
Informal introduction to program structure of

spectral interpolation in nek5000

By Azad Noorani, Adam Peplinski, and Philipp Schlatter

Linné FLOW Centre and Swedish e-Science Research Centre (SeRC),
KTH Mechanics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Technical Report

The algorithm of the interpolation implementation in the spectral element code
nek5000 is documented informally. The original code is written by James
Lottes at Argonne National Laboratories. The various steps of the operations
are generally described and visualised for a typical deformed mesh. The corre-
sponding routines and their argument lists for each stage of the interpolation
are also explained. The memory structure of the implementation is briefly
discussed. Finally, the code overview of the routines is presented.

1. Introduction

Ever since its introduction by Patera (1984), the spectral element method
(SEM) has been evolved as one of the most reliable techniques to simulate
turbulent flows in complex geometries with high accuracy. SEM is essentially
a high-order weighted residual method that provides both high accuracy and
geometrical flexibility simultaneously. This method can be considered as com-
bination of classical spectral methods (see e.g. Canuto et al. 2006) and the
more general, but mostly low-order finite-element method (FEM). While, orig-
inally SEM was introduced as a straight-forward combination of multiple sub-
domains individually discretised based on Chebyshev polynomials with suitable
matching conditions, it soon evolved towards a discretisation based on Legendre
polynomials. As such the computational domain is divided into a number of
hexahedral local spectral elements within which the solution is represented by
the previously mentioned polynomials at the Gauss–Lobatto–Legendre (GLL)
quadrature points. Both Chebyshev and Legendre polynomials are taken from
the family of high-order orthogonal polynomials. Such orthogonality is crucial
for SEM as it leads to diagonal mass matrices and provides a set of accurate
integration and derivation rules.

With SEM there is a large amount of computational work local to each
element, and only the global communication (i.e. the exchange of boundary
data and the pressure coupling) is required on the global mesh. This has led
to a number of very efficient implementations of SEM in computer programs.

315

316 A. Noorani, A. Peplinski, & P. Schlatter

Among others, the code nek5000 is standing out with the very good perfor-
mance in terms of stability and scalability. The code is developed by Fischer
et al. (2008) at the Argonne National Laboratory (ANL) and is directly origi-
nated from the initial efforts by the group that was led by Patera at MIT, at
that time as a code named Nekton. The code nek5000 employs a standardised
and portable message-passing interface (MPI) platform for its parallelism based
on FORTRAN and C and is proven to be scaling up to millions of processors.

In SEM, unfortunately, the GLL points are not uniformly distributed,
which makes the primary mesh results somewhat unsuitable particularly for
postprocessing. At the same time, having computed the coefficients of the test
functions, the hard part is already paved such that with little effort any com-
puted variable in any arbitrary position can be evaluated. In that sense the
interpolation looks ideal as the accuracy will not be compromised. It turns
out that the situation is not that simple and there are extensive difficulties in
performing a proper interpolation for SEM mesh.

Such high-accuracy interpolation from a set of fixed GLL points becomes
vital e.g. for immersed boundary methods or in the study of Lagrangian par-
ticles. In the latter, the particulate phase data is required to be obtained at
arbitrary positions within the computational domain at each time step of the
simulation. Provided that the collective analysis of the Lagrangian data is only
meaningful for large number of particles, such interpolation scheme should be
able to handle millions of evaluations of the field properties for arbitrary posi-
tions within the domain. Working within nek5000, the interpolation routine is
necessary to be parallelised also, otherwise it will appear as a bottleneck when
increasing the number of concurrent processors.

For those reasons, an interpolation routine with spectral accuracy is imple-
mented in nek5000 by James Lottes. The routine is validated and verified for
the accuracy and stability to perform interpolation that preserve the spectral
accuracy of the field (Eulerian) solution. The aim of the current document
is to provide an informal and descriptive documentation of the implementa-
tion of the interpolation code in nek5000. The rigorous documentation of the
operations along with the details of the memory structure, dependencies and
variable naming are, however, out of the scope of this technical report. For
brevity, we specifically focus on the interpolation of 2D simulations. Of course,
the 3D routines are very similar but slightly more complicated due to the fact
that from a topological point of view, in 2D simulations, one needs to handle
vertices and faces only; however, in 3D cases also edges of the computational
mesh come into play.

In the following, firstly we report the algorithm before presenting the name
and the arguments of the subroutines performing the implementation. The code
overview also will be shown at the end which will be followed by examining a
test case and some concluding remarks.

