Homework \#4

Numbers below refer to problems in Horn, Johnson "Matrix analysis." A number 1.1.P.2 refers to Problem 2 in Section 1.1.

1. (4.1.P $6+\mathrm{P} 7)$ Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be given.
(a) Show that $x^{*} A x=x^{*} B x$ for all $x \in \mathbb{C}^{n}$ if and only if $A=B$.
(b) Show that $x^{T} A x=0$ for all $x \in \mathbb{C}^{n}$ if and only if $A^{T}=-A$.
(c) Give an example showing that A and B need not be equal if $x^{T} A x=$ $x^{T} B x$ for all $x \in \mathbb{C}^{n}$.
2. (4.1.P19) Let $A \in M_{n}$ be a projection $\left(A^{2}=A\right)$. One says that A is a Hermitian projection if A is Hermitian, and that A is an orthogonal projection if the range of A is orthogonal to its null space. Use the basic properties of Hermitian matrices to show that A is a Hermitian projection if and only if it is an orthogonal projection.
Hint: $x=(I-A) x+A x$ is a sum of vectors in the null space and range of A. If the null space is orthogonal to the range, then $\left.x^{*} A x=((I-A) x+A x)\right)^{*} A x=$ $x^{*}\left(A^{*} A\right) x$ is real for all x.
3. Prove that the formulation of Courant-Fischer's max-min theorem shown in the lecture slides (Theorem 4.2.6 in the 2nd edition of the book) is equivalent to

$$
\begin{aligned}
& \lambda_{k}=\min _{w_{1}, \ldots, w_{n-k}} \max _{\substack{x \neq 0 \\
x \perp w_{1}, \ldots, w_{n-k}}} \frac{x^{*} A x}{x^{*} x} \\
& \lambda_{k}=\max _{w_{1}, \ldots, w_{k-1}} \min _{\substack{x \neq 0 \\
x \perp w_{1}, \ldots, w_{k-1}}} \frac{x^{*} A x}{x^{*} x}
\end{aligned}
$$

where $w_{i}, x \in \mathbf{C}^{n}$ and the vectors $\left\{w_{i}\right\}$ are allowed to be linearly dependent. It is only necessary to prove one of the two expressions above, the other proof will be very similar.
4. Given $A=A^{*} \in M_{n}$ and $B=B^{*} \in M_{n}$ where B is positive definite.
(a) show that there is a non-singular matrix X such that $X^{*} A X=C$ and $X^{*} B X=D$ where both C and D are diagonal.
Hint: Write $B=L L^{*}$ (for example, L can be the Cholesky factor, which we will study in more detail in Lect. 6), apply the spectral factorization on the matrix $L^{-1} A L^{-*}$ and use the result to form X. One of the matrices C and D will end up being the identity matrix.
(b) Given a matrix X such that $X^{*} A X=C$ and $X^{*} B X=D$ where both C and D are diagonal (not necessarily obtained using the technique you derived above), show that the columns of X are eigenvectors of the following generalized eigenvalue problem

$$
A x=\lambda B x
$$

and describe how the corresponding eigenvalues can be obtained from C and D.
5. Assume that $A \in M_{n}$ is Hermitian and has an eigenvalue λ with multiplicity $m>1$. Show that λ is an eigenvalue also of $A+z z^{*}$, with multiplicity at least $m-1$, for any non-zero $z \in \mathbb{C}^{n}$.
6. (4.4.P2) Provide details for the following derivation of the Autonne-Takagi factorization, using real valued representations. Let $A \in M_{n}$ be symmetric. If A is singular and rank $A=r$, it is unitarily congruent to $A^{\prime} \oplus 0_{n-r}$, in which $A^{\prime} \in M_{r}$ is non-singular and symmetric (no need to prove this step). Assume therefore WLOG that A is nonsingular. Let $A=A_{1}+i A_{2}$ with A_{1}, A_{2} real and let $x, y \in \mathbb{R}^{n}$. Consider the real representation $R_{2}(A)=\left[\begin{array}{cc}A_{1} & A_{2} \\ A_{2} & -A_{1}\end{array}\right]$, in which A_{1}, A_{2} and $R_{2}(A)$ are symmetric. Show that
(a) $R_{2}(A)$ is nonsingular.
(b) $R_{2}(A)\left[\begin{array}{c}x \\ -y\end{array}\right]=\lambda\left[\begin{array}{c}x \\ -y\end{array}\right]$ if and only if $R_{2}(A)\left[\begin{array}{l}y \\ x\end{array}\right]=-\lambda\left[\begin{array}{c}y \\ x\end{array}\right]$, so the eigenvalues of $R_{2}(A)$ appear in \pm pairs.
(c) Let $\left[\begin{array}{c}x_{1} \\ -y_{1}\end{array}\right], \ldots,\left[\begin{array}{c}x_{n} \\ -y_{n}\end{array}\right]$ be orthonormal eigenvectors of $R_{2}(A)$ associated with its positive eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, let $X=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right], Y=$ $\left[\begin{array}{lll}y_{1} & \ldots & y_{n}\end{array}\right], \Sigma=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), V=\left[\begin{array}{cc}X & Y \\ -Y & X\end{array}\right]$ and $\Lambda=\Sigma \oplus(-\Sigma)$. Then V is real orthogonal and $R_{2}(A)=V \Lambda V^{T}$. Let $U=X-i Y$. Explain why U is unitary and show that $U \Sigma U^{T}=A$.
7. (a) Let $\alpha=\left[\alpha_{i}\right] \in \mathbf{R}^{n}$ and $\beta=\left[\beta_{i}\right]$, where $\beta_{1}=\cdots=\beta_{n}=\frac{1}{n} \sum \alpha_{i}$. Show that α majorizes β.
(b) [Optional, only the solution to a) is considered in the grading] Let $\Lambda=$ $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Try to find a unitary matrix $U \in M_{n}$ such that all diagonal elements of $U \Lambda U^{*}$ are equal. Note that this is a simple special case of Theorem 4.3.48. However, in this special case, it is easy to determine a matrix U that works for all α (in general, U will have to depend on the two vectors).
8. Let $A=A^{*} \in M_{n}$ be a positive definite matrix $\left(\lambda_{i}(A)>0\right)$. Show that

$$
\log \operatorname{det}(A)-\operatorname{Tr}(A)
$$

is maximized by $A=I$.

