
AVL Trees
Programming II - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

In this assignment you’re going to implement operations on what is called
an AVL tree. An AVL tree is a fairly well balanced sorted binary tree where
the depth of two branches will differ by at most one. Searching in the tree is
straight forward but when we add an element to the tree we might have to
re-arrange the nodes to preserve the AVL property. The general idea how
nodes are rearranged is easy to explain if you leave out the details; the devil
is of course in the details.

1 AVL trees

AVL trees are named after two Russian mathematicians, Georgy Adelson-
Velsky and Evgenii Landis, who first described how we could rearrange
a binary search tree in constant time in each insert operation to keep it
balanced. The idea is of course to keep the look-up operations to O(lg(n))
and avoid the worst case O(n) scenarios that we could have if the tree
becomes to imbalanced.

The trick is to keep track of the difference in depth of branches so each
node will be augmented with a flag to signal that the left branch is deeper
(−1), the two branches are of equal depth (0) or if the right branch is deeper
(+1). When we insert a new node in the tree we could temporarily have
a situation where a node is labeled with −2 or +2. This would violate the
AVL property and is therefore immediately mitigated by a rotation. The
rotation must of course preserve the ordering but still remove the violating
imbalance. The different rotation operations are not tricky per se but there
are many cases to keep track of so it’s very easy to do mistakes.

ID1019 KTH 1 / 9



We will first look at the two basic rotations that we will do and then dig
deeper into the details of how to implement them.

2 Single rotate

The single rotate operation is performed when the left-left branch or right-
right branched has increased with one step and causes an imbalance. The
left-left station is shown in figure 1. The depth of the sub-tree A is one
greater than the sub-tree of B and also two greater than the sub-tree of C.
In the rearranged tree, the branches are balanced and the total depth of the
tree is one less than the imbalanced tree.

The left-left single rotation has its mirror in the right-right single rotation
used when the root has a difference of +2 and the right sub-tree a difference
of +1.

X/−2

Y/−1

A

B

C

Y/0

A

X/0

B C

Figure 1: Single rotation: the left-left branch has grown and caused an
imbalance.

3 Double rotate

In the double rotate we have added an element in the left-right branch (or
the right-left branch). There are three different flavors of this rule depending
on what the left-right branch looks like. The first rule is shown in figure ??

ID1019 KTH 2 / 9



and shows the situation where the left-right branch is marked with −1. This
is the case where the left-right-left branch (B) has been extended. Note the
difference in depth of the sub-trees, A has to be of the same depth as B and
D and C must be one level shorter.

The second version of this rule covers the situation where the left-right-left
branch is marked with +1 i.e. the sub-tree C is deeper than the sub-tree B.
The same transformation is done but the resulting depth differences are of
course different. You’re encouraged to write this rule down since you will
use it in the implementation.

X/−2

Y/+1

A

Z/−1

B

C

D

Z/0

Y/0

A B

X/+1

C

D

Figure 2: Double rotation: the left-right branch has grown and caused an
imbalance.

The third version of this rule is a special case where the left-right-left sub-
tree is marked with 0. This only happens if node Z is the element that was
added to the tree (a leaf node has two empty sub-trees and the difference is
then 0). If the depth of the sub-trees of Z is zero then the also the depth of
A and D must be zero. If all sub-trees are of depth zero then of course the
nodes of the transformed tree all have a depth difference of 0.

In the implementation we will have a choice whether we should handle this
special situation when it occurs or just use a general scheme that works in
all cases. We will use the general approach to make the implementation as
easy to follow as possible but one could keep this in mind if we want to

ID1019 KTH 3 / 9



improve the performance of the implementation.

4 All the rotations

One thing that is important to note is that the maximum depth of the tree
after the rotation is one less than before the rotation. We will use this fact in
the implementation when we keep track of depth differences in the recursive
operations.

All in all there are eight rotations that we will have to implement. There
are two single rotations, left ad right, and these are quite straight forward.
The three left-right and three right-left are trickier since we have to get the
depth differences right. If you draw the transformations graphs of these
rules you’re more likely to get it right, if you think you can hold these rules
in your head, I can only wish you good luck - you’ll need it :-)

5 The implementation

Ok, let’s go how hard can this be. Let’s start by defining the data structure
to represent a tree. We’re going to use a tuple with: a key and value, a depth
difference and a left and right branch. An empty tree or empty branch is
represented by nil and there is no special representation of leaf nodes.

