Exam SF1677/2713 April 3d 2018

Total marks 32: The preliminary relationship between the marks and grades are
A: 30
B : 28
C: 25
D : 22
E : 19
FX: 18.

A G on the first homework assignment corresponds to full mark (4 marks) on question 1, a G on the second homework assignment corresponds to full mark (4 marks) on question 2 and a G on the third homework assignment corresponds to full mark (4 marks) on question 3.
Allowed help: Only writing utensils are allowed, calculators are NOT allowed for this exam.
All your answers should be proved unless otherwise stated.
Question 1: Assume that $f:[-1,1] \mapsto \mathbb{R}$ and $g:[-1,1] \mapsto \mathbb{R}$ are increasing functions and that f is continuous. Assume furthermore that $f(-1)<g(-1)$ and $f(1)>g(1)$. Will the equation $f(x)=g(x)$ have a solution? Note that we do not assume that g is continuous. Prove your answer.

Solution Question 1: Let $f(1)-g(1)=\epsilon>0$. Then, since f is continuous, there exist a $\delta>0$ such that if $x \in(1-\delta, 1]$ then

$$
f(x)>f(1)-\epsilon=g(1) \geq g(x)
$$

where we also used that g is increasing in the last inequality.
Let us define the set

$$
S=\{x \in[-1,1] ; \text { s.t. } f(y) \geq g(y), \text { for } y \in[x, 1]\}
$$

By the previous paragraph $(1-\delta, 1] \subset S$, thus $S \neq \emptyset$, and by definition S is bounded from below. Using the greatest lower bound property of the real numbers we may conclude that $x_{0}=g l b(S)$ exists.

Next we note that $x_{0}>-1$. This follows as in the first paragraph of the proof: by continuity of f if $f(-1)+\hat{\epsilon}=g(-1)$ then there exist a $\hat{\delta}$ such that $f(x)>g(x)$ for all $x \in[-1,-1+\hat{\delta})$ and therefore $[-1,-1+\hat{\delta}) \not \subset S$. We can conclude that $x_{0} \in[-1+\hat{\delta}, 1-\delta]$ for some $\delta, \hat{\delta}>0$.

To finish the proof we show that $f\left(x_{0}\right)=g\left(x_{0}\right)$, that is x_{0} solves the desired equation. First we take any sequence $x_{j} \in S$ s.t. $x_{j} \rightarrow x_{0}$ and make the following estimate

$$
\begin{equation*}
0 \leq f\left(x_{j}\right)-g\left(x_{j}\right) \leq f\left(x_{j}\right)-g\left(x_{0}\right) \rightarrow f\left(x_{0}\right)-g\left(x_{0}\right) \tag{1}
\end{equation*}
$$

where we first used that $x_{j} \in S$, then that g is increasing and finally that $x_{j} \rightarrow x_{0}$ together with continuity of f.
Similarly we notice that for each $j \in \mathbb{N}$ there is an x_{j} such that $x_{0}-\frac{1}{j} \leq x_{j} \leq x_{0}$ and $f\left(x_{j}\right)<g\left(x_{j}\right)$, since x_{0} was the greatest lower bound of S. Passing to the limit $j \rightarrow \infty$ we may conclude that

$$
\begin{equation*}
0>f\left(x_{j}\right)-g\left(x_{j}\right) \geq f\left(x_{j}\right)-g\left(x_{0}\right) \rightarrow f\left(x_{0}\right)-g\left(x_{0}\right) \tag{2}
\end{equation*}
$$

where we again used that g is increasing and f continuous. We can conclude from (2) that $f\left(x_{0}\right) \leq g\left(x_{0}\right)$ and from (1) that $g\left(x_{0}\right) \leq f\left(x_{0}\right)$. It follows that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

Question 2: Let $f_{k}:(0,1) \mapsto \mathbb{R}$ be a sequence of positive and non-decreasing Riemann integrable functions and that for any $x \in(0,1)$

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f_{k}(x)=f(x)
$$

where $f:(0,1) \mapsto \mathbb{R}$. Assume furthermore that

$$
\lim _{N \rightarrow \infty}\left[\sum_{k=1}^{N}\left(\int_{0}^{1} f_{k}(x) d x\right)\right]=1
$$

Will f be Riemann integrable? If so will $\int_{0}^{1} f(x) d x=1$? Prove your answer.

