

Lecture 4: Outline

 Chapter 4: Hermitian and symmetric matrices, Congruence

Magnus Jansson/Mats Bengtsson

Lecture 4: Hermitian matrices

Def: A matrix $A = [a_{ij}] \in M_n$ is Hermitian if $A = A^*$. A is skew-Hermitian if $A = -A^*$.

Simple observations:

- **1.** If A is Hermitian, then A^k and A^{-1} are Hermitian.
- 2. $A + A^*$ and AA^* are Hermitian and $A A^*$ is skew-Hermitian for all $A \in M_n$.
- 3. Any $A \in M_n$ can be decomposed uniquely as A = B + iC = B + D where B, C are Hermitian and Dskew-Hermitian. In fact

$$B = \frac{1}{2}(A + A^*)$$
 $D = iC = \frac{1}{2}(A - A^*)$

4. A Hermitian matrix in M_n is completely described by n^2 real valued parameters.

2/21

Hermitian matrices cont'd

A is Hermitian iff

- x^*Ax is real for all $x \in \mathbf{C}^n$
- ► A is normal with real eigenvalues
- S^*AS is Hermitian for all $S \in M_n$

All eigenvalues of a Hermitian matrix are real and it has a complete set of orthonormal eigenvectors (the last fact follows as a special case of the spectral theorem for normal matrices).

Thm (spectral): $A \in M_n$ is Hermitian iff it is unitarily diagonalizable to a real diagonal matrix. A matrix A is real symmetric iff it can be diagonalized by a real orthogonal matrix to a real diagonal matrix.

Commutation of Hermitian matrices

Let \mathcal{F} be a family of Hermitian matrices. Then all $A \in \mathcal{F}$ are simultaneously unitarily diagonalizable iff AB = BA for all $A, B \in \mathcal{F}$.

Positive definiteness

A Hermitian matrix $A \in M_n$ is **Positive definite** if $x^*Ax > 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$.

Positive semidefinite if $x^*Ax \ge 0$ for all $x \in \mathbb{C}^n$, $x \ne 0$.

Negative definite if $x^*Ax < 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$.

Negative semidefinite if $x^*Ax \leq 0$ for all $x \in \mathbb{C}^n$, $x \neq 0$.

Indefinite if there are $y, z \in \mathbb{C}^n$ with $y^*Ay < 0 < z^*Az$. Much more on positive (semi)definiteness in Chapter 7

Quadratic forms

Bilinear form in two variables $Q(x, y) = y^T Ax$ Sesquilinear form in two variables $Q(x, y) = y^* Ax$ Quadratic form Both $Q(x) = x^T Ax$ and $Q(x) = x^* Ax$ are commonly called quadratic forms. See homework on the need to require A to be symmetric/hermitian. Non-homogeneous quadratic form $x^T Ax + b^T x + c$ or

$$x^*Ax + \operatorname{Re}\{b^*x\} + c.$$

Homogenization Extend the vector with a scalar constant,

$$x^*Ax + \operatorname{Re}\{b^*x\} + c = \tilde{x}^* \underbrace{\begin{bmatrix} A & \frac{b}{2} \\ \frac{b^T}{2} & c \end{bmatrix}}_{\tilde{A}} \tilde{x}, \text{ where } \tilde{x} = \begin{bmatrix} x \\ 1 \end{bmatrix}$$

5/21

Variational characterization of eigenvalues

Let $A \in M_n$ be Hermitian with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Thm (Rayleigh-Ritz):

$$\lambda_1 = \min_{x \neq 0} \frac{x^* A x}{x^* x} = \min_{x^* x = 1} x^* A x$$
$$\lambda_n = \max_{x \neq 0} \frac{x^* A x}{x^* x} = \max_{x^* x = 1} x^* A x$$

Thm (Courant-Fischer): Let S denote a subspace of C^n . Then,

$$\lambda_k = \min_{\substack{\{S: \dim[S]=k\} \\ x \neq 0}} \max_{\substack{x \in S \\ x \neq 0}} \frac{x^* A x}{x^* x}$$
$$\lambda_k = \max_{\substack{\{S: \dim[S]=n-k+1\} \\ x \neq 0}} \min_{\substack{x \in S \\ x \neq 0}} \frac{x^* A x}{x^* x}$$

