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Unitary matrices

I A set of vectors {xi} ∈ Cn are called
I orthogonal if x∗i xj = 0, ∀ i 6= j and
I orthonormal if they are orthogonal and x∗i xi = 1, ∀i .

I A matrix U ∈ Mn is unitary if U∗U = I .

I A matrix U ∈ Mn(R) is real orthogonal if UTU = I .

I (A matrix U ∈ Mn is orthogonal if UUT = I .)

I If U,V are unitary then UV is unitary.
I Unitary matrices form a group under multiplication.

2 / 26

Unitary matrices cont’d

The following are equiv.
1. U is unitary
2. U is nonsingular and U−1 = U∗

3. UU∗ = I
4. U∗ is unitary
5. the columns of U are orthonormal
6. the rows of U are orthonormal
7. for all x ∈ Cn, the Euclidean length of y = Ux equals

that of x .
Def: A linear transformation T : Cn → Cm is a Euclidean
isometry if x∗x = (Tx)∗(Tx) for all x ∈ Cn

Unitary U is an Euclidean isometry.
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Euclidean isometry and Parseval’s Theorem

1. Let FN be the FFT (Fast Fourier Transform matrix) of
dimension N × N, i. e,

FN(m, n) =
1√
N
e

−2π(m−1)(n−1)
N

2. FN is a unitary matrix.

3. Let y = FNx i.e, y is the N point FFT of x .
3.1 Length of x = Length of y

3.2
∑N

j=1 |x(j)|2 =
∑N

j=1 |y(j)|2 : This is energy conservation
or Parseval’s Theorem in DSP.
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Unitary equivalence

Def: A matrix B ∈ Mn is unitarily equivalent (or similar) to
A ∈ Mn if B = U∗AU for some unitary matrix U.

Compare:
(i) A→ S−1AS : similarity (Ch 1,3)
(ii) A→ S∗AS : *congruence (Ch 4)
(iii) A→ S∗AS with S unitary : unitary similarity (Ch 2)

Theorem: If A and B are unitarily equivalent then

‖A‖2F ,
∑
i ,j

|aij |2 =
∑
i ,j

|bij |2 = ‖B‖2F
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Unitary matrices and Plane Rotations : 2-D case

I Consider rotating the 2− D Euclidean plane
counter-clockwise by an angle θ.

I Resulting coordinates,{
x ′ = x cos θ − y sin θ

y ′ = x sin θ + y cos θ
⇐⇒

[
x ′

y ′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
I Note that U =

[
cos θ − sin θ
sin θ cos θ

]
is unitary.
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Plane Rotations : General Case

U(θ, 2, 4) =


1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)


I U(θ, 2, 4) rotates the second and fourth axes in R4

counter clock-wise by θ.

I The other axes are not changed.

I Left multiplication by U(θ, 2, 4) affects only rows 2 and 4.

I Note that U(θ, 2, 4) is unitary.

I Such U(θ,m, n) are called Givens rotations.
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Product of Givens rotations

I U = U(θ1, 1, 3)U(θ2, 2, 4) rotates
I second and fourth axes in R4 counter clock-wise by θ2.
I first and third axes in R4 counter clock-wise by θ1.

I U is unitary ⇒ product of Givens rotations is unitary.
I Such matrices are used in Least-Squares and eigenvalue

computations.
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Special Unitary matrices: Householder matrices

Let w ∈ Cn be a normalized (w∗w = 1) vector and define

Uw = I − 2ww∗

Properties:
1. Uw is unitary and Hermitian.

2. Uwx = x , ∀ x ⊥ w .

3. Uww = −w
4. There is a Householder matrix such that

y = Uwx

for any given real vectors x and y of the same length.
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QR-factorization

Thm: If A ∈ Mn,m then

A = QR

I Q ∈ Mn is unitary, R ∈ Mn,m is upper triangular with
nonnegative diagonal elements.

I If A is real, Q and R can be taken real.

I Can be described as Gram Schmidt orthogonalization
combined with book keeping.

I Better algorithm: Series of Householder transformations.

I Useful in Least squares solutions, eigenvalue
computations etc.
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Alternatives for Tall Matrix, QR = A ∈ Mn,m, n > m

”Full size” QR:


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


︸ ︷︷ ︸

Q


∗ ∗
0 ∗
0 0
0 0


︸ ︷︷ ︸

R

=


∗ ∗
∗ ∗
∗ ∗
∗ ∗


︸ ︷︷ ︸

A

5pt]

”Economy size” QR:


∗ ∗
∗ ∗
∗ ∗
∗ ∗


︸ ︷︷ ︸

Q̃

[
∗ ∗
0 ∗

]
︸ ︷︷ ︸

R̃

=


∗ ∗
∗ ∗
∗ ∗
∗ ∗


︸ ︷︷ ︸

A

Note: Q̃ has orthonormal columns: Q̃∗Q̃ = In
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Schur’s unitary triangularization thm
Theorem:

Given A ∈ Mn with eigenvalues λ1, . . . , λn, there is a unitary
matrix U ∈ Mn such that

U∗AU = T = [tij ]

is upper triangular with tii = λi (i = 1, . . . , n) in any
prescribed order. If A ∈ Mn(R) and all λi are real, U may be
chosen real and orthogonal.
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Shur, cont.

Unitary similarity: Any matrix in Mn is unitarily similar to an
upper (or lower) triangular matrix. Note that A = UTU∗.

