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Lecture 4: Hermitian matrices

Def: A matrix A = [aij ] ∈ Mn is Hermitian if A = A∗.
A is skew-Hermitian if A = −A∗.
Simple observations:
1. If A is Hermitian, then Ak and A−1 are Hermitian.
2. A + A∗ and AA∗ are Hermitian and A− A∗ is

skew-Hermitian for all A ∈ Mn.
3. Any A ∈ Mn can be decomposed uniquely as

A = B + iC = B + D where B,C are Hermitian and D
skew-Hermitian. In fact

B =
1
2

(A + A∗) D = iC =
1
2

(A− A∗)

4. A Hermitian matrix in Mn is completely described by n2

real valued parameters.
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Hermitian matrices cont’d

A is Hermitian iff
I x∗Ax is real for all x ∈ Cn

I A is normal with real eigenvalues
I S∗AS is Hermitian for all S ∈ Mn

All eigenvalues of a Hermitian matrix are real and it has a
complete set of orthonormal eigenvectors (the last fact follows
as a special case of the spectral theorem for normal matrices).

Thm (spectral): A ∈ Mn is Hermitian iff it is unitarily
diagonalizable to a real diagonal matrix. A matrix A is real
symmetric iff it can be diagonalized by a real orthogonal
matrix to a real diagonal matrix.
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Commutation of Hermitian matrices

Let F be a family of Hermitian matrices. Then all A ∈ F are
simultaneously unitarily diagonalizable iff AB = BA for all
A,B ∈ F .
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Positive definiteness

A Hermitian matrix A ∈ Mn is
Positive definite if x∗Ax > 0 for all x ∈ Cn, x 6= 0.

Positive semidefinite if x∗Ax ≥ 0 for all x ∈ Cn, x 6= 0.

Negative definite if x∗Ax < 0 for all x ∈ Cn, x 6= 0.

Negative semidefinite if x∗Ax ≤ 0 for all x ∈ Cn, x 6= 0.

Indefinite if there are y , z ∈ Cn with y∗Ay < 0 < z∗Az .
Much more on positive (semi)definiteness in Chapter 7
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Quadratic forms

Bilinear form in two variables Q(x , y) = yTAx
Sesquilinear form in two variables Q(x , y) = y∗Ax
Quadratic form Both Q(x) = xTAx and Q(x) = x∗Ax are

commonly called quadratic forms. See homework on the
need to require A to be symmetric/hermitian.

Non-homogeneous quadratic form xTAx + bT x + c or
x∗Ax + Re{b∗x}+ c .

Homogenization Extend the vector with a scalar constant,

x∗Ax + Re{b∗x}+ c = x̃∗

[
A b

2
bT

2 c

]
︸ ︷︷ ︸

Ã

x̃ , where x̃ =

[
x
1

]
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Variational characterization of eigenvalues

Let A ∈ Mn be Hermitian with eigenvalues λ1 ≤ · · · ≤ λn.
Thm (Rayleigh-Ritz):

λ1 = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax

λn = max
x 6=0

x∗Ax

x∗x
= max

x∗x=1
x∗Ax

Thm (Courant-Fischer): Let S denote a subspace of Cn. Then,

λk = min
{S :dim[S]=k}

max
x∈S
x 6=0

x∗Ax

x∗x

λk = max
{S :dim[S]=n−k+1}

min
x∈S
x 6=0

x∗Ax

x∗x
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Applications of C-F thm

Thm: If A,B ∈ Mn are Hermitian, then if j + k ≥ n + 1

λj+k−n(A + B) ≤ λj(A) + λk(B)

and if j + k ≤ n + 1

λj(A) + λk(B) ≤ λj+k−1(A + B)
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Applications cont’d

Thm: If A,B ∈ Mn are Hermitian, then

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B)

Interlacing theorem: Let z ∈ Cn and A ∈ Mn be Hermitian.
Then, for k = 1, 2, . . . , n − 1:

λk(A + zz∗) ≤ λk+1(A) ≤ λk+1(A + zz∗)

λk(A) ≤ λk(A + zz∗) ≤ λk+1(A)

λk(A− zz∗) ≤ λk(A) ≤ λk+1(A− zz∗)

λk(A) ≤ λk+1(A− zz∗) ≤ λk+1(A)
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Applications cont’d

Interlacing theorem for bordered matrices:
Let A ∈ Mn be Hermitian, y ∈ Cn, a ∈ R and define

Â =

[
A y
y∗ a

]
Then with λi ∈ σ(A) and λ̂i ∈ σ(Â)

λ̂1 ≤ λ1 ≤ λ̂2 ≤ · · · ≤ λ̂n ≤ λn ≤ λ̂n+1
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The Poincaré separation theorem

Let A ∈ Mn be Hermitian, let U ∈ Mn,r be a matrix with
r ≤ n orthonormal columns and define Br = U∗AU. Then

λk(A) ≤ λk(Br ) ≤ λk+n−r (A); k = 1, 2, . . . , r

Application:
min

U, U∗U=Ir
Tr(U∗AU) =

r∑
k=1

λk(A)

max
U, U∗U=Ir

Tr(U∗AU) =
r∑

k=1

λk+n−r (A)

