

Lecture 3: Outline

- Ch. 2: Unitary equiv, QR factorization, Schur's thm, Cayley-H., Normal matrices, Spectral thm, Singular value decomp.
- ► Ch. 3: Canonical forms: Jordan/Matrix factorizations

Magnus Jansson/Bhavani Shankar/Joakim Jaldén/Mats Bengtsson

Unitary matrices

- A set of vectors $\{x_i\} \in \mathbf{C}^n$ are called
 - orthogonal if $x_i^* x_j = 0, \forall i \neq j$ and
 - orthonormal if they are orthogonal and $x_i^* x_i = 1, \forall i$.
- A matrix $U \in M_n$ is **unitary** if $U^*U = I$.
- A matrix $U \in M_n(\mathbf{R})$ is real orthogonal if $U^T U = I$.
- (A matrix $U \in M_n$ is orthogonal if $UU^T = I$.)
- If U, V are unitary then UV is unitary.
 - Unitary matrices form a group under multiplication.

2/26

Unitary matrices cont'd

The following are equiv.

- 1. U is unitary
- **2.** U is nonsingular and $U^{-1} = U^*$
- **3**. *UU** = *I*
- 4. U^* is unitary
- **5.** the columns of U are orthonormal
- **6**. the rows of U are orthonormal
- 7. for all $x \in \mathbf{C}^n$, the Euclidean length of y = Ux equals that of x.

Def: A linear transformation $T : \mathbb{C}^n \to \mathbb{C}^m$ is a Euclidean isometry if $x^*x = (Tx)^*(Tx)$ for all $x \in \mathbb{C}^n$ Unitary U is an Euclidean isometry.

Euclidean isometry and Parseval's Theorem

1. Let F_N be the FFT (Fast Fourier Transform matrix) of dimension $N \times N$, i. e,

$$F_N(m,n) = \frac{1}{\sqrt{N}} e^{\frac{-2\pi (m-1)(n-1)}{N}}$$

- **2.** F_N is a unitary matrix.
- 3. Let $y = F_N x$ i.e, y is the N point FFT of x. 3.1 Length of x = Length of y
 - **3.2** $\sum_{j=1}^{N} |x(j)|^2 = \sum_{j=1}^{N} |y(j)|^2$: This is energy conservation or Parseval's Theorem in DSP.

Unitary equivalence

Def: A matrix $B \in M_n$ is unitarily equivalent (or similar) to $A \in M_n$ if $B = U^*AU$ for some unitary matrix U.

Compare:

- (i) $A \rightarrow S^{-1}AS$: similarity (Ch 1,3)
- (ii) $A \rightarrow S^*AS$: *congruence (Ch 4)
- (iii) $A \rightarrow S^*AS$ with S unitary : unitary similarity (Ch 2)

Theorem: If A and B are unitarily equivalent then

$$||A||_F^2 \triangleq \sum_{i,j} |a_{ij}|^2 = \sum_{i,j} |b_{ij}|^2 = ||B||_F^2$$

Unitary matrices and Plane Rotations : 2-D case

- Consider rotating the 2 D Euclidean plane counter-clockwise by an angle θ.
- Resulting coordinates,

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta \end{cases} \iff \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• Note that $U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is unitary.

5/26

Plane Rotations : General Case

$$U(\theta, 2, 4) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 0 & 1 & 0 \\ 0 & \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

- U(θ, 2, 4) rotates the second and fourth axes in R⁴ counter clock-wise by θ.
- ► The other axes are not changed.
- Left multiplication by $U(\theta, 2, 4)$ affects only rows 2 and 4.
- Note that $U(\theta, 2, 4)$ is unitary.
- Such $U(\theta, m, n)$ are called Givens rotations.

Product of Givens rotations

- $U = U(\theta_1, 1, 3)U(\theta_2, 2, 4)$ rotates
 - second and fourth axes in \mathbf{R}^4 counter clock-wise by θ_2 .
 - first and third axes in \mathbf{R}^4 counter clock-wise by θ_1 .
- U is unitary \Rightarrow product of Givens rotations is unitary.
- Such matrices are used in Least-Squares and eigenvalue computations.