Solution Question 2: We will show that f is not necessarily Riemann integrable. Let $g_{0}(x)=0$ and

$$
g_{k}(x)=2 \min \left(\frac{1}{\sqrt{1-x}}, k\right)
$$

Then $g_{k-1}(x) \leq g_{k}(x)$ and therefore $f_{k}(x)=g_{k}(x)-g_{k-1}(x)$ for all $k=1,2, \ldots$. It is easy to see that f_{k} is non-decreasing. ${ }^{1}$

We may calculate the sum of the integrals

$$
\begin{gathered}
\sum_{k=1}^{N} \int_{0}^{1} f_{k}(x) d x=\int_{0}^{1} g_{k}(x) d x=2 \int_{0}^{\frac{k^{2}-1}{k^{2}}} \frac{1}{\sqrt{1-x}} d x+2 \int_{\frac{k^{2}-1}{k^{2}}}^{1} k d x= \\
=1-\sqrt{1-\frac{k^{2}-1}{k^{2}}}+\frac{2}{k} \rightarrow 1
\end{gathered}
$$

where we used the standard integration techniques (fundamental theorem of calculus) together with standard limits. Thus the sequence f_{k} satisfies the conditions of the question.

Furthermore $\sum_{k=1}^{N} f_{k}(x)=g_{N}(x) \rightarrow \frac{2}{\sqrt{1-x}}=f(x)$ for any $x \in(0,1)$ as $N \rightarrow \infty$. We claim that $f(x)$ is not Riemann integrable since f is not bounded. To see this we assume, aiming for a contradiction, that $\int_{0}^{1} f(x) d x=I$. Then there should be a partition $P=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$ such that

$$
\sum_{j=1}^{n} \sup _{x \in\left(x_{j-1}, x_{j}\right)} f(x)\left(x_{j}-x_{j-1}\right)<I+1
$$

This is not possible since all the terms in the sum are positive and $\sup _{x \in\left(x_{n-1}, x_{n}\right)} f(x)\left(x_{n}-x_{n-1}\right)=\infty$ since f is unbounded on $\left(x_{n-1}, x_{n}\right)$; therefore the left side is not bounded by $I+1$. Thus f is not Riemann integrable even though it satisfies the conditions of the question.

Question 3: Let $f_{k}:[-1,1] \mapsto \mathbb{R}$ be a sequence of continuously differentiable functions. Assume furthermore that $f_{k} \rightarrow f$ and that $f_{k}^{\prime} \rightarrow g$ uniformly on $[-1,1]$ where $f, g:[-1,1] \mapsto \mathbb{R}$ are two given continuous functions. Prove that f is differentiable at $x=0$ and that $f^{\prime}(0)=g(0)$.

You may, without proof, use any known theorem for continuous functions. However, you may not use any theorem regarding convergence of differentiable functions without proof.
(4 marks)
Solution Question 3: Since $f_{k} \rightarrow f$ and $f_{k}^{\prime} \rightarrow g$ uniformly on $[-1,1], f_{k}$ and f_{k}^{\prime} are continuous, it follows that f and g are continuous on $[-1,1]$.