Uniqueness:
1. Neither U nor T is unique.
2. Eigenvalues can appear in any order
3. Two triangular matrices can be unitarily similar

Implications:
1. trA =

∑
j λj(A)

2. detA =
∏

j λj(A)
3. Cayley-Hamilton theorem.
4. . . .

13 / 26

Schur: The general real case

Given A ∈ Mn(R), there is a real orthogonal matrix
Q ∈ Mn(R) such that

QTAQ =


A1 ∗ . . . ∗
0 A2
...

. . .
...

0 . . . 0 Ak

 ∈ Mn(R)

where Ai (i = 1, . . . , k) are real scalars or 2 by 2 blocks with a
non-real pair of complex conjugate eigenvalues.

14 / 26

Cayley-Hamilton theorem

Let pA(t) = det(tI − A) be the characteristic polynomial of
A ∈ Mn. Then

pA(A) = 0

Consequences:
I An+k = qk(A) (k ≥ 0) for some polynomials qk(t)

of degrees ≤ n − 1.
I If A is nonsingular: A−1 = q(A) for some polynomial

q(t) of degree ≤ n − 1.
Important: Note pA(C ) is a matrix valued function.
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Normal matrices

Def: A matrix A ∈ Mn is normal if A∗A = AA∗.

Examples:
All unitary matrices are normal.
All Hermitian matrices are normal.

Def: A ∈ Mn is unitarily diagonalizable if A is unitarily
equivalent to a diagonal matrix.
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Facts for normal matrices

The following are equivalent:
1. A is normal

2. A is unitarily diagonalizable

3. ‖A‖2F ,
∑

i ,j |aij |2 =
∑n

i=1|λi |2

4. there is an orthonormal set of n eigenvectors of A
The equivalence of 1 and 2 is called “the Spectral Theorem for
Normal matrices.”
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Important special case: Hermitian (sym) matrices

Spectral theorem for Hermitian matrices:
If A ∈ Mn is Hermitian, then,

I all eigenvalues are real
I A is unitarily diagonalizable.

I A =
n∑

k=1

λkeke
∗
k = EΛE ∗

If A ∈ Mn(R) is symmetric, then A is real orthogonally
diagonalizable.
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SVD: Singular Value Decomposition

Theorem: Any A ∈ Mm,n can be decomposed as
A = VΣW ∗

I V ∈ Mm: Unitary with columns being eigenvectors of
AA∗.

I W ∈ Mn: Unitary with columns being eigenvectors of
A∗A.

I Σ = [σij ] ∈ Mm,n has σij = 0, ∀ i 6= j

Suppose rank(A) = k and q = min{m, n}, then
I σ11 ≥ · · · ≥ σkk > σk+1,k+1 = · · · = σqq = 0
I σii ≡ σi square roots of non-zero eigenvalues of AA∗

(or A∗A)
I Unique : σi , Non-unique : V ,W
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Canonical forms

I An equivalence relation partitions the domain.
I Simple to study equivalence if two objects in an

equivalence class can be related to one representative
object.

I Requirements of the representatives
I Belong to the equivalence class.
I One per class.

I Set of such representatives is a Canonical form
I We are interested in a canonical form for equivalence

relation defined by similarity.
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Canonical forms: Jordan form

Every equivalence class under similarity contains essentially
only one, so called, Jordan matrix:

J =

Jn1(λ1) 0
. . .

0 Jnk (λk)


where each block Jk(λ) ∈ Mk has the structure

Jk(λ) =


λ 1 0 . . . 0
0 λ 1
...

. . . . . .
...

0 λ 1
0 λ
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The Jordan form theorem

Note that the orders ni or λi are generally not distinct.

Theorem: For a given matrix A ∈ Mn, there is a nonsingular
matrix S ∈ Mn such that A = SJS−1 and

∑
i ni = n. The

Jordan matrix is unique up to permutations of the Jordan
blocks.

The Jordan form may be numerically unstable to compute but
it is of major theoretical interest.
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Jordan form cont’d

I The number k of Jordan blocks is the number of linearly
independent eigenvectors. (Each block is associated with
an eigenvector from the standard basis.)

I J is diagonalizable iff k = n.

I The number of blocks corresponding to the same
eigenvalue is the geometric multiplicity of that eigenvalue.

I The sum of the orders (dimensions) of all blocks
corresponding to the same eigenvalue equals the algebraic
multiplicity of that eigenvalue.
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Applications of the Jordan form

I Linear systems: ẋ(t) = Ax(t); x(0) = x0 The solution
may be “easily” obtained by changing state variables to
the Jordan form.

I Convergent matrices: If all elements of Am tend to zero
as m→∞, then A is a convergent matrix.

Fact: A is convergent iff ρ(A) < 1 (that is, iff
|λi | < 1, ∀i). This may be proved, e.g., by using the
Jordan canonical form.

I Excellent (counter)examples in theoretical derivations.

I . . .
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Triangular factorizations

Linear systems of equations are easy to solve if we can
factorize the system matrix as A = LU where L (U) is lower
(upper) triangular.

Theorem: If A ∈ Mn, then there exist permutation matrices
P,Q ∈ Mn such that

A = PLUQ

(in some cases we can take Q = I and/or P = I ). Can be
obtained using Gauss elimination with row and/or column
pivoting.
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When to use what?

Theoretical Practical
derivations implem.

Schur triangularization , /
QR factorization , ,
Spectral dec. , ,(?)
SVD , ,
Jordan form , /!!
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