Program structure of interpolation routines in nek5000 317

2. Algorithm

The SEM discretisation is based on a decomposition of the global domain Ω into
K non-overlapping, high-order sub-domains Ωk (elements) building a locally
structured and globally unstructured base,

Ω =

K
⋃

k=1

Ωk.

Each element Ωk is a deformed quadrilateral Ω̂ = [−1, 1]D in RD (reference

element), with defined affine mapping of the local coordinates r ∈ Ω̂ to the
physical ones xk(r) ∈ Ωk. Within each given element in R2 a scalar field f(x)
can be represented as

f(xk(r))|Ωk =
N
∑

i=0

N
∑

j=0

fk
ijhi(r1)hj(r2), (1)

where hi(ri) is the Lagrange polynomial of degree ≤ N , fk
ij = f(xk(ζi, ζj))|Ωk

are field nodal values taken at Gauss–Lobatto–Legendre points (ζi, ζj), and
hi(ζj) = δij . In particular the (isoparametric) coordinate mapping takes the
form

xk(r)|Ωk =

N
∑

i=0

N
∑

j=0

xk
ijhi(r1)hj(r2), (2)

with xk
ij being physical positions of GLL points.

For every calculated variable nek5000 stores its nodal values, which allows
to reconstruct f(x)|Ωk and perform interpolation to any particular position
xi ∈ Ωk. As interpolation is performed in the reference element, it requires
first, identification of the proper element k and next, finding local coordinates
ri corresponding to particular physical position xi. This could in principle be
done by inverting the coordinate mapping. However, inverting equation (2) is
not a straight-forward task for nek5000, as the code can be run on a distributed
memory computers with the elements scattered among a set of processes. In this
case each process keeps detailed information (variables nodal values, e.g. xk

ij)
about local elements only, and has only restricted information about element
to processor mapping with no physical coordinates of non-local elements. On
the other hand, memory constraints do not allow to duplicate xk

ij on all the
processes and build the global coordinate mapping, that would be local to every
process. That is why the xi → ri mapping requires first finding the process or
P owning the given point.

The findpts module performs the point → process mapping by the use of
an uniform, rectangular mesh (global hash mesh) covering the whole domain
Ω (see figure 1 b). For this mesh we consider mesh cells instead of mesh nodes.
Each processor maps its sub-domain on this hash mesh by marking all mesh
cells entirely or partially covered by the local sub-domain as belonging to given
process P . This allows to build a global list of processes at least partially

318 A. Noorani, A. Peplinski, & P. Schlatter

owning to a given hash cell. The efficiency of this approach depends strongly
on the resolution of the hash mesh. In the current implementation, the extent of
the hash mesh is defined by the minimum (xmin) and maximum-values (xmax)
of the physical coordinates x ∈ Ω, and its resolution is defined by the number
of processes NP and the global hash size parameter, which sets the maximum
number of cells for a given processor that it can store. The number of rows (nr)
and columns (nc) of the hash mesh is nr = nc ∼ (NP ∗ global hash size)1/D,
giving relatively high resolution of the hash mesh which makes it impossible
for local storage of the whole array. With the hash cells ordered by rows and
columns, the global data distribution is based on the hash cell index hi = i1 +
nr ∗(i2+nc ∗ i3) (with ij being integer coordinates of the cell in the mesh along
X and Y directions), and the data of hi cell are stored at process mod(hi ,NP)
with local index hi/NP . To get the list of possible process owners of a given
point xi one has to calculate first its global index pi = i1 + nr ∗ (i2 + nc ∗ i3)
with ij = int(nr ∗ (xj − xmin

j)/(xmax
j − xmin

j)), and next retrieve the process
list from node mod(pi ,NP) using local point index pi/NP .

A similar operation is performed on the local level, when the initial point
→ element mapping is generated. In the local case a uniform, rectangular
mesh (local hash mesh) is used to keep the information about all the local
elements owning, at least partially, a given local hash cell (see figure 1 b). The
general work-flow is analogous to the point → process mapping starting with
the calculation of the local point index pi , except the fact that there is no
global communication step, as the local hash mesh covers the local sub-domain
only and is stored locally. In this case xmin and xmax give the extent of the

local sub-domain, and the mesh resolution is defined by local hash size1/D.
With global hash size and local hash size equal, the local hash mesh would be
of higher resolution than the global one, as it covers the local sub-domain only.

After performing the point → process and the initial point → element
mappings there should be a set of processes with non-empty list of possible
element owners. At this stage the ownership information is very crude and has
to be refined to get a single processor/element pair.