By the Mean Value Theorem there exist, for any $h \neq 0$, a ξ_{k} between 0 and h such that

$$
\frac{f_{k}(h)-f_{k}(0)}{h}=f_{k}^{\prime}\left(\xi_{k}\right)
$$

Therefore, for any $h \neq 0$,

$$
\begin{equation*}
\frac{f(h)-f(0)}{h}=\lim _{k \rightarrow \infty} \frac{f_{k}(h)-f_{k}(0)}{h}=\lim _{k \rightarrow \infty} f_{k}^{\prime}\left(\xi_{k}\right) \tag{3}
\end{equation*}
$$

Since $\left|\xi_{k}\right| \leq|h|$ we may choose a sub-sequence $\xi_{k_{j}} \rightarrow \xi_{h}$ where ξ_{h} lays between 0 and h.
Since $\xi_{k_{j}} \rightarrow \xi_{h}$ and $f_{k_{j}}^{\prime} \rightarrow g$ uniformly it follows that for any $\epsilon>0$ there is a J_{ϵ} such that if $j>J_{\epsilon}$ then

$$
\left|g\left(\xi_{h}\right)-f_{k_{j}}^{\prime}\left(\xi_{k_{j}}\right)\right| \leq\left|g\left(\xi_{h}\right)-g\left(\xi_{k_{j}}\right)\right|+\left|g\left(\xi_{k_{j}}\right)-f_{k_{j}}^{\prime}\left(\xi_{k_{j}}\right)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

where J_{ϵ} have been chosen so large that we may estimate each of the the two absolute values by $\epsilon / 2$ using continuity of g and uniform convergence. If follows that $f_{k_{j}}^{\prime}\left(\xi_{k_{j}}\right) \rightarrow g\left(\xi_{h}\right)$. Using this in (3) we can conclude that

$$
\frac{f(h)-f(0)}{h}=g\left(\xi_{h}\right) .
$$

Sending $h \rightarrow 0$, using that $\left|\xi_{h}\right| \leq|h|$ and that g is continuous we can conclude that $f^{\prime}(0)=g(0)$. This finishes the proof.

Question 4: Given a set $A \subset \mathbb{R}$ we define the set

$$
\mathcal{S}_{A}=\{\sin (a x) ; a \in A\}
$$

State a condition on the set A such that \mathcal{S}_{A} is equicontinuous if and only if A satisfies the stated condition. Prove your answer.

[^0]Solution Question 4: Se claim that \mathcal{S}_{A} is equicontinuous if and only if A is bounded.
Step 1: If A is bounded then \mathcal{S}_{A} is equicontinuous.
Let us assume that A is bounded by M; that is $a \in A$ implies that $|a| \leq M$. Let $f(x)=\sin (a x) \in \mathcal{S}_{A}$. Then $\left|f^{\prime}(x)\right| \leq M$. From the Mean Value Theorem it follows that if $|x-y|<\delta=\epsilon / M$ then

$$
|f(x)-f(y)|<\delta\left|f^{\prime}(\xi)\right|<\epsilon
$$

Since δ is independent of both f and x it follows that \mathcal{S}_{A} is equicontinuous.
Step 2: If \mathcal{S}_{A} is equicontinuous then A is bounded.
We will use a converse argument and assume that there is a sequence $a_{j} \in A,\left|a_{j}\right| \rightarrow \infty$, and show that then \mathcal{S}_{A} is not equicontinuous.

Pick an arbitrary $0<\epsilon<1$. We need to show that for every $\delta>0$ there exist an $f \in \mathcal{S}_{A}$ and $x, y \in \mathbb{R}$ such that $|x-y|<\delta$ and

$$
|f(x)-f(y)|>\epsilon
$$

To that end we pick an arbitrary $\delta>0$ and j so large that $\left|\frac{\pi}{2 a_{j}}\right|<\delta$, this is always possible since $\left|a_{j}\right| \rightarrow \infty$. Then $f=\sin \left(a_{j} x\right) \in \mathcal{S}_{A}$ and with $x=\frac{\pi}{2 a_{j}}$ we have that $|x-0|<\delta$ and

$$
|f(x)-f(0)|=\left|\sin \left(a_{j} \frac{\pi}{2 a_{j}}\right)-\sin (0)\right|=1>\epsilon
$$

It follows that \mathcal{S}_{A} is not equicontinuous if A is not bounded. This finishes the proof.
Question 5: Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a continuously differentiable function and also assume that $D_{12} f$ and $D_{21} f$ exist and are continuous; here $D_{i j} f=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. Prove that $D_{12} f(x, y)=D_{21} f(x, y)$.

