
Christopher Peters

CST, KTH Royal Institute of Technology, Sweden

chpeters@kth.se
https://www.kth.se/profile/chpeters/

HIERARCHICAL 
TRANSFORMATIONS
A Practical Introduction



Before we begin...

Lab work
– Try to get Lab 1 to build

– Re-run of lab session 1 if necessary

Lab session(s)
– Three were added to schedule:

Wed 28th Mar, 13:00-15:00

Wed 11th Apr, 15:00-17:00

Mon 23rd Apr, 10:00-12:00

– Who cannot be there? (Doodle Poll)



Transformations

Many objects are composed of hierarchies

Transformations enable us to compose hierarchies

Christopher Peters Hierarchical Transformations chpeters@kth.se



Geometric primitives
(a brief introduction)

Graphical objects are composed of primitives

• More about geometry in subsequent lectures

Christopher Peters Hierarchical Transformations chpeters@kth.se



Transformations

Recall translation from previous lecture:

Christopher Peters Hierarchical Transformations chpeters@kth.se



Translating an object

Translation operation takes place on a point

But a geometric object (mesh) is a collection of vertices

How to translate that?

Translate each of its vertices

Christopher Peters Hierarchical Transformations chpeters@kth.se



Rotating an object

Rotation operation takes place on a point

How to rotate a object?

The same procedure applies:

Rotate each vertex that comprises the object

Christopher Peters Hierarchical Transformations chpeters@kth.se



World space

Multiple instances of the same object can be positioned in the 
world via individual transformations

• Objects positioned according to their respective object 
space origins

• More on this later

Object specified in Object space (OS) Positioned in world space (WS) via transform

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transforms



Representation

Recall: Transformations are represented as 4x4 matrices 

From the last lecture:

Christopher Peters Hierarchical Transformations chpeters@kth.se



Local Coordinate Marker

Nothing is displayed on the screen until you draw an object

Transformation matrices are stored in memory

How do we keep track of positioning information?

Christopher Peters Hierarchical Transformations chpeters@kth.se

One answer: Local Coordinate 
Marker (LCM)

• A special coordinate system 
that we track via pen and graph 
paper or mentally

•The LCM represents a 
transformation matrix

•But in a manner more intuitive 
to humans



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Identity matrix



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Translate(5,3)



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Translate(5,3)

Draw_Square()



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

• Translations and rotations concatenate into the current 
state of the Modelview matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Translate(5,3)

Draw_Square()

Translate(-4,-1)



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

• Translations and rotations concatenate into the current 
state of the Modelview matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Translate(5,3)

Draw_Square()

Translate(-4,-1)

Displacements



Practical transformations

The LCM represents a special transformation matrix

• Modelview matrix

• When a geometric object is drawn, it is placed 
according to the transform defined in the Modelview 
matrix

• Translations and rotations concatenate into the current 
state of the Modelview matrix

Christopher Peters Hierarchical Transformations chpeters@kth.se

Modelview matrixTransformation Operations

Initialise()

Translate(5,3)

Draw_Square()

Translate(-4,-1)

Result



Object space revisited

Rotations also occur about the origin of the object

•Default axis of rotation

Notice that the transformation is the exact same

Christopher Peters Hierarchical Transformations chpeters@kth.se

Square1 specified in Object space (OS) Positioning in world space (WS) via transform
Transformation Operations

Initialise(
)

Translate(2
,2)

Rotate(45)

Draw_Square
1()



Object space revisited

Rotations also occur about the origin of the object

•Default axis of rotation

Notice that the transformation is the exact same

Christopher Peters Hierarchical Transformations chpeters@kth.se

Square2 specified in Object space (OS) Positioning in world space (WS) via transform
Transformation Operations

Initialise()

Translate(2,2)

Rotate(45)

Draw_Square2()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Save our transformation 
details (position and 
orientation of the LCM)

Transformation Operations

Initialise()

PushMatrix()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)

Draw_Square()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Load our previous 
transformation details
(another option in this case: re-initialise 
the Modelview matrix)

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)

Draw_Square()

PopMatrix()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)

Draw_Square()

PopMatrix()

PushMatrix()

Save our transformation 
details (position and 
orientation of the LCM)



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)

Draw_Square()

PopMatrix()

PushMatrix()

Translate(6,3)

Draw_Square()



