A Meta-Interpreter

Programming IT - Elixir Version

Johan Montelius

Spring Term 2018

Introduction

In this assignment you will implement an interpreter for a small functional
language. The language could be the functional subset of Elixir but it does
not match exactly how Elixir is defined (but maybe it should). The exercise
will hopefully give you a better understanding of how a functional pro-
gramming language is defined and how powerful a functional programming
language can be as tool; the size of our interpreter is surprisingly small.

1 The overall picture

Before staring the implementation you need to get an overall picture of the
goal and what is actually needed. Never start coding one piece in a jigsaw
puzzle if you don’t know what the final picture should look like or how the
piece should fit in.

1.1 A meta-interpreter

An interpreter, in computer engineering terminology, is a program that takes
a program as input and executes the statements of the program to produce
a result. Some programming systems use only a interpreter to execute pro-
grams but most systems today use a compiler to produce machine code that
is then executed either directly or in a virtual machine. The advantage of
an interpreter is that we do not have to wait for a compilation phase, the
disadvantage is that the interpreter is much slower (typically a factor ten to

1D1019 KTH 1/15



one hundred). Do some reading and find out if the programming languages
that you know uses a compiler or an interpreter.

A meta-interpreter, also called self-interpreter, is an interpreter that is im-
plemented in the language that it interprets. The reason for this not obvious
but if you have a compiled system and need an interpreter of the same lan-
guage, why not implement it in the language itself - this is probably the
language you know best. We will develop an interpreter for a subset of
the Elixir language. Since it is not the complete language it is not a true
meta-interpreter but it’s close.

1.2 Expressions

Our target programming language is a limited functional language and in
its first incarnation it will be limited to simple expressions; We will not have
any function calls nor any program with function definitions (you might not
even call this much of language but it will be a good starting point). This
is an example of a sequence in the language:

x = foo; y = :nil; {z, _} = {:bar, :grk}; {x, {z, y}}

Figure 1: a simple sequence

A sequence consist of a, possibly empty, sequence of pattern matching ex-
pression followed by a single expression. This is a bit more restrictive com-
pared to Elixir sequences but it does not limit the expressiveness of our
language. Simple expressions will for now be limited to terms. If we use a
BNF grammar we can describe a sequence in the following way:

(sequence) ::= (expression)
| (match) ’; (sequence)

(match) := (pattern) '=" (expression)
(expression) ::= (atom)
| (variable)

ETPTESSion) , (ETPression
g : ) ; Al

1D1019 KTH 2 /15



1.3 Terms, data structures and patterns

Expressions of the form that we have just described are also referred to as
terms. We will later see examples of expression that are more complicated
and we will talk about expressions in general and term expressions but for
now we will simply call them terms.

It is important that we are clear on the terminology when we discuss our
language. There is a difference between terms, patterns and data structures.
In the sequence previously shown, the following constructs are terms: :foo,
:nil, {:bar, :nil} and, {x, {y, z}}. Terms are syntactical constructs
that, when evaluated, will result in data structures; data structures are thus
something that we handle during execution, the terms are only recipes for
how these structures should be constructed.

If we evaluate the sequence above we will obtain the data structure {:foo,
{:bar, :mil}}. We will in this text use italics when we refer to the data
structures and teletype when we talk about the terms.

For now, terms are restricted to atoms, variables and the binary compound
cons structure. Once we understand how to handle this subset it’s fairly
easy to extend the language.

The patterns in the sequence are: x, y and, {z, _}. The syntax we use
for patterns, is the same as the one that we use for terms but we are also
allowed to use an underscore (_) to represent a don’t-care variable. This
variable acts as a placeholder for a data structure that we have no interest
in.

(pattern) ::= (atom)

| (variable)
| Y 9

| ’f’ (pattern) ’,) (pattern) '}’

The reason why we can use the same syntax for terms and patterns without
confusion is that it is clear from the grammatical rules of the language if we
refer to a pattern or a term.

1.4 Evaluation

Our interpreter will take a sequence and evaluate the pattern matching
expressions one after the other; the result of the last expression is the result
of the whole sequence. When the evaluation starts the interpreter will have

1D1019 KTH 3 /15



en empty environment i.e. it knows of no variable bindings. Each pattern
matching expression will add variable binding to the environment and the
following expressions are then evaluated in the new environment.

If we evaluate the sequence in figure 1 we gradually build an environment,
first we add the binding z/foo, then y/nil and then z/bar. The final expres-
sion is thus evaluated in the following environment: {z/foo, y/nil, z/bar}. In
this environment the term {x, {z, y}} is evaluated to the data structure

{foo, {bar, nil}}.

1.5 The architecture

In order to implement our interpreter we need to solve the following prob-
lems: we need to represent expressions and we need to implement an envi-
ronment. Once we have these pieces in place we can start to define the rules
for the interpreter.