Hint: You may, without proof, use the following result from Rudin (Theorem 9.40):
If Q is the cube $[a, a+h] \times[b, b+k] \subset \mathbb{R}^{2}$ and

$$
\Delta(f, Q)=f(a+h, b+k)-f(a+h, b)-f(a, b+k)+f(a, b)
$$

then there exist a point $(x, y) \in Q$ such that

$$
\Delta(f, Q)=h k D_{21} f(x, y)
$$

(4 marks)
Solution Question 5: Clearly, by symmetry, the hint is also valid for $D_{21} f$ in place of $D_{12} f$.
Pick an arbitrary $(a, b) \in \mathbb{R}^{2}$ and let $h_{j}=k_{j}=\frac{1}{j}$. Then, using the hint, there exist $\left(x_{j}, y_{j}\right),\left(\hat{x}_{j}, \hat{y}_{j}\right) \in Q_{j}=$ $[a, a+1 / j] \times[b, b+1 / j]$ such that

$$
\begin{equation*}
0=\left|\Delta\left(f, Q_{j}\right)-\Delta\left(f, Q_{j}\right)\right|=\frac{1}{j^{2}}\left|D_{21} f\left(x_{j}, y_{j}\right)-D_{12} f\left(\hat{x}_{j}, \hat{y}_{j}\right)\right| \tag{4}
\end{equation*}
$$

Using that $D_{12} f$ and $D_{21} f$ are continuous and that $\left(x_{j}, y_{j}\right) \rightarrow(a, b)$ and $\left(\hat{x}_{j}, \hat{y}_{j}\right) \rightarrow(a, b)$ as $j \rightarrow \infty$ (the last convergence follows from that $\left(x_{j}, y_{j}\right) \in Q_{j}$ implies that $a \leq x_{j} \leq a+1 / j$ and $b \leq y_{j} \leq b+1 / j$ and similarly for $\left.\left(\hat{x}_{j}, \hat{y}_{j}\right)\right)$ it follows that

$$
\left|D_{21} f(a, b)-D_{12} f(a, b)\right|=\lim _{j \rightarrow \infty}\left|D_{21} f\left(x_{j}, y_{j}\right)-D_{12} f\left(\hat{x}_{j}, \hat{y}_{j}\right)\right|=\lim _{j \rightarrow \infty} 0=0
$$

where we used (4) in the second equality. It follows that $D_{21} f(a, b)=D_{12} f(a, b)$ from the last displayed formula.
Question 6: Let \mathcal{X} be the metric space consisting of all functions $f: \mathbb{N} \mapsto \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f(n)=0$ equipped with the metric:

$$
d(f, g)=\sup _{n \in \mathbb{N}}|f(n)-g(n)| .
$$

Is \mathcal{X} complete? Prove your answer. (You do not need to prove that \mathcal{X} is a metric space.)

Solution Question 6: We need to show that if f_{k} is a Cauchy sequence, that is for every $\epsilon>0$ there exist an N such that if $k, l>N d\left(f_{k}, f_{l}\right)<\epsilon$, then there exist an $f \in \mathcal{X}$ such that $\lim _{k \rightarrow \infty}\left(d\left(f_{k}, f\right)\right)=0$.

For every $n \in \mathbb{N}$, using that f_{k} is Cauchy, then there exist an N such that if $k, l>N$ then

$$
\begin{equation*}
\left|f_{k}(n)-f_{l}(n)\right| \leq \sup _{n \in \mathbb{N}}\left|f_{k}(n)-f_{l}(n)\right|<\epsilon \tag{5}
\end{equation*}
$$