Saving and loading transformations

When positioning multiple objects, saving and loading 
transformations can be useful

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

Initialise()

PushMatrix()

Translate(2,2)

Rotate(45)

Draw_Square()

PopMatrix()

PushMatrix()

Translate(6,3)

Draw_Square()

PopMatrix()

Load our previous 
transformation details
(another option in this case: re-initialise 
the Modelview matrix)



Adding some animation

Enter a variable angle for the first rotate

Increase it by e.g. 10 degrees at each update

Christopher Peters Hierarchical Transformations chpeters@kth.se

Transformation Operations

x=0

Initialise()

PushMatrix()

Translate(2,2)

Rotate(x)

Draw_Square()

PopMatrix()

PushMatrix()

Translate(6,3)

Draw_Square()

PopMatrix()

x=x+10

…(constrain x to sensible value)



The stack

Transformations are saved on and 
loaded from a stack data structure

Saving a matrix = push operation

Loading a matrix = pop operation

LIFO (last in, first out)

•Push on to the top of the stack

•Pop off the top of the stack

Christopher Peters Hierarchical Transformations chpeters@kth.se



Operations summary

Initialise()

Initialise an identity transformation 

Identity matrix (look for functions with similar names to LoadIdentity()) 

Translate(tx,ty) 

Matrix multiplication

Rotate(degrees)

Usually also specify an axis of rotation

In our examples, assume it is (0,0,1)

Rotations around the z axis i.e. in the XY plane

PushMatrix()

– Save the current Modelview matrix state on stack

PopMatrix()

– Load a previous Modelview matrix state from stack

Christopher Peters Hierarchical Transformations chpeters@kth.se



Introducing hierarchies

A tree of separate objects that move relative to each other

– The positions and orientations of objects further down the 

tree are dependent on those higher up 

– Parent and child objects

– Transformations applied to parents are also applied down 

the hierarchy to their children

Examples:

1. The human arm (and body)

Hand configuration depends the elbow configuration, depends on 

shoulder configuration, and so on…

2. The Solar system

Solar bodies rotate about their own axes as well as orbiting around 

the Sun (moons around planets, planets around the Sun)



Hierarchies

• You have already learned the basic operations necessary for 

hierarchical transformations

• Recall: up to now, the LCM has been moved back to the 

world-space origin before placing each object



Hierarchies

It’s slightly different in a hierarchy

• Objects depend on others (a parent object) for their 

configurations (position and orientation)

• These objects need to be placed relative to their parent 

objects’ coordinates, rather than in world-space

In practice, this involves the use of nested PushMatrix() 

and PopMatrix()operations

• Especially when there are multiple branches



Simple chain example

• Three components

• A handle

• Two links

• In order to define a simple connected 
chain:
– Translate the handle location and draw it

– Translate to the first link and draw it

– Translate to the second link and draw it

• Note: we do not translate back to the 
world-space origin after drawing 
each component

• i.e. translations are relative to the 
respective parent objects

Handle

Link 1

Link 2

Start of Link 1

Start of Link 2



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)

Draw_Link1()



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)

Draw_Link1()

Translate(Link2_trans)



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)

Draw_Link1()

Translate(Link2_trans)

Rotate(Link2_ang)



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)

Draw_Link1()

Translate(Link2_trans)

Rotate(Link2_ang)

Draw_Link2()



Step by step

• In more detail:

Transformation Operations

Initialise()

PushMatrix()

Translate(Handle_pos)

DrawHandle()

Translate(Link1_trans)

Rotate(Link1_ang)

Draw_Link1()

Translate(Link2_trans)

Rotate(Link2_ang)

Draw_Link2()

PopMatrix()



Putting it into Practice

https://processing.org/

“...a flexible software sketchbook and a language for learning 

how to code within the context of visual arts”

•Good for a foray into transformations without the complexity 

of an IDE

•OpenGL-based: similar (but less sophisticated) functionality 

to the framework that you will use in the course

•Straight forward mapping from operations we covered in this 

lecture to graphics programming functions

https://processing.org/
https://processing.org/


2018 Christopher Peters DH2323 Hierarchical Transformations chpeters@kth.se

Upcoming lectures and labs

• Lighting and Shading

Wednesday 11th April

13:00 – 15:00, V1

• Upcoming Lab session:

Wednesday 11th April

15:00-17:00, VIC Studio