Before you proceed, you should think this problem through. What do se-
quences look like; assume that we will only handle sequences as the one
shown above? What are the elements of a pattern matching expression,
what is on the right side and what is on the left side? How should we rep-
resent a term and does it have to be different from the representation of a
pattern? How should data structures be represented?

Read this section through one more time, then start to sketch on your rep-
resentation. Write it down and then later compare it to the representation
proposed in this exercise.

2 The implementation

We will build the interpreter starting with the environment, that will be
implemented in a separate module. Then we will handle evaluation of ex-
pressions, pattern matching and finally a sequence of expressions.

2.1 The environment

Implementing an environment will be the simplest task that we have; an
environment is simply a mapping from variables to data structures. If we
assume that environments will be small, we can represent an environment
as a list of key-value tuples. The environment {z/foo, y/bar} could be

ID1019 KTH 4 /15



represented as: [{:x, :foo}, {:y, :bar}] . The variables are represented
by atoms, and we have here chosen to name them :x and :y but we could
as well have chosen other atoms (x12, :variable x) or integers (1 and 2),
the important thing is that they all have unique names.

In a module Env, you should now define the following functions:

new() : return an empty environment

e add(id, str, env) : return an environment where the binding of the
variable id to the structure str has been added to the environment
env.

e lookup(id, env) : return either {id, str}, if the variable id was
bound, or nil

e remove(ids, env) : returns an environment where all bindings for
variables in the list ids have been removed

These are all operations we need from the environment module. Test the
environment by calling the functions from the Elixir shell to see that it
produces the expected results. The following call should return {:foo,
42}:

Env.lookup(:foo, Env.add(:foo, 42, Env.new()))

2.2 Terms and patterns

If we only needed to represent terms consisting of atoms and cons-cells,
things would be trivial. The term {:a, :b} could simply be represented by
the Elixir term {:a, :b}. The problem is that we also need to represent
variables. We will of course not be able to represent a variable in our tar-
get language with a variable in Elixir; we have to find a way to represent
variables and make sure that we can separate them from atoms.

One solution is to represent atoms with the tuple {:atm, a} and variables
with the tuple {:var, v}. The good things is then that we only have to
make sure that the identifiers of variables are all different and that the
identifiers of atoms are all different. An atom could of course have the same
identifier as a variable with out causing any problems; the atom {:atm,
123} is different from the variable {:var, 123}.

1D1019 KTH 5 /15



A cons cell could be represented by a tuple {:cons, head, tail}. We
could of course have chosen to represent cons cells as Elixir cons cells but
we want to make a distinction between the representation of terms in our
target language and terms in Elixir (our target language now happens to be
Elixir look-alike but that is of course not always the situation).

As an exercise you can write down the representation of the term:

{:a, {x, :b}}

You will have to choose identifiers for the atoms :a, :b (why not :a, :b)
and the variable x (why not :x).

The representation of patterns will be exactly the same as for terms with
the only difference that we need to represent the special don’t-care pattern.
We choose the atom :ignore which will be exactly what we will do when
we encounter the symbol.

2.3 Expressions

In our simple language an expression is simply a term expression. Expres-
sions should be evaluated to data structures and the question is of course
how these data structures should be represented.

The nice thing with a meta-interpreter is that the data structures of the
interpreted language could be mapped directly to the data structures of the
implementation language. An atom will thus be represented by an Elixir
atom, and a cons structure of the Elixir tuple i.e. {:a, :b}.

Create a module called Eager (for reasons that will be given later) and
implement a function eval expr/2 that takes an expression and an envi-
ronment and returns either {:ok, str}, where str is a data structure, or
:error. An error is returned if the expression can not be evaluated. This
should be a quite simple task. The following skeleton code will get you
started:

def eval_expr({:atm, id}, ...) do ... end
def eval_expr({:var, id}, env) do

case ... do
nil ->

1D1019 KTH 6 /15



{_, str} —>

end
end
def eval_expr({:cons, ..., ...}, ...) do
case eval_expr(..., ...) do
:error —>

{:0k, ...} —>
case eval_expr(..., ...) do
rerror ->

{:0k, ts} —>

end
end
end

Here are some examples that you should be able to handle.

e eval expr({:atm, :a}, []) : returns {:o0k, :a}
e eval expr({:var, :x}, [{:x, :}]) : returns {:0k, :a}
e eval expr({:var, :x}, [1) : returns :error

e eval expr({:coms, {:var, :x}, {:atm, :b}}, [{:x, :a}l): re
turns {:a, :b}

Note that eval expr/2 returns a data structure if successful i.e. :a, :foo,
or {:a, :b}. The last test is an effect of representing the binary tuples in our
source program {a, b}, with the internal representation {:cons, {:atm,
:a}, {:atm, :b}} that when evaluated will return the data structure {:a,

:bY.