Therefore, for every $n \in \mathbb{N}$ the sequence of real numbers $f_{k}(n)$ is a Cauchy sequence and by the completeness of the real numbers it follows that $f_{k}(n)$ converges. We may define the function $f: \mathbb{N} \mapsto \mathbb{R}$ according to

$$
f(n)=\lim _{k \rightarrow \infty} f_{k}(n)
$$

Next we show that $\lim _{k \rightarrow \infty} d\left(f_{k}, f\right)=0$, without claiming that $f \in \mathcal{X}$. This follows from taking the limit in (5), assuming that $k>N$,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left|f_{k}(n)-f(n)\right|=\sup _{n \in \mathbb{N}} \lim _{l \rightarrow \infty}\left|f_{k}(n)-f_{l}(n)\right| \leq \sup _{n \in \mathbb{N}}\left(\sup _{l>k}\left|f_{k}(n)-f_{l}(n)\right|\right) \leq \epsilon \tag{6}
\end{equation*}
$$

We may conclude that $d\left(f_{k}, f\right) \rightarrow 0$, if not then we would be able to find a subsequence, $f_{k_{j}}$, such that $d\left(f_{k_{j}}, f\right)=$ $2 \epsilon>0$ contradicting (6).

Next we need to show that $f \in \mathcal{X}$. To that end we pick a k large enough so that $d\left(f, f_{k}\right)<\epsilon / 2$. Also since $f_{k} \in \mathcal{X}$ there is an M such that $\left|f_{k}(n)\right|<\epsilon / 2$ for $n>M$. We may conclude that for $n>M$

$$
|f(n)| \leq\left|f(n)-f_{k}(n)\right|+\left|f_{k}(n)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This proves that $\lim _{n \rightarrow \infty} f(n)=0$ and thus that $f \in \mathcal{X}$.
Question 7: Let $f:[a, b] \mapsto \mathbb{R}, 0<f \leq M$, be a function such that the following integral exist

$$
\int_{a}^{b} \frac{1}{f(x)} d x
$$

Is f integrable over $[a, b]$? Prove your answer.
(4 marks)

Solution Question 7: Notice that if $f(x)>f(y)>0$ then

$$
f(x)-f(y)=\frac{f(x) f(y)}{f(x)}-\frac{f(x) f(y)}{f(x)} \leq M^{2}\left(\frac{1}{f(y)}-\frac{1}{f(x)}\right)
$$

It follows that, for any $a \leq x_{k-1}<x_{k} \leq b$

$$
M^{2}\left(\sup _{x \in\left(x_{k-1}, x_{k}\right)} \frac{1}{f(x)}-\inf _{x \in\left(x_{k-1}, x_{k}\right)} \frac{1}{f(x)}\right) \geq \sup _{x \in\left(x_{k-1}, x_{k}\right)} f(x)-\inf _{x \in\left(x_{k-1}, x_{k}\right)} f(x)
$$

Let $\epsilon>0$ be arbitrary. Since $\frac{1}{f(x)}$ is integrable there is a partition $P=\left\{a=x_{0}<x_{1}<\ldots<x_{n}=b\right\}$ such that

$$
\begin{aligned}
\epsilon> & M^{2} \sum_{k=1}^{n}\left(\sup _{x \in\left(x_{k-1}, x_{k}\right)} \frac{1}{f(x)}-\inf _{x \in\left(x_{k-1}, x_{k}\right)} \frac{1}{f(x)}\right)\left(x_{k}-x_{k-1}\right) \geq \\
& \geq \sum_{k=1}^{n}\left(\sup _{x \in\left(x_{k-1}, x_{k}\right)} f(x)-\inf _{x \in\left(x_{k-1}, x_{k}\right)} f(x)\right)\left(x_{k}-x_{k-1}\right) .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary it follows that f is Riemann integrable.
Question 8: Let $f: \mathbb{R}^{5} \mapsto \mathbb{R}^{3}$ be a C^{1}-map and assume that $f(0,0,0,0,0)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and that

$$
D f(0)=\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
3 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Prove that there exist a function $g=\left(g_{1}, g_{2}, g_{3}\right): \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ such that $f\left(x_{1}, x_{2}, g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), g_{3}(\mathbf{x})\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ for every $\mathbf{x}=\left(x_{1}, x_{2}\right)$ close enough to $\mathbf{x}=\left(x_{1}, x_{2}\right)=(0,0)$.

