Homework \#1

Read Chapter 0 in "Matrix Analysis" and learn as much as possible.

1. Determine the range- and the null-spaces of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

What are the dimensions of these spaces? What is the rank of A ?
2. Let $A \in M_{m, n}(\mathbf{F})$ and $B \in M_{p, n}(\mathbf{F})$. Prove that

$$
\text { nullspace }(A) \cap \text { nullspace }(B)=\text { nullspace }\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

3. Let $A=\left[a_{i j}\right] \in M_{m, n}(\mathbf{C})$ and $B \in M_{n, m}(\mathbf{C})$. Show that $\operatorname{tr}(A B)=$ $\operatorname{tr}(B A)$ and that $\operatorname{tr}\left(A A^{*}\right)=\sum_{i j}\left|a_{i j}\right|^{2}$.
4. Show that $\operatorname{det}(I+A B)=\operatorname{det}(I+B A)$ where A and B may be rectangular matrices of appropriate dimensions. (Hint: You may use the Schur complement determinantal formulae.)
5. Prove the "push through rule:"

$$
A\left(I_{m}+B A\right)^{-1}=\left(I_{n}+A B\right)^{-1} A
$$

where inverses are assumed to exist, I_{n} is an $n \times n$ identity matrix, $A \in M_{n, m}(\mathbf{F})$ and $B \in M_{m, n}(\mathbf{F})$.
6. Let $S \in M_{n}(\mathbf{R})$ be a skew-symmetric matrix. First prove that $I-S$ is nonsingular. Then, if $A=(I+S)(I-S)^{-1}$, show that $A^{-1}=A^{T}$ if the inverse exists.

