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Hermitian matrices cont’d

A is Hermitian iff

» x*Ax is real for all x € C"

» A is normal with real eigenvalues

» S*AS is Hermitian for all S € M,
All eigenvalues of a Hermitian matrix are real and it has a
complete set of orthonormal eigenvectors (the last fact follows
as a special case of the spectral theorem for normal matrices).

Thm (spectral): A € M, is Hermitian iff it is unitarily
diagonalizable to a real diagonal matrix. A matrix A is real
symmetric iff it can be diagonalized by a real orthogonal
matrix to a real diagonal matrix.

Lecture 4: Hermitian matrices

Def: A matrix A = [a;] € M, is Hermitian if A = A*.
A is skew-Hermitian if A= —A*.

Simple observations:

1.
2.

If Ais Hermitian, then A% and A=1 are Hermitian.
A+ A* and AA* are Hermitian and A — A* is
skew-Hermitian for all A € M,,.
Any A € M,, can be decomposed uniquely as
A= B+ iC = B+ D where B, C are Hermitian and D
skew-Hermitian. In fact
1 1

B:E(A—i—A*) D:iC:E(A—A*)
A Hermitian matrix in M, is completely described by n?
real valued parameters.

-
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Commutation of Hermitian matrices
Let F be a family of Hermitian matrices. Then all A € F are
simultaneously unitarily diagonalizable iff AB = BA for all
A BeF.
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Positive definiteness Quadratic forms

A Hermitian matrix A € M,, is

Bilinear form in two variables Q(x,y) =y Ax
Positive definite if x*Ax > 0 for all x € C", x # 0.

Sesquilinear form in two variables Q(x,y) = y*Ax

Quadratic form Both Q(x) = x" Ax and Q(x) = x*Ax are
commonly called quadratic forms. See homework on the
need to require A to be symmetric/hermitian.

Positive semidefinite if x*Ax > 0 for all x € C", x # 0.

Negative definite if x*Ax < 0 for all x € C", x # 0. Non-homogeneous quadratic form x” Ax + b7 x + ¢ or
x*Ax + Re{b*x} + c.

Negative semidefinite if x*Ax < 0 for all x € C", x # 0. Homogenization Extend the vector with a scalar constant,

* ~% A 2 ~ ~ X
Indefinite if there are y,z € C" with y*Ay < 0 < z*Az. X*Ax + Re{b*x} + ¢ = % [br i] X, where % = [1]
Much more on positive (semi)definiteness in Chapter 7 2
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Variational characterization of eigenvalues Applications of C-F thm
Let A € M, be Hermitian with eigenvalues \; < --- < A,

Thm: If A, B € M,, are Hermitian, then if j + k> n+1
Thm (Rayleigh-Ritz):

o Ax Aj+k-n(A+ B) < Xj(A) + Ak(B)
)\1221;3 x| e X Ax andif j+k<n+1
x*Ax .
Ap = max = max x"Ax Ni(A) + M(B) < Ajjk—1(A+ B)
x#0  X*Xx x*x=1

Thm (Courant-Fischer): Let S denote a subspace of C". Then,
. x*Ax
K= o minmax —
{S:dim[S]=k} xio

x*Ax

= max min
{S:dim[S]=n—k+1} x€S X*X
x7#0
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Applications cont’'d

Thm: If A, B € M, are Hermitian, then
/\k(A) + )\1(8) < )\k(A + B) < )\k(A) + )\,,(B)

Interlacing theorem: Let z € C" and A € M,, be Hermitian.

Then, for k=1,2,...,n—1:

(A +22") < Meqa(A) < A1 (A + 225)
)\k(A) < )\k(A + ZZ*) < )\k+1(A)

)\k(A - ZZ*) S )\k(A) S )\k+1(A - ZZ*)
Ak(A) < M1 (A — 227) < Miqa(A)

Applications cont’'d

Interlacing theorem for bordered matrices:
Let A € M, be Hermitian, y € C", a € R and define

A=
y* a

Then with \; € 0(A) and }; € o(A)
<

a(A
M<MhM<h< <A < <A
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The Poincaré separation theorem
Let A€ M, be Hermitian, let U € M, , be a matrix with
r < n orthonormal columns and define B, = U*AU. Then
)\k(A) < )\k(Br) < /\k+n—r(A); k=1,2,....r
Application: r
o in Tr(UTAU) = Y Me(A)
k=1
Tr(U*AU) = A
v, V=), " Z et
Note that equality is obtained by choosmg the columns of U
as suitable eigenvectors of A.
R
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Generalized Rayleigh Quotients