KTH Statester

Special Unitary matrices: Householder matrices

Let $w \in \mathbf{C}^n$ be a normalized $(w^*w = 1)$ vector and define

$$U_w = I - 2wv$$

Properties:

- **1.** U_w is unitary and Hermitian.
- **2.** $U_w x = x, \forall x \perp w$.
- **3**. $U_w w = -w$
- 4. There is a Householder matrix such that

 $y = U_w x$

for any given real vectors x and y of the same length.

9/26

Alternatives for Tall Matrix, $QR = A \in M_{n.m}$, n > m

QR-factorization

Thm: If $A \in M_{n,m}$ then

A = QR

- $Q \in M_n$ is unitary, $R \in M_{n,m}$ is upper triangular with nonnegative diagonal elements.
- If A is real, Q and R can be taken real.
- Can be described as Gram Schmidt orthogonalization combined with book keeping.
- Better algorithm: Series of Householder transformations.
- Useful in Least squares solutions, eigenvalue computations etc.

10/26

Schur's unitary triangularization thm

Theorem:

Given $A \in M_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, there is a unitary matrix $U \in M_n$ such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with $t_{ii} = \lambda_i$ (i = 1, ..., n) in any prescribed order. If $A \in M_n(\mathbb{R})$ and all λ_i are real, U may be chosen real and orthogonal.

Shur, cont.

Unitary similarity: Any matrix in M_n is unitarily similar to an upper (or lower) triangular matrix. Note that $A = UTU^*$. **Uniqueness:**

- **1.** Neither U nor T is unique.
- 2. Eigenvalues can appear in any order
- 3. Two triangular matrices can be unitarily similar Implications:
 - 1. tr $A = \sum_i \lambda_i(A)$
 - 2. det $A = \prod_i \lambda_i(A)$
 - 3. Cayley-Hamilton theorem.
 - 4. . . .

Schur: The general real case

Given $A \in M_n(\mathbf{R})$, there is a real orthogonal matrix $Q \in M_n(\mathbf{R})$ such that

$$Q^{\mathsf{T}}AQ = \begin{bmatrix} A_1 & \ast & \dots & \ast \\ 0 & A_2 & & \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 & A_k \end{bmatrix} \in M_n(\mathsf{R})$$

where A_i (i = 1, ..., k) are real scalars or 2 by 2 blocks with a non-real pair of complex conjugate eigenvalues.

Cayley-Hamilton theorem

Let $p_A(t) = \det(tI - A)$ be the characteristic polynomial of $A \in M_n$. Then

$$p_A(A) = 0$$

Consequences:

- $A^{n+k} = q_k(A)$ $(k \ge 0)$ for some polynomials $q_k(t)$ of degrees < n - 1.
- If A is nonsingular: $A^{-1} = q(A)$ for some polynomial q(t) of degree $\leq n-1$.

Important: Note $p_A(C)$ is a matrix valued function.

Normal matrices

Def: A matrix $A \in M_n$ is normal if $A^*A = AA^*$.

Examples:

All unitary matrices are normal. All Hermitian matrices are normal.

Def: $A \in M_n$ is unitarily diagonalizable if A is unitarily equivalent to a diagonal matrix.

Facts for normal matrices

The following are equivalent:

- 1. A is normal
- 2. A is unitarily diagonalizable
- **3.** $||A||_F^2 \triangleq \sum_{i,j} |a_{ij}|^2 = \sum_{i=1}^n |\lambda_i|^2$

4. there is an orthonormal set of *n* eigenvectors of *A* The equivalence of 1 and 2 is called "the *Spectral Theorem for Normal matrices.*"

Important special case: Hermitian (sym) matrices

Spectral theorem for Hermitian matrices:

- If $A \in M_n$ is Hermitian, then,
 - all eigenvalues are real
 - A is unitarily diagonalizable.

$$\bullet A = \sum_{k=1}^{n} \lambda_k e_k e_k^* = E \Lambda E^*$$

If $A \in M_n(\mathbf{R})$ is symmetric, then A is real orthogonally diagonalizable.