2.4 Pattern matching

A pattern matching will take a pattern, a data structure and an environment
and return either {:ok, env}, where env is an extended environment, or
the atom :fail.

1D1019 KTH 7 /15



Implement a function eval match/3 that implements the pattern matching.
Some examples will give you an idea of what we’re looking for.

e eval match({:
e eval match({:

e eval match({:
abl}

e eval match({:

atm,

var,

var,

var,

:a}, :a, [
:x}, :a, [1)

: returns {:o0k, []}

: returns {:0k, [{:x, :a}l}

:x}, ta, [{:x, :a}]) : returns {:ok, [{:x,

:x}, :a, [{:x, :b}]) : returns :fail

e eval match({:coms, {:var, :x} {:var, :x}}, {:cons, {:atm,

{:atm, :b}}, [1)

: returns :fail

Solving the cases where the pattern is an atom or variable is quite straight
forward, especially since we already have the environment module. The
slightly more problematic case is when the pattern is a cons structure. Note
that we first would add a binding for :x to :a and then try to match :x
with :b. This will of course fail, the variable z can not have two values.

The following skeleton code should lead you in the right direction. We start
with the simple cases, we can ignore the case where the atoms do not match

for now.

def eval_match(:ignore, ..., ...) do
{:0k, ...}

end

def eval_match({:atm, id}, ..., .) do
{:0k, ...}

end

Matching a variable is only slightly more complicated, we check if it has
a value and if not we add it to the environment. This skeleton code uses
a special construct that you might not have seen before, the §tr variable.
This is to indicate that we do not want a new variable str but rather use

the existing variable.

1D1019

KTH

8 /15

:a}



def eval_match({:var, id}, str, env) do

case ... do
nil >
{:0k, }
{_, “str} —>
{:0k, ...}
, 3>
:fail
end
end

Now the complicated (not so complicated) case where we match a cons
pattern with a cons structure. This is where we must make sure that a
variable binding in one branch is transferred to the pattern matching of the
other branch.

def eval_match({:cons, hp, tp}, ..., env) do
case eval_match(..., ..., ...) do
:fail >
.=
eval_match(..., ..., ...)
end
end

And last but not least, if we can not match the pattern to the data structure
we fail.

def eval_match(_, _, _) do
:fail
end

Complete the implementation and try the examples give before.

2.5 Sequences

We now have all the pieces of the puzzle to implement the evaluation of a
sequence. We represent a sequence as list, the first elements will of course

1D1019 KTH 9 /15



be pattern matching expressions but the last element is of course a regu-
lar expression. The evaluation starts with an empty environment that is
extended as we proceed down the list.

Each pattern matching expressions is evaluated in two steps, first the ex-
pression on the right hand side is evaluated returning a data structure. The
pattern on the left hand side is then match to the data structure resulting
in an extended environment.

It is important to understand how the environment is extended. We first
need to remove all bindings of variables that occur in the pattern. The
evaluation of the following sequence should result in {c, b}.

x=a; y=b; x=:c; {x, y}

Here is some skeleton code that Will get you started. You need to imple-
ment the function extract vars/1 that returns a list of all variables in the
pattern.

def eval_seq([exp], env) do
eval_expr(..., ...)
end

def eval_seq([{:match, ..., ...} | ...1, ...) do
case eval_expr(..., ...) do
.

L=
vars = extract_vars(...)
env = Env.remove(vars, ...)

case eval_match(..., ..., ...) do
:fail ->
ierror
{:0k, env} ->
eval_seq(..., ...)
end
end
end

When you have everything in place you should define a function eval/1, that
takes a sequence and returns either {:ok, str} or :error. You should then
be able to run the following query:

1D1019 KTH 10 / 15



seq = [{:match, {:var, :x}, {:atm,:a}},
{:match, {:var, :y}, {:cons, {:var, :x}, {:atm, :b}}},
{:match, {:cons, :ignore, {:var, :z}}, {:var, :y}},

{:var, z}]

Eager.eval(seq)

The query is the representation of the following expression:

x =a;y=1x, :b}; {_, 2} =y; z

3 Extensions

We now have an interpreter that can handle sequences of expressions but
the expressions are rather simple. You should now extend the language
and the interpreter to handle: case expressions, lambda expressions and
named functions. In each case you need to think about how expressions
are represented before thinking about how the eval expr/2 function is
extended.

3.1 Case expressions

A case expression consists of an expression and a list of clauses where each
clause is a pattern and a sequence. We of course need to be able to tell a
case expression from any other expression so why not represent it as a tuple
with a :case key word as the first element. A clause is simply a tuple with
the key word :clause.