(KTH

Applications of C-F thm

Thm: If $A, B \in M_n$ are Hermitian, then if $j + k \ge n + 1$

$$\lambda_{j+k-n}(A+B) \leq \lambda_j(A) + \lambda_k(B)$$

and if $j + k \le n + 1$

$$\lambda_j(A) + \lambda_k(B) \leq \lambda_{j+k-1}(A+B)$$

Applications cont'd

Thm: If $A, B \in M_n$ are Hermitian, then

 $\lambda_k(A) + \lambda_1(B) \leq \lambda_k(A+B) \leq \lambda_k(A) + \lambda_n(B)$

Interlacing theorem: Let $z \in \mathbf{C}^n$ and $A \in M_n$ be Hermitian. Then, for k = 1, 2, ..., n - 1:

 $egin{aligned} \lambda_k(A+zz^*) &\leq \lambda_{k+1}(A) \leq \lambda_{k+1}(A+zz^*) \ \lambda_k(A) &\leq \lambda_k(A+zz^*) \leq \lambda_{k+1}(A) \end{aligned}$ $\lambda_k(A-zz^*) &\leq \lambda_k(A) \leq \lambda_{k+1}(A-zz^*) \ \lambda_k(A) &\leq \lambda_{k+1}(A-zz^*) \leq \lambda_{k+1}(A) \end{aligned}$

9/21

Applications cont'd

Interlacing theorem for bordered matrices: Let $A \in M_n$ be Hermitian, $y \in \mathbf{C}^n$, $a \in \mathbf{R}$ and define

 $\hat{A} = \begin{bmatrix} A & y \\ y^* & a \end{bmatrix}$

Then with
$$\lambda_i \in \sigma(A)$$
 and $\hat{\lambda}_i \in \sigma(\hat{A})$
 $\hat{\lambda}_1 \leq \lambda_1 \leq \hat{\lambda}_2 \leq \cdots \leq \hat{\lambda}_n \leq \lambda_n \leq \hat{\lambda}_{n+1}$

10/21

The Poincaré separation theorem

Let $A \in M_n$ be Hermitian, let $U \in M_{n,r}$ be a matrix with $r \leq n$ orthonormal columns and define $B_r = U^*AU$. Then

$$\lambda_k(A) \leq \lambda_k(B_r) \leq \lambda_{k+n-r}(A); \qquad k=1,2,\ldots,r$$

Application:

$$\min_{\substack{U, \ U^*U=I_r}} \operatorname{Tr}(U^*AU) = \sum_{k=1}^r \lambda_k(A)$$
$$\max_{\substack{U, \ U^*U=I_r}} \operatorname{Tr}(U^*AU) = \sum_{k=1}^r \lambda_{k+n-r}(A)$$

Note that equality is obtained by choosing the columns of U as suitable eigenvectors of A.

Generalized Rayleigh Quotients

Let $A \in M_n$ be Hermitian and $B \in M_n$ be Hermitian positive definite. Consider the following **generalized eigenvalue** problem

$$Ax = \lambda Bx$$

with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then,

$$\lambda_1 = \min_{x \neq 0} \frac{x^* A x}{x^* B x} = \min_{x^* B x \ge 1} x^* A x$$
$$\lambda_n = \max_{x \neq 0} \frac{x^* A x}{x^* B x} = \max_{x^* B x \le 1} x^* A x$$

Solve the generalized eigenvalue problem in Matlab using [E,Lambda]=eig(A,B); Note: Elements of Lambda not sorted.

Majorization

Def: Let $\alpha = [\alpha_i] \in \mathbb{R}^n$ and $\beta = [\beta_i] \in \mathbb{R}^n$ with sorted versions, $\alpha_{j_1} \leq \alpha_{j_2} \leq \cdots \leq \alpha_{j_n}$ and $\beta_{m_1} \leq \beta_{m_2} \leq \cdots \leq \beta_{m_n}$. If $\sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i$

and

$$\sum_{i=1}^k \beta_{m_i} \leq \sum_{i=1}^k \alpha_{j_i} \quad \text{for all } k = 1, 2, \dots, n,$$

then the vector β majorizes the vector α . Note: The notation is not standardized, some texts (including

1st edition of Horn&Johnson) use the opposite definition.

