In
figure 3 we see how the transformation is done.

1.3 Zag-zig and zag-zag

The two described rules of course have their mirror rules when the key is
found in either the right-right or right-left node. The idea is the same,
move the found key to the root and the parent node one level down. The
grandparent node becomes the child of either the parent node or the key
node.

ID1019 KTH 4 / 13

G

C

K

G

C

Figure 4: Zig: splay operation when key should go into left branch.

You’re strongly advised to draw the graphs that describes these zag-zig and
zag-zag rules. Keep the naming of nodes: G for grandparent, P for parent
and K for the node where we find the key. Sub-trees are called: A, B etc
and are named in order.

These are the complicated rules, what we have left are the very simple rules
for some base cases.

1.4 Zig or zag or nil

We have several base cases that cover the situations where the tree is not
very deep or when we find the key that we’re looking for in one of the two
first levels. In the same way as for the root we could have an empty tree
or a tree where the key is in the root; these cases are trivial. If the key is
found in the root of either sub-tree we do a transformation that is exactly
the same transformation that we would do for the root.

If the sub-tree where the key should be found is empty we do the same
operation as we would do if we found the key in the root of the sub-tree.
An example of what this looks like is seen in figure 4.

The rule is equivalent to the zig rule that we used in the root of the tree.
It of course has its corresponding zag versions where the key should go into
the right branch.

ID1019 KTH 5 / 13

2 The implementation

We will implement a function update/3 that takes a splay tree, a key and a
value and returns a transformed splay tree where the key has been updated
or inserted if it was not present. In both cases the key value pair is of course
found in the root of the transformed tree.

A tree is represented by:

• nil: the empty tree

• {:node, key, value, left, right}: a node with a key, value and
a left and right branch

In the implementation we will use the same naming of nodes as in the
graphical representations. We will augment names with k or v depending
on if we refer to the key or value. A key value pair will for example be
named rk and rv if it’s the root node. Nodes that are only moved around
will be called a, b etc. The idea is that we should keep the implementation
as close to the graphical description as possible.

2.1 Update of the root

Let’s start with the base cases for updating the root. We either have a
empty tree or a node where we are lucky enough to find the key in the root.
Below is the skeleton code that you should use, fill in the blanks.

def update(nil, key, value) do

{:node, ..., ..., ..., ...}

end

def update({:node, key, _, a, b}, key, value) do

{:node, ..., ..., ..., ...}

end

The two general cases, Zig and Zag are where we will do a call to a general
splay operation. The function splay/2 takes a tree and a key and will return
a tuple {:splay, kv, a, b} where kv is the value of the key (:na if the
key is not found) and a and b the left and right sub-trees. When we do an
update of a value we’re not interested in the found value of the key but we
will use this in the coming operations.

ID1019 KTH 6 / 13

If we know that splay/2 works for all trees then we can use it to implement
the zig and zag rules of the root.

def update({:node, rk, rv, zig, c}, key, value) when key < rk do

The general rule where we will do the Zig transformation.

{:splay, _, a, b} = splay(zig, key)

{:node, ..., ..., ..., {:node, ..., ..., ..., ...}}

end

def update({:node, rk, rv, a, zag}, key, value) when key >= rk do

The general rule where we will do the Zag transformation.

{:splay, _, b, c} = splay(zag, key)

{:node, ..., ..., {:node, ..., ..., ..., ...}, ...}

end

When you fill in the blank spots in the code, use variable names that found
in the graphical representations of the rules. This will help you to verify
that you’re actually doing the right thing. If we now only can implement
the splay/2 function we are done.

2.2 Splay of the tree

As for the root we have two base cases when the tree is empty and when
the key is found in the root. These should be quite easy to write down.

defp splay(nil, _) do

{:splay, :na, ..., ...}

end

defp splay({:node, key, value, a, b}, key) do

{:splay, ..., ..., ...}

end

The general zig-zag rules only work if we have three levels to work with.
We therefore have two more special cases where the left or right sub-tree is
empty. We should still return a splay-tuple and therefore need to construct
two sub-trees. Make sure that you get this right, what should go into the
empty spaces.

ID1019 KTH 7 / 13

defp splay({:node, rk, rv, nil, b}, key) when key < rk do

Should go left, but the left branch empty.

{:splay, :na, ..., {:node, rk, rv, ..., ...}}

end

defp splay({:node, rk, rv, a, nil}, key) when key >= rk do

Should go right, but the right branch empty.

{:splay, :na, {:node, rk, rv, ..., ...}, ...}

end

One more special case is when the key is actually found as the root in the
left or right sub-tree. Very similar to the case above but now we actually
have a found a value.

defp splay({:node, rk, rv, {:node, key, value, a, b}, c}, key) do

Found to the left.

{:splay, ..., ..., {:node, ..., ..., ..., ...}}

end

defp splay({:node, rk, rv, a, {:node, key, value, b, c}}, key) do

Found to the right.

{:splay, ..., {:node, ..., ..., ..., ...}, ...}

end

When this is done we are ready for the general zig-zag rules. We here list the
complete coding of the zig-zig rule and you should complete the remaining
rules. The zig-zig rule applies the splay operation on the left-left sub-tree
and obtains the sub-trees a and b that can then be used to rearrange the
tree. Note that the splay operation also provides the found value, kv, and
this value is returned in the splay tuple.

defp splay({:node, gk, gv, {:node, pk, pv, zig_zig, c}, d}, key)

when key < gk and key < pk do

Going down left-left, this is the so called zig-zig case.

{:splay, value, a, b} = splay(zig_zig, key)

{:splay, value, a, {:node, pk, pv, b, {:node, gk, gv, c, d}}}

end

The zig-zag rule is similar but now we have walked down the left-right
branch. Look at the graphical representation of the rule in figure 3. Fill in
the blanks, which sub-trees should go where?

