

HIERARCHICAL TRANSFORMATIONS A Practical Introduction

Christopher Peters

CST, KTH Royal Institute of Technology, Sweden

chpeters@kth.se

https://www.kth.se/profile/chpeters/

Before we begin...

Lab work

- Try to get Lab 1 to build
- Re-run of lab session 1 if necessary

Lab session(s)

 Three were added to schedule: Wed 28th Mar, 13:00-15:00
 Wed 11th Apr, 15:00-17:00
 Mon 23rd Apr, 10:00-12:00
 Who cannot be there? (Doodle Poll)

Transformations

ROYAL INSTITUTE OF TECHNOLOGY

> Many objects are composed of hierarchies Transformations enable us to compose hierarchies

Atlas, Boston Dynamics

Christopher Peters

Hierarchical Transformations

Geometric primitives

(a brief introduction)

Graphical objects are composed of primitives

More about geometry in subsequent lectures

Transformations

Recall *translation* from previous lecture:

- Translate a point p along a vector t
- General case:

$$\mathbf{p'} = \mathbf{p} + \mathbf{t}$$

2D:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} t_x\\t_y \end{bmatrix} = \begin{bmatrix} x+t_x\\y+t_y \end{bmatrix}$$

• 3D: $\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} x\\y\\z \end{bmatrix} + \begin{bmatrix} t_x\\t_y\\t_z \end{bmatrix} = \begin{bmatrix} x+t_x\\y+t_y\\z+t_z \end{bmatrix}$

OF TECHNOLOGY

Translating an object

Translation operation takes place on a point But a geometric object (*mesh*) is a collection of vertices How to translate that? Translate each of its vertices

OF TECHNOLOGY

Rotating an object

Rotation operation takes place on a point How to rotate a object? The same procedure applies: Rotate each vertex that comprises the object

World space

ROYAL INSTITUTE OF TECHNOLOGY

Multiple instances of the same object can be positioned in the world via individual transformations

- Objects positioned according to their respective object space origins
- More on this later

Representation

Recall: Transformations are represented as 4x4 *matrices* From the last lecture:

Translation
 Rotation around x-axis

$$\mathbf{R}_x(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi & 0 & 0 \\ 0 & \sin\phi & \cos\phi & 0 & 0 \end{pmatrix}$$
 $\mathbf{T}(t_x, t_y, t_z) = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$
 Rotation around y-axis
 $\mathbf{R}_y(\phi) = \begin{pmatrix} \cos\phi & 0 & \sin\phi & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -\sin\phi & 0 & \cos\phi & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$
 $\mathbf{M} \cdot \mathbf{x} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ x' \\ W' \end{pmatrix}$

1 1

 \mathbf{O}

 \mathbf{a}

ROYAL INSTITUT

Local Coordinate Marker

Nothing is displayed on the screen until you draw an object Transformation matrices are stored in memory How do we keep track of positioning information?

One answer: Local Coordinate Marker (LCM)

- A special coordinate system that we track via pen and graph paper or mentally
- •The LCM represents a transformation matrix

•But in a manner more intuitive to humans

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

Christopher Peters

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

Transformation Operations	Modelview matrix								
Initialise()									
Translate(5,3)	(1.0 0.0 0.0 0.0		1.0	5.0 3.0 0.0 1.0)			

Christopher Peters

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix

Transformation Operations	Modelview matrix							
Initialise()								
Translate(5,3) Draw_Square()	(1.0 0.0 0.0 0.0		0.0 0.0 1.0 0.0	5.0 3.0 0.0 1.0)		

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix

Christopher Peters

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix

Christopher Peters

ROYAL INSTITUTE OF TECHNOLOGY

The LCM represents a special transformation matrix

- Modelview matrix
- When a geometric object is drawn, it is placed according to the transform defined in the Modelview matrix
- Translations and rotations concatenate into the current state of the Modelview matrix

Object space revisited

ROYAL INSTITUTE OF TECHNOLOGY

Rotations also occur about the origin of the object •Default *axis of rotation* Notice that the transformation is the exact same

Object space revisited

ROYAL INSTITUTE OF TECHNOLOGY

Rotations also occur about the origin of the object •Default *axis of rotation* Notice that the transformation is the exact same

ROYAL INSTITUTE OF TECHNOLOGY

Adding some animation

ROYAL INSTITUTE OF TECHNOLOGY

Enter a variable angle for the first rotate Increase it by e.g. 10 degrees at each update

The stack

Transformations are saved on and loaded from a *stack* data structure Saving a matrix = *push* operation Loading a matrix = *pop* operation LIFO (last in, first out) •Push on to the top of the stack •Pop off the top of the stack

Operations summary

Initialise()

Initialise an identity transformation

Identity matrix (look for functions with similar names to LoadIdentity())

$Translate(t_x, t_y)$

Matrix multiplication

Rotate (degrees)

Usually also specify an axis of rotation

In our examples, assume it is (0,0,1)

Rotations around the z axis i.e. in the XY plane

PushMatrix()

- Save the current Modelview matrix state on stack **PopMatrix()**

Load a previous Modelview matrix state from stack

Introducing hierarchies

A tree of separate objects that move relative to each other

- The positions and orientations of objects further down the tree are dependent on those higher up
- Parent and child objects
- Transformations applied to parents are also applied down the hierarchy to their children

Examples:

1. The human arm (and body)

Hand configuration depends the elbow configuration, depends on shoulder configuration, and so on...

2. The Solar system

Solar bodies rotate about their own axes as well as orbiting around the Sun (moons around planets, planets around the Sun)

Hierarchies

- You have already learned the basic operations necessary for hierarchical transformations
- Recall: up to now, the LCM has been moved back to the world-space origin before placing each object

F TECHNOLOGY

Hierarchies

It's slightly different in a hierarchy

- Objects depend on others (a parent object) for their configurations (position and orientation)
- These objects need to be placed relative to their parent objects' coordinates, rather than in world-space

In practice, this involves the use of nested **PushMatrix()** and **PopMatrix()** operations

• Especially when there are multiple *branches*

Simple chain example

- OF TECHNOLOGY
 - Three components
 - A handle
 - Two links
 - In order to define a simple connected chain:
 - Translate the handle location and draw it
 - Translate to the first link and draw it
 - Translate to the second link and draw it
 - Note: we do not translate back to the world-space origin after drawing each component
 - i.e. translations are relative to the respective parent objects

ROYAL INSTITUTE OF TECHNOLOGY

OF TECHNOLOGY

ROYAL INSTITUTE

Step by step

OF TECHNOLOGY

Step by step

Step by step

Step by step

ROYAL INSTITUTE OF TECHNOLOGY

Step by step

Putting it into Practice

ROYAL INSTITUTE OF TECHNOLOGY

https://processing.org/

"...a flexible software sketchbook and a language for learning how to code within the context of visual arts"

- •Good for a foray into transformations without the complexity of an IDE
- •*OpenGL*-based: similar (but less sophisticated) functionality to the framework that you will use in the course
- •Straight forward mapping from operations we covered in this lecture to graphics programming functions

Upcoming lectures and labs

- Lighting and Shading Wednesday 11th April 13:00 – 15:00, V1
- Upcoming Lab session: Wednesday 11th April 15:00-17:00, VIC Studio