Note that equality is obtained by choosing the columns of U
as suitable eigenvectors of A.
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Generalized Rayleigh Quotients

Let A ∈ Mn be Hermitian and B ∈ Mn be Hermitian positive
definite. Consider the following generalized eigenvalue
problem

Ax = λBx

with eigenvalues λ1 ≤ · · · ≤ λn. Then,

λ1 = min
x 6=0

x∗Ax

x∗Bx
= min

x∗Bx≥1
x∗Ax

λn = max
x 6=0

x∗Ax

x∗Bx
= max

x∗Bx≤1
x∗Ax

Solve the generalized eigenvalue problem in Matlab using
[E,Lambda]=eig(A,B);
Note: Elements of Lambda not sorted.
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Majorization

Def: Let α = [αi ] ∈ Rn and β = [βi ] ∈ Rn with sorted
versions, αj1 ≤ αj2 ≤ · · · ≤ αjn and βm1 ≤ βm2 ≤ · · · ≤ βmn .
If

n∑
1

αi =
n∑
1

βi

and
k∑

i=1

βmi ≤
k∑

i=1

αji for all k = 1, 2, . . . , n,

then the vector β majorizes the vector α.
Note: The notation is not standardized, some texts (including

1st edition of Horn&Johnson) use the opposite definition.
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Illustration of the definition, β majorizes α
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Majorization cont’d

Thm: Let A ∈ Mn be Hermitian. The vector of eigenvalues
majorizes the vector of diagonal elements.

Converse thm: If the vector λ ∈ Rn majorizes the vector
a ∈ Rn then there exists a real symmetric matrix A ∈ Mn(R)
with ai as diagonal elements and λi as eigenvalues.

Thm: Let A,B ∈ Mn be Hermitian and let λ(A) be the vector
of eigenvalues of A etc. The vector λ(A) + λ(B) majorizes the
vector λ(A + B) .
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More to read on majorization

Albert W. Marshall, Ingram Olkin, and Barry C Arnold.
Inequalities: Theory of Majorization and Its Applications.
Springer, New York, 2nd edition, 2011.

Eduard Jorswieck and Holger Boche.
Majorization and matrix-monotone functions in wireless
communications.
Foundations and Trends R© in Communications and
Information Theory, 3(6):553–701, 2007.

Daniel P. Palomar and Yi Jiang.
MIMO transceiver design via majorization theory.
Foundations and Trends R© in Communications and
Information Theory, 3(4-5):331–551, 2007.
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Complex symmetric matrices

Autonne-Takagi factorization: If A ∈ Mn is symmetric, then
A = UΣUT . Here, U ∈ Mn and unitary, Σ = diag{σ1, . . . , σn}
is real and nonnegative. The columns of U can be taken as an
orthonormal set of eigenvectors to AĀ and σi is the square
root of an eigenvalue of AĀ.

Thm: Every matrix A ∈ Mn is similar to a symmetric matrix.

Thm: Let A ∈ Mn. There exist a nonsingular matrix S and a
unitary matrix U such that (US)A(ŪS)−1 is a diagonal matrix
with nonnegative elements.

17 / 21

Congruence

Def: Let A,B ∈ Mn and S a nonsingular matrix.
If B = SAS∗, then B is *-congruent to A.
If B = SAST , then B is T -congruent to A.

Both congruence relations induce equivalence classes:
1. A is congruent to A
2. If A is congruent to B , then B is congruent to A.
3. If A is congruent to B and B is congruent to C , then A is

congruent to C .
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Inertia

Def: Let A ∈ Mn be Hermitian. The inertia of A is the ordered
triple

i(A) = (i+(A), i−(A), i0(A))

where the entries correspond to the number of positive,
negative and zero eigenvalues of A, respectively.
Note that the rank of A equals i+(A) + i−(A).
The signature of A is i+(A)− i−(A).
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Canonical form/Sylvester’s law of inertia

If A ∈ Mn is Hermitian, then we can decompose it as

A = SI (A)S∗

where S is nonsingular and I (A) is the inertia matrix

I (A) = diag(1 . . . 1 − 1 . . . − 1 0 . . . 0)

Thm (Syl): Let A,B ∈ Mn be Hermitian. Then A = SBS∗ for
a nonsingular matrix S ∈ Mn iff A and B have the same
inertia.

20 / 21



Quantitative Inertia Result / T -congruence

Thm: (Ostrowski) Let A,S ∈ Mn where A is Hermitian. Let
the eigenvalues be arranged in nondecreasing order. For each
k = 1, . . . , n

σ2
n(S) = λmin(SS∗) ≤ λk(SAS∗)

λk(A)
≤ σ2

1(S) = λmax(SS∗)

Thm: Let A,B ∈ Mn be symmetric matrices (real or complex).
There is a nonsingular matrix S ∈ Mn such that A = SBST iff
A and B have the same rank.

More about diagonalization by congruence: Thm 4.5.17
(4.5.15 in old ed.)
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