You may use any aspect of the Banach fixed point theorem without proof.

Solution Question 8: This is a direct application of the implicit function theorem.
Making a Taylor expansion of $f\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)$ we see that

$$
f\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)=\left[\begin{array}{ll}
2 & 0 \\
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]+R\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)
$$

For a given \mathbf{x} to find a solution $\left(y_{1}, y_{2}, y_{3}\right)=\left(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), g_{3}(\mathbf{x})\right)$ is equivalent to solving

$$
\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=-\left[\begin{array}{ll}
2 & 0 \\
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-R\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)
$$

which is the same as, for every $\mathbf{x}=\left(x_{1}, x_{2}\right)^{T}$ finding a fixed point to the mapping

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \mapsto F(\mathbf{y})=-\left[\begin{array}{ll}
2 & 0 \\
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]-R\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)
$$

where the equality to the right defines $F(\mathbf{y})$.
Therefore we let $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)^{T}$ and $\mathbf{z}=\left(z_{1}, z_{2}, z_{3}\right)^{T}$ be two points close to the origin. Then

$$
|F(\mathbf{y})-F(\mathbf{z})|=|R(\mathbf{x}, \mathbf{y})-R(\mathbf{x} . \mathbf{z})|
$$

Since the Jacobian $J_{R}(\mathbf{x}, \mathbf{y}) \rightarrow 0$ as $(\mathbf{x}, \mathbf{y}) \rightarrow 0$ there is a small $\delta>0$ such that if $|\mathbf{x}|,|\mathbf{y}|<\delta$ then $\left\|J_{R}(\mathbf{x}, \mathbf{y})\right\| \leq 1 / 2$, where $\|\cdot\|$ denotes the operator norm. It follows from the mean value theorem that, for \mathbf{x}, \mathbf{y} and \mathbf{z} close to the origin,

$$
|F(\mathbf{x} \cdot \mathbf{y})-F(\mathbf{x}, \mathbf{z})| \leq \frac{1}{2}|\mathbf{y}-\mathbf{z}|,
$$

that is F is a contraction for small enough \mathbf{x}, \mathbf{y} and \mathbf{z}.
Arguing as in Banach's fixed point Theorem we let $\mathbf{y}_{0}=0$ and $\mathbf{y}_{k+1}=F\left(\mathbf{y}_{k}\right)$ it follows that

$$
\left|\mathbf{y}_{k}-\mathbf{y}_{0}\right| \leq\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right| \sum_{j=0}^{k-1} \frac{1}{2^{j}} \leq 2\left|\mathbf{y}_{0}\right|=2|R(\mathbf{x}, 0)|
$$

Thus, if \mathbf{x} is so small that $|R(\mathbf{x}, 0)|<\delta / 2$ and $|\mathbf{x}|<\delta$, then, arguing as in the Banach Fixed Point Theorem, $\left|F\left(\mathbf{x}, \mathbf{y}_{k}\right)-F\left(\mathbf{x}, \mathbf{y}_{k+1}\right)\right|<\frac{1}{2}\left|\mathbf{y}_{k}-\mathbf{y}_{k+1}\right|$ which implies that $\mathbf{y}_{k} \rightarrow \mathbf{y}$ as $k \rightarrow \infty$. We may conclude that for every \mathbf{x} s.t. $|\mathbf{x}|,|R(\mathbf{x}, 0)|<\delta / 2$ there is a unique \mathbf{y} such that $\mathbf{y}=F(\mathbf{x}, \mathbf{y})$.

[^0]: ${ }^{1}$ As a matter of fact f_{k} will equal 0 on $\left(0,1-(k-1)^{-2}\right]$ and $f(x)=2$ on $\left[1-k^{-2}, 1\right)$ and $2(1-x)^{-1 / 2}-2 k+2$ which has strictly positive derivative on the interval between.