Now we extend the evaluation with a clause that can handle the case ex-
pressions.

def eval_expr({:case, expr, cls}, ...) do
case eval_expr(..., ...) do
.=
.=
eval_cls(..., ..., ...)
end
end

1D1019 KTH 11 /15



The function eval cls/1 will take a list of clauses, a data structure and
an environment. It will select the right clause and continue the execution.

def eval_cls([l, _, _, _) do
ierror
end
def eval_cls([{:clause, ptr, seq} | cls], ..., ...) do
case ... do
:fail ->
eval_cls(..., ..., ...)

{:0k, env} ->
eval_seq(..., ...)
end
end

That’s it, you should now be able to evaluate something like this:

seq = [{:match, {:var, :x}, {:atm, :a}},
{:case, {:var, :x},
[{:clause, {:atm, :b}, [{:atm, :ops}l},
{:clause, {:atm, :a}, [{:atm, :yes}]}
1}

Eager.eval_seq(seq, [])

3.2 Lambda expressions

Adding lambda expressions might look very complicated but it turns out
to be quite simple. We first have to find a representation but this is by
now not a problem. We know that a lambda expression (unnamed function)
consists of a sequence of parameter variables, a sequence of free variables
and a sequence expression. If we agree to represent the parameters as well
as the free variables as lists of identifiers we are done.

{:lambda, parameters, free, sequence}

1D1019 KTH 12 /15



Now when we evaluate a lambda expression we need to represent a clo-
sure but this is equally simple. A closure simply consists of a sequence of
parameter variables, a sequence expression together with an environment.

{:closure, parameters, sequence, environment}

To evaluate a lambda expression we need to add a function to the Env
module that creates a new environment from a list of variable identifiers
and an existing environment. If we can do this the rest is simple.

def eval_expr({:lambda, par, free, seq}, ...) do
case Env.closure(free, ...) do
:error ->
:error

closure ->
{:0k, {:closure, ..., ..., ...}}
end
end

The only thing we now have left is to function application i.e. when we
apply a closure to a sequence of argument expressions. We need a way to
represent this and the most natural way is the best. Note that we have an
expression in the structure. The closure is something we will hopefully have
as a result of evaluating the expression.

{:apply, expression, arguments}

The evaluation should first evaluate the expression. If this is indeed a closure
we can evaluate the arguments and apply the closure to the resulting list of
data structures.

def eval_expr({:apply, expr, args}, ...) do
case ... do
:error ->
:error
{:0k, {:closure, par, seq, closure}} ->
case ... do
:error —->
:foo

1D1019 KTH 13 /15



strs ->
env = Env.args(par, strs, closure)
eval_seq(seq, env)
end
end
end

You have to extend the Env module to include a function args/3 that is given
a list of variable identifiers (par) , a list of data structures (strs) and an
environment (that includes the values of all free variables). The environment
that is returned should now include bindings for all the variables in the
sequence of the closure. If you get it right we should be able to evaluate the
following.

seq = [{:match, {:var, :x}, {:atm, :a}},
{:match, {:var, :f},
{:lambda, [:y], [:x], [{:coms, {:var, :x}, {:var, :y}}1}},
{:apply, {:var, :f}, [{:atm, :b}}
]

Eager.eval_seq(seq, [])

3.3 Named functions

You’re now a small step from being able to handle named functions i.e. a
program. What we need is a key-value store that given a function identifier
(an atom), returns a structure that holds a list of parameters and a sequence.
We store this in a list and can use the library function List.keyfind/3 to
retrieve the right function.

Since we now have a program we need to give each function access to this
data structure. This means that we need to change the eval expr/2 func-
tion to take a third argument, the program. This value must also be passed
to eval seq/2 and eval cls/3. If you think this is a tedious task you
have just encountered the downside of not having global data structures.

Change the program and add the following clause to handle named functions.

1D1019 KTH 14 /15



def eval_expr({:call, id, args}, env, prg) when is_atom(id) do
case List.keyfind(prg, id, 0) do
. =>

{_, par, seq} —>
case eval_args(..., ..., prg) do
rerror —>
rerror

strs ->
env = Env.args(..., ...
eval_seq(..., ..., prg)
end
end
end

If everything works you should now be able to run the following program:

prgm = [{:append, [:x, :y],
[{:case, {:var, :x},
[{:clause, {:atm, [1}, [{:var, :y}1},
{:clause, {:cons, {:var, :hd}, {:var, :tl1}},
[{:cons,
{:var, :hd},
{:call, :append, [{:var, :t1}, {:var, :y}]1}}]
1
H
1

seq = [{:match, {:var, :x},
{:cons, {:atm, :a}, {:comns, {:atm, :b}, {:atm, [1}}}},
{:match, {:var, :y},
{:cons, {:atm, :c}, {:comns, {:atm, :4}, {:atm, [1}}}},
{:call, :append, [{:var, :x}, {:var, :y}1}
]

Eager.eval_seq(seq, []1, prgm)

1D1019 KTH 15 /15