13/21

KTH VETENSKAP

Majorization cont'd

Thm: Let $A \in M_n$ be Hermitian. The vector of eigenvalues majorizes the vector of diagonal elements.

Converse thm: If the vector $\lambda \in \mathbb{R}^n$ majorizes the vector $a \in \mathbb{R}^n$ then there exists a real symmetric matrix $A \in M_n(\mathbb{R})$ with a_i as diagonal elements and λ_i as eigenvalues.

Thm: Let $A, B \in M_n$ be Hermitian and let $\lambda(A)$ be the vector of eigenvalues of A etc. The vector $\lambda(A) + \lambda(B)$ majorizes the vector $\lambda(A + B)$.

Illustration of the definition, β majorizes α

More to read on majorization

- Albert W. Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majorization and Its Applications. Springer, New York, 2nd edition, 2011.
- Eduard Jorswieck and Holger Boche. Majorization and matrix-monotone functions in wireless communications.

Foundations and Trends® in Communications and Information Theory, 3(6):553–701, 2007.

 Daniel P. Palomar and Yi Jiang.
MIMO transceiver design via majorization theory.
Foundations and Trends® in Communications and Information Theory, 3(4-5):331–551, 2007.

Complex symmetric matrices

Autonne-Takagi factorization: If $A \in M_n$ is symmetric, then $A = U\Sigma U^T$. Here, $U \in M_n$ and unitary, $\Sigma = diag\{\sigma_1, \ldots, \sigma_n\}$ is real and nonnegative. The columns of U can be taken as an orthonormal set of eigenvectors to $A\overline{A}$ and σ_i is the square root of an eigenvalue of $A\overline{A}$.

Thm: Every matrix $A \in M_n$ is similar to a symmetric matrix.

Thm: Let $A \in M_n$. There exist a nonsingular matrix S and a unitary matrix U such that $(US)A(\overline{U}S)^{-1}$ is a diagonal matrix with nonnegative elements.

Congruence

Def: Let $A, B \in M_n$ and S a nonsingular matrix. If $B = SAS^*$, then B is *-congruent to A. If $B = SAS^T$, then B is ^T-congruent to A.

Both congruence relations induce equivalence classes:

- **1**. A is congruent to A
- **2.** If A is congruent to B, then B is congruent to A.
- **3.** If A is congruent to B and B is congruent to C, then A is congruent to C.

Inertia

Def: Let $A \in M_n$ be Hermitian. The *inertia* of A is the ordered triple

$$i(A) = (i_+(A), i_-(A), i_0(A))$$

where the entries correspond to the number of positive, negative and zero eigenvalues of A, respectively. Note that the rank of A equals $i_+(A) + i_-(A)$. The signature of A is $i_+(A) - i_-(A)$.

Canonical form/Sylvester's law of inertia

If $A \in M_n$ is Hermitian, then we can decompose it as

 $A = SI(A)S^*$

where S is nonsingular and I(A) is the *inertia matrix*

 $I(A) = diag(1 \dots 1 - 1 \dots - 1 0 \dots 0)$

Thm (Syl): Let $A, B \in M_n$ be Hermitian. Then $A = SBS^*$ for a nonsingular matrix $S \in M_n$ iff A and B have the same inertia.

Quantitative Inertia Result / ^T-congruence

Thm: (Ostrowski) Let $A, S \in M_n$ where A is Hermitian. Let the eigenvalues be arranged in nondecreasing order. For each k = 1, ..., n

$$\sigma_n^2(S) = \lambda_{\min}(SS^*) \le \frac{\lambda_k(SAS^*)}{\lambda_k(A)} \le \sigma_1^2(S) = \lambda_{\max}(SS^*)$$

Thm: Let $A, B \in M_n$ be symmetric matrices (real or complex). There is a nonsingular matrix $S \in M_n$ such that $A = SBS^T$ iff A and B have the same rank.

More about diagonalization by congruence: Thm 4.5.17 (4.5.15 in old ed.)