ID1019 KTH 8 / 13

defp splay({:node, gk, gv, {:node, pk, pv, a, zig_zag}, d}, key)

when key < gk and key >= pk do

Going down left-right, this is the so called zig-zag case.

... = splay(zig_zag, key)

{:splay, value, {:node, pk, pv, a, b}, {:node, gk, gv, ..., ...}}

end

The remaining two rules are the mirror images of the first two rules. If you
have not done so yet you should draw the images of the rules using the same
naming strategy. There should be a one-to-one mapping from drawn rules
to clauses in the code. When your done you have implemented the update
function for splay trees.

defp splay({:node, gk, gv, a, {:node, pk, pv, zag_zig, d}}, key)

when key >= gk and ... do

...

{:splay, value, {:node, gk, gv, a, b}, {:node, pk, pv, c, d}}

end

defp splay({:node, gk, gv, a, {:node, pk, pv, b, zag_zag}}, key)

when ... do

...

{:splay, value, {:node, pk, pv, {:node, gk, gv, a, b}, c}, d}

end

This is it, you have implemented the update function of splay trees. Write
some small test examples that updates a tree, try this:

def test() do

insert = [{3, :c}, {5, :e}, {2, :b}, {1, :a}, {7, :g}, {4, :d} {5, :e}]

empty = nil

List.foldl(insert, empty, fn({k, v}, t) -> update(t, k, v) end)

end

3 Why this exercise

It’s of course fun to implement an algorithm that you might have hear off but
not fully understood. The aim of this exercise is however not the algorithm
per see but how pattern matching and recursion can be used to implement
a fairly complicated algorithm.

ID1019 KTH 9 / 13

I hope that you see how the graphical descriptions maps to patterns and how
easy it is to build the desired transformation. If you would have implemented
this algorithm from scratch, you would probably have to do some thinking
and experimenting before coming up with the solution that we have now.
Looking at the solution it looks obvious but it takes some time to understand
how to get the recursion right.

3.1 A mutable solution

The Elixir implementation that we have now does not not look like the
solution you would write in Java or C++. In Elixir, as almost all functional
programming languages, data structures are immutable and we construct
a new tree in each operation. In a language where you can change data
structures your would most likely change the structure of the given tree.

If you implement the update procedure and change the structure of the
tree, you will most likely work with a linked tree where all nodes know their
immediate parent. The algorithm would then first traverse down the tree
to find the node with the given key, or construct one in a leaf if it is not
present, and then splay this node towards the root using the parent pointers.

You can probably work out what the algorithm looks like: if my parent has
a parent and I’m the left child of my parent and my parent is the left child
of its parent, then. . .

void splay(node *x) {

while(x->parent) {

if(!x->parent->parent) {

if(x->parent->left == x) right_rotate(x->parent);

else left_rotate(x->parent);

} else if(x->parent->left == x &&

x->parent->parent->left == x->parent) {

right_rotate(x->parent->parent);

right_rotate(x->parent);

} else if(x->parent->right == x &&

x->parent->parent->right == x->parent) {

left_rotate(x->parent->parent);

left_rotate(x->parent);

} else if(x->parent->left == x &&

x->parent->parent->right == x->parent) {

right_rotate(x->parent);

left_rotate(x->parent);

ID1019 KTH 10 / 13

} else {

left_rotate(x->parent);

right_rotate(x->parent);

}

}

}

The actual rotation operations are of course pointer manipulations where
the left, right and parents pointers are set to form the new structure of the
tree. Updating the data structure in place is of course more efficient than
building a new structure in each transformations. Immutable data structures
do however have their advantage when it comes to robustness and possibility
to run things in parallel. What we look at now is however how expressive
the different approaches are when coding a complex algorithm.

void right_rotate(node *x) {

node *y = x->left;

if(y) {

x->left = y->right;

if(y->right) y->right->parent = x;

y->parent = x->parent;

}

if(!x->parent) root = y;

else if(x == x->parent->left) x->parent->left = y;

else x->parent->right = y;

if(y) y->right = x;

x->parent = y;

}

3.2 Structs and named fields

Since we are looking at how easy it is to express an algorithm we can take
the opportunity to rewrite the program using Elixir structs. The structs
functionality will give us the ability to use named fields instead of explicitly
writing down a whole tuple in a pattern.

Assume that we have a struct definition for a node with the fields: key,
value, left and right. We could then rewrite update/3 in the following
way (we here also combine the three alternatives in one clause).

defstruct key: nil, value: nil, left: nil, right: nil

ID1019 KTH 11 / 13

def update(nil, key, value) do

%Node{key: key, value: value, left: nil, right: nil}

end

def update(%Node{} = node, key, value) do

cond do

key == node.key ->

%Node{

key: key,

value: value,

left: node.left,

right: node.right

}

key < node.key ->

{:splay, _, a, b} = splay(node.left, key)

%Node{

key: key,

value: value,

left: a,

right: {:node, node.key, node.value, b, node.right}

}

true ->

{:splay, _, b, c} = splay(node.right, key)

%Node{

key: key,

value: value,

left: {:node, node.key, node.value, node.left, b},

right: c

}

end

end

Using the structs we do not have to memorize the order of the elements in
the node structure. It makes it easier to update the code, for example if we
find that we need another element in each node. Using explicit patterns is
often the easier way of handling things while the use of more complex data
structures almost requires that you use the struct functionality.

ID1019 KTH 12 / 13

4 Summary

Pattern matching is a powerful technique to describe the rules of a transfor-
mation. Together with recursion even a complex algorithm becomes quite
easy to implement.

ID1019 KTH 13 / 13