• {:node, key, value, diff, left, right}

• nil

6 Insert

We will implement an insertion function that will take an AVL tree, a key
and value and return an AVL tree where the key-value pair has been added
or, if it existed, updated. In the recursive implementation of the insertion
function we will need to keep track of when the depth of a sub-tree changes
and update the depth differences accordingly. We therefor us an internal
function insrt/3 that returns either {:ok, t} if the resulting tree is of
equal depth or, {:inc, t} if the depth has been increased by one (the
depth can only increase by at most one).

ID1019 KTH 4 / 9



def insert(tree, key, value) do

case insrt(tree, key, value) do

{:inc, q} -> q

{:ok, q} -> q

end

end

The implementation of the insrt/3 function has two special cases and six
general rules, three for each branch. The two special cases if of course if the
tree is empty or if we find the key in the root of the tree. Note that we in
the first case return a tuple that indicates that the tree has grown by one
level.

defp insrt(nil, key, value) do

{:inc, {:node, key, value, 0, nil, nil}}

end

defp insrt({:node, key, _, f, a, b}, key, value) do

{:ok, {:node, key, value, f, a, b}}

end

In the general case we have to go down either the left branch or the right
branch but now we have several alternatives depending on the depth differ-
ence of the root node and weather or not the insertion of the key-value pair
increases the depth of the branch. We will first look at the simple cases and
leave the two problematic cases until the end.

If the tree is balanced and we are going down the left branch either of two
things can happened: the depth of the left branch is incremented by one or
its depth remains the same. If it does increase we must of course return a
structure that indicates that the depth of the resulting tree has increased.
We also provide the correct depth difference that now is −1.

defp insrt({:node, rk, rv, 0, a, b}, kk, kv) when kk < rk do

case insrt(a, kk, kv) do

{:inc, q} ->

{:inc, {:node, rk, rv, -1, q, b}}

{:ok, q} ->

{:ok, {:node, rk, rv, 0, q, b}}

end

end

ID1019 KTH 5 / 9



This rule of course has its right counter part; which branch should we go
down, what should we do if the depth of that branch is increased, what is
the resulting depth difference?

The second alternative is if we’re going down the left branch but in a tree
that has a deeper right branch. This case is almost the same but now we
will not increase the total depth of the tree even if we increase the depth of
the left branch. This rule also has its right counterpart and the difference
is minute (but oh how important).

defp insrt({:node, rk, rv, +1, a, b}, kk, kv) when kk < rk do

case insrt(a, kk, kv) do

{:inc, q} ->

{:ok, {:node, rk, rv, 0, q, b}}

{:ok, q} ->

{:ok, {:node, rk, rv, +1, q, b}}

end

end

The tricky case comes when we’re going down the left or right branch and
this is already a branch that is longer than its sibling. In this case we could
end up in a situation were have a depth difference of 2. This is were we rely
on our rotator to fix things for us. Note that the rotation will result in a
tree that does not change the maximum depth of the original tree. After a
rotation we can safely return the result as it is without any warning that
the depth has increased.

defp insrt({:node, rk, rv, -1, a, b}, kk, kv) when kk < rk do

case insrt(a, kk, kv) do

{:inc, q} ->

{:ok, rotate({:node, rk, rv, -2, q, b})}

{:ok, q} ->

{:ok, {:node, rk, rv, -1, q, b}}

end

end

If you also implement the final right branch version of this last rule you have
completed all the rules needed. We of course have the problem of describing
the rotations but this is more of a pattern matching exercise if you have
drawn all the graphs.

ID1019 KTH 6 / 9



7 Rotation

Can you provide a better strategy for the philosophers so that they can eat
and dream without ending up in a deadlock? What happens if you provide a
waiter that controls how many philosophers that can eat at any given time.
How would this help the situation? How many philosophers can try to eat
without ending up in a deadlock? How smart does the waiter need to be?

