## Homework \# 9

1. Can the matrix transpose operation be represented by

$$
X^{T}=A X B
$$

That is, are there fixed matrices $A, B \in M_{n, m}$ such that the above equation holds for all $X \in M_{m, n}$
2. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of a given matrix $A \in M_{n}$. Show that the matrix equation $A X-X A=\lambda X$ has a nontrivial solution $X \neq 0 \in M_{n}$ if and only if $\lambda=\lambda_{i}-\lambda_{j}$ for some $i, j$.
3. The orthogonal projection matrix on the range space of a full rank matrix $A \in M_{m, n},(m>n)$, can be written as $\Pi=A A^{\dagger}$. Here, $A^{\dagger}=$ $\left(A^{*} A\right)^{-1} A^{*}$ is the Moore-Penrose pseudo inverse of $A$. Assume now that $A$ depends on some parameter $x$ (real scalar). Derive an expression for $d \Pi / d x$ in terms of $d A / d x$.
4. Let $A, B, X$ be real matrices of appropriate dimensions. Derive

$$
\frac{\partial \operatorname{tr}\left(X^{T} A X^{-1} B\right)}{\partial X}
$$