Let A € M, be Hermitian and B € M,, be Hermitian positive

definite. Consider the following generalized eigenvalue
problem

Ax = ABx
with eigenvalues Ay < --- < A,,. Then,
x*Ax
A1 = min = min x"Ax
x#0 x*Bx x*Bx>1
x*Ax
Ap = max = max x*Ax

x20 X*Bx = x*Bx<1

Solve the generalized eigenvalue problem in Matlab using
[E,Lambdal=eig(A,B);

Note: Elements of Lambda not sorted.
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Majorization

Def: Let o = [o;] € R" and 8 = [j] € R" with sorted
versions, aj; < aj, <--- < aj and Bm < Bm, <o < By

If
Z aj = Z Bi
1 1
and

k k
Zﬁmi SZO‘J} forall k=1,2,...,n,
i=1 i=1

then the vector 8 majorizes the vector «.
Note: The notation is not standardized, some texts (including
1st edition of Horn&Johnson) use the opposite definition.
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Majorization cont’d

Thm: Let A € M,, be Hermitian. The vector of eigenvalues
majorizes the vector of diagonal elements.

Converse thm: If the vector A € R™ majorizes the vector
a € R" then there exists a real symmetric matrix A € M,(R)
with a; as diagonal elements and A; as eigenvalues.

Thm: Let A, B € M, be Hermitian and let A\(A) be the vector
of eigenvalues of A etc. The vector A(A) + A(B) majorizes the
vector \(A+ B) .

lllustration of the definition, 8 majorizes «
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More to read on majorization

[@ Albert W. Marshall, Ingram Olkin, and Barry C Arnold.
Inequalities: Theory of Majorization and Its Applications.
Springer, New York, 2nd edition, 2011.

[§ Eduard Jorswieck and Holger Boche.
Majorization and matrix-monotone functions in wireless
communications.

Foundations and Trends®) in Communications and
Information Theory, 3(6):553-701, 2007.

[§ Daniel P. Palomar and Yi Jiang.
MIMO transceiver design via majorization theory.
Foundations and Trends®) in Communications and
Information Theory, 3(4-5):331-551, 2007.
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Complex symmetric matrices

Autonne-Takagi factorization: If A € M,, is symmetric, then
A= UXUT. Here, U € M, and unitary, ¥ = diag{o1,...,0,}
is real and nonnegative. The columns of U can be taken as an
orthonormal set of eigenvectors to AA and o; is the square
root of an eigenvalue of AA.

Thm: Every matrix A € M, is similar to a symmetric matrix.
Thm: Let A € M,,. There exist a nonsingular matrix S and a

unitary matrix U such that (US)A(US)™! is a diagonal matrix
with nonnegative elements.

—
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Inertia

Def: Let A € M, be Hermitian. The inertia of A is the ordered
triple

i(A) = (i (A),i-(A), io(A))
where the entries correspond to the number of positive,
negative and zero eigenvalues of A, respectively.
Note that the rank of A equals i (A) + i_(A).
The signature of Ais iy (A) — i_(A).

Congruence

Def: Let A, B € M,, and S a nonsingular matrix.
If B = SAS*, then B is *-congruent to A.
If B =SAST, then B is "-congruent to A.

Both congruence relations induce equivalence classes:
1. Ais congruent to A
2. If Ais congruent to B, then B is congruent to A.
3. If Ais congruent to B and B is congruent to C, then A'is
congruent to C.
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Canonical form/Sylvester’s law of inertia

If A€ M, is Hermitian, then we can decompose it as

A=SI(A)S*
where S is nonsingular and /(A) is the inertia matrix
I(A) =diag(l ... 1 —1 ... —10...0)

Thm (Syl): Let A, B € M, be Hermitian. Then A = SBS* for
a nonsingular matrix S € M,, iff A and B have the same
inertia.
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Quantitative Inertia Result / "-congruence

Thm: (Ostrowski) Let A,S € M, where A is Hermitian. Let
the eigenvalues be arranged in nondecreasing order. For each
k=1,...,n

M(SASY)

02(5) = Amin(SS*) < A < 02(S) = Amax(SS¥)

Thm: Let A, B € M, be symmetric matrices (real or complex).
There is a nonsingular matrix S € M, such that A= SBST iff
A and B have the same rank.

More about diagonalization by congruence: Thm 4.5.17
(4.5.15in old ed.)

—
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