8 Single rotation

Let’s start with the simple cases were we can use a simple rotation. If the
root is annotated with −2 and the left branch is annotated with −1 we can
do a rotation of the left branch. If its the opposite we do a rotation of the
right branch.

defp rotate({:node, xk, xv, -2, {:node, yk, yv, -1, a, b}, c}) do

{:node, yk, yv, 0, a, {:node, xk, xv, 0, b, c}}

end

defp rotate({:node, xk, xv, +2, a, {:node, yk, yv, +1, b, c}}) do

{:node, yk, yv, 0, {:node, xk, xv, 0, a, b}, c}

end

Note how the first rule is a direct mapping if the graph in figure 1. If we know
that the drawn rule is correct there is little room for doing any mistakes i.e.
if the logic is right the coding is trivial.

9 Double rotations

The double rotations are of course more complicated but the complication
is more in geting the logic right and not in the implementations. We can
first look at the rule that is described in figure 2. We know what the tree
should look like and we know what the result should be.

defp rotate({:node, xk, xv, -2, {:node, yk, yv, +1, a,

{:node, zk, zv, -1, b, c}}, d}) do

{:node, zk, zv, 0, {:node, yk, yv, 0, a, b}, {:node, xk, xv, +1, c, d}}

end

ID1019 KTH 7 / 9



The second rule covers the case where the Z node has a right branch that is
deeper than its left branch. If you have drawn the trees the implementation
of the rule should be straight forward.

defp rotate({:node, xk, xv, -2, {:node, yk, yv, +1, a,

{:node, zk, zv, +1, b, c}}, d}) do

{:node, zk, zv, 0, {:node, yk, yv, -1, a, b}, {:node, xk, xv, 0, c, d}}

end

The last of the left-right rules is the one that handles the special case where
the two branches of the Z node are of equal length. Remember that this
was a very special case and if we can detect this earlier we might do without
this rule all together.

defp rotate({:node, xk, xv, -2, {:node, yk, yv, +1, a,

{:node, zk, zv, 0, b, c}}, d}) do

{:node, zk, zv, 0, {:node, yk, yv, 0, a, b}, {:node, xk, xv, 0, c, d}}

end

The three left-right rules of course have their right-left counterparts but
these are all left for the reader as an exercise. One advice is to draw the
rules first and only then implement them. It’s very easy to mix up a −1 for
a +1 or swap a left branch for a right branch. If you draw the rules first it
should not be a problem.

10 Benchmarks

The whole idea with AVL trees is that we should gain some performance
so let’s do some benchmarks to see if all the trouble was worth the effort.
After all, if the performance gain is not enough it might be better to have
less code to make it easier to verify that we have done the right thing.

In order to evaluate our implementation we could generate a tree from a
sequence of keys and then see what the tree looks like and compare it to
a tree generated by the regular binary sorted tree algorithms. What is
interesting is if the AVL tree is more balanced i.e. that the average depth
at which we will find our keys is small. A perfectly balanced tree will have
a depth of lg(n) and it’s interesting to see how close to this that the AVL
tree is.

ID1019 KTH 8 / 9



Let’s create two modules, Avl and Bst, that implements the following func-
tions:

• tree() : returns an empty tree.

• insert(tree, key, value) : returns a tree where the key value has
been inserted (or updated if key existed).

• depth(tree, key) : returns {:ok, depth}, with the depth at which
the key is found, or :fail if the key is not found.

• max depth(tree) : returns the maximum depth of the tree.

We will use the depth/2 function to both gather statistics on the depth
at which keys are found and also measure the time it takes to find a key.
The depth function will of course do exactly the same steps as a lookup/2

function would do.

Let’s now in a module called Test implement some benchmarks that com-
pares the Avl and Bst module. The first thing wee need is a function that
generates a sequence of keys in random order. We will use this sequence to
first build a tree and then examine how long time it takes to access the keys.
Define a function sequence(n, m) that generates a list of n integers from 1
to m (we’re using the Erlang library module random).

defp sequence(0, _), do: []

defp sequence(i, t), do: [:rand.uniform(t) | sequence(i - 1, t)]

ID1019 KTH 9 / 9