17 / 26

SVD: Singular Value Decomposition

Theorem: Any $A \in M_{m,n}$ can be decomposed as $A = V \Sigma W^*$

- V ∈ M_m: Unitary with columns being eigenvectors of AA*.
- W ∈ M_n: Unitary with columns being eigenvectors of A*A.
- $\Sigma = [\sigma_{ij}] \in M_{m,n}$ has $\sigma_{ij} = 0, \forall i \neq j$

Suppose rank(A) = k and $q = \min\{m, n\}$, then

- $\sigma_{11} \geq \cdots \geq \sigma_{kk} > \sigma_{k+1,k+1} = \cdots = \sigma_{qq} = 0$
- σ_{ii} ≡ σ_i square roots of non-zero eigenvalues of AA* (or A*A)
- Unique : σ_i , Non-unique : V, W

Canonical forms

- > An equivalence relation partitions the domain.
- Simple to study equivalence if two objects in an equivalence class can be related to one *representative* object.
- ► Requirements of the *representatives*
 - Belong to the equivalence class.
 - One per class.
- Set of such representatives is a Canonical form
- We are interested in a canonical form for equivalence relation defined by similarity.

Canonical forms: Jordan form

Every equivalence class under similarity contains **essentially** only one, so called, Jordan matrix:

$\int J_{n_1}$	$J_{n_1}(\lambda_1)$			0]
J =		•	۰.		
	0			$J_{n_k}(\lambda$	k)]
where each block $J_k(\lambda)$ e	E M	1 _k ha	as th	e strı	ucture
	λ	1	0		0]
	0	λ	1		
$J_k(\lambda) =$:		۰.	·	:
	0			λ	1
	0				λ

The Jordan form theorem

Note that the orders n_i or λ_i are generally not distinct.

Theorem: For a given matrix $A \in M_n$, there is a nonsingular matrix $S \in M_n$ such that $A = SJS^{-1}$ and $\sum_i n_i = n$. The Jordan matrix is unique up to permutations of the Jordan blocks.

The Jordan form may be numerically unstable to compute but it is of major theoretical interest.

21 / 26

Jordan form cont'd

- The number k of Jordan blocks is the number of linearly independent eigenvectors. (Each block is associated with an eigenvector from the standard basis.)
- J is diagonalizable iff k = n.
- The number of blocks corresponding to the same eigenvalue is the geometric multiplicity of that eigenvalue.
- The sum of the orders (dimensions) of all blocks corresponding to the same eigenvalue equals the algebraic multiplicity of that eigenvalue.

(KTH

Applications of the Jordan form

- Linear systems: x(t) = Ax(t); x(0) = x₀ The solution may be "easily" obtained by changing state variables to the Jordan form.
- Convergent matrices: If all elements of A^m tend to zero as m → ∞, then A is a convergent matrix.
 - Fact: A is convergent iff $\rho(A) < 1$ (that is, iff $|\lambda_i| < 1, \forall i$). This may be proved, e.g., by using the Jordan canonical form.
- Excellent (counter)examples in theoretical derivations.
- ▶ ...

Triangular factorizations

Linear systems of equations are easy to solve if we can factorize the system matrix as A = LU where L(U) is lower (upper) triangular.

Theorem: If $A \in M_n$, then there exist permutation matrices $P, Q \in M_n$ such that

$$A = PLUQ$$

(in some cases we can take Q = I and/or P = I). Can be obtained using Gauss elimination with row and/or column pivoting.

When to use what?

	Theoretical	Practical	
	derivations	implem.	
Schur triangularization	\odot	\odot	
QR factorization	\odot	\odot	
Spectral dec.	\odot	(?)	
SVD	\odot	\odot	
Jordan form	\odot	<mark>(;)</mark> !!	

25 / 26