Exam SF1677/2713 April 3d 2018

Total marks 32: The preliminary relationship between the marks and grades are
A: 30
B : 28
C: 25
D : 22
E:19
FX: 18.

A G on the first homework assignment corresponds to full mark (4 marks) on question 1,
a G on the second homework assignment corresponds to full mark (4 marks) on question 2 and a G on the third homework assignment corresponds to full mark (4 marks) on question 3.
Allowed help: Only writing utensils are allowed, calculators are NOT allowed for this exam.
All your answers should be proved unless otherwise stated.
Question 1: Assume that $f:[-1,1] \mapsto \mathbb{R}$ and $g:[-1,1] \mapsto \mathbb{R}$ are increasing functions and that f is continuous. Assume furthermore that $f(-1)<g(-1)$ and $f(1)>g(1)$. Will the equation $f(x)=g(x)$ have a solution? Note that we do not assume that g is continuous. Prove your answer.
(4 marks)
Question 2: Let $f_{k}:(0,1) \mapsto \mathbb{R}$ be a sequence of positive and non-decreasing Riemann integrable functions and that for any $x \in(0,1)$

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f_{k}(x)=f(x)
$$

where $f:(0,1) \mapsto \mathbb{R}$. Assume furthermore that

$$
\lim _{N \rightarrow \infty}\left[\sum_{k=1}^{N}\left(\int_{0}^{1} f_{k}(x) d x\right)\right]=1
$$

Will f be Riemann integrable? If so will $\int_{0}^{1} f(x) d x=1$? Prove your answer.

Question 3: Let $f_{k}:[-1,1] \mapsto \mathbb{R}$ be a sequence of continuously differentiable functions. Assume furthermore that $f_{k} \rightarrow f$ and that $f_{k}^{\prime} \rightarrow g$ uniformly on $[-1,1]$ where $f, g:[-1,1] \mapsto \mathbb{R}$ are two given continuous functions. Prove that f is differentiable at $x=0$ and that $f^{\prime}(0)=g(0)$.

You may, without proof, use any known theorem for continuous functions. However, you may not use any theorem regarding convergence of differentiable functions without proof.

Question 4: Given a set $A \subset \mathbb{R}$ we define the set

$$
\mathcal{S}_{A}=\{\sin (a x) ; a \in A\}
$$

State a condition on the set A such that \mathcal{S}_{A} is equicontinuous if and only if A satisfies the stated condition. Prove your answer.
(4 marks)
Question 5: Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a continuously differentiable function and also assume that $D_{12} f$ and $D_{21} f$ exist and are continuous; here $D_{i j} f=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. Prove that $D_{12} f(x, y)=D_{21} f(x, y)$.

Hint: You may, without proof, use the following result from Rudin (Theorem 9.40):
If Q is the cube $[a, a+h] \times[b, b+k] \subset \mathbb{R}^{2}$ and

$$
\Delta(f, Q)=f(a+h, b+k)-f(a+h, b)-f(a, b+k)+f(a, b)
$$

then there exist a point $(x, y) \in Q$ such that

$$
\Delta(f, Q)=h k D_{21} f(x, y)
$$

Question 6: Let \mathcal{X} be the metric space consisting of all functions $f: \mathbb{N} \mapsto \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f(n)=0$ equipped with the metric:

$$
d(f, g)=\sup _{n \in \mathbb{N}}|f(n)-g(n)|
$$

Is \mathcal{X} complete? Prove your answer. (You do not need to prove that \mathcal{X} is a metric space.)

Question 7: Let $f:[a, b] \mapsto \mathbb{R}, 0<f \leq M$, be a function such that the following integral exist

$$
\int_{a}^{b} \frac{1}{f(x)} d x
$$

Is f integrable over $[a, b]$? Prove your answer.

Question 8: Let $f: \mathbb{R}^{5} \mapsto \mathbb{R}^{3}$ be a C^{1}-map and assume that $f(0,0,0,0,0)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ and that

$$
D f(0)=\left[\begin{array}{lllll}
2 & 0 & 1 & 0 & 0 \\
3 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Prove that there exist a function $g=\left(g_{1}, g_{2}, g_{3}\right): \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ such that $f\left(x_{1}, x_{2}, g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), g_{3}(\mathbf{x})\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ for every $\mathbf{x}=\left(x_{1}, x_{2}\right)$ close enough to $\mathbf{x}=\left(x_{1}, x_{2}\right)=(0,0)$.

You may use any aspect of the Banach fixed point theorem without proof.