As usually the volume assigned by the hash mesh to given element is sig-
nificantly larger than the element itself, the element bounding box (obbox) in-
formation is compared with the point position xi. obbox contains the element
range (extent of the smallest rectangular box covering the element; analogous

to xmin and xmax for the hash meshes), centre xk
c and inverse Jacobian J k

c

−1

of the coordinate mapping (2) taken at the element centre. Calculation of the
element ranges takes care of its possible deformation and is performed on the
higher resolution mesh using Chebyshev–Lobatto nodes for polynomial order
M > N using piecewise D -linear bounds. In addition, to avoid the possibility
of non-matching element faces and points falling through “cracks”between ele-
ments, every element range is expanded by the bbox tol parameter, giving the
extent of bounding box:

△xbox = (xmax
box − xmin

box) ∗ (1 + bbox tol).

Program structure of interpolation routines in nek5000 319

(a) (b)

(c) (d)

Figure 1. (a) A typical computational mesh (only the spec-
tral elements are shown). The total 81 elements of the domain
is mapped onto 9 processors. A local (3 × 3 elements) sub-
domain, that belongs to a certain processor, is marked in the
middle. (b) The red bounding box outside the full domain
marks the extent of global hash mesh. The border of the lo-
cal hash mesh for the subdomain in (a) is also marked as red
but with higher resolution mesh inside. (c) Zoomed view of
the local subdomain with local hash mesh. An element in the
middle of the subdomain is marked with blue. Light grey in-
dicates the bounding box for that specific element. Dark grey
shows the extended mapping of the bounding box to the local
hash mesh for the element marked in blue. (d) Overview of
the global hash mesh for the subdomain. The bounding box of
the subdomain is marked in red. Note the local hash mesh is
not shown in this plot. Light grey is the sum of all the element
bounding boxes belonging to the given subdomain. Dark grey
shows the global mapping of such bounding boxes.

320 A. Noorani, A. Peplinski, & P. Schlatter

The effect of curved element faces and boundary box expansion are taken into
account for element centre and inverse Jacobian as well.

Refining of the ownership information is done in three steps. First, all the
elements with xi lying outside their ranges are discarded. Next, an approxi-
mate value of the element local coordinates (in the reference element) rp are
calculated using linear approximation

△rp = J−1(rp)△xp, (3)

where △xp and △rp are updates of the physical and local coordinates. As first
estimate △xp = xi − xk

c (a distance of the point from the element centre),

J−1(rp = 0) = J k
c

−1
and finally rp = 0 + △rp are taken. At this stage all

elements with initial r outside the reference box [−1, 1]D are discarded.

On the remaining elements a more exact calculation of r is performed
using Newton iterations of (3), with △xp = xi − x(rp + △rp) (according to
equation (2)). A starting point for iterations is a GLL point xk

ij closest to xi.
In addition an exact procedure for Newton iterations depend on the position rp
of the point within the reference element, and for rp close to element borders
(faces, edges and vertices) part of the Hessian matrix (second derivatives) is
taken into account. In the current implementation maximal number of Newton
iterations is set to 50. Convergence is tested both on △rp and △xp using
newt tol parameter. For local coordinates the L1 norm is checked with the
convergence criterion

D
∑

i=0

|△rpi| < newt tol ,

and in the physical coordinates space the square of the L2 norm of the residual
from the previous (△xpr

p ; taking into account round-off errors) and current
(△xcr

p) iterations are compared

‖△xpr
p ‖2 − ‖△xpr

p − J(rpr
p)△rpr

p ‖2 < newt tol ∗ ‖△xcr
p ‖2.

Depending on the iteration result a point can be finally marked as internal
(CODE INTERNAL), border (CODE BORDER) or not found (CODE NOT -
FOUND). Element ownership is evident for internal points, as they are located
relatively far away from the element borders, but uncertain for border points.
That is why for the border points, and not found points the L2 norm of the final
residual in the physical coordinates △xp from different elements is compared,
and the element with the smallest distance is chosen. This allows to find the
best fit for given point. Finally, calculated local coordinates ri of internal and
border points are used in equation (1) to perform the actual interpolation. A
visualisation of the procedure for a typical 2D domain is offered by figure 1.

3. C-Fortran interface

The findpts module performs in parallel interpolation of a given variable on
a set of arbitrary points. It is written in C using MPI and is located under

Program structure of interpolation routines in nek5000 321

jl sub-directory. There are five routines that can be directly called from the
FORTRAN code of nek5000:

• findpts_setup,
• findpts_free,
• findpts,
• findpts_eval,
• findpts_eval_local,

located in findpts.c. Most of these routines are executed by the hpts routine
(postpro.f), which is the main interface for probe reading in nek5000 and is
a good example of findpts usage. A short description of these routines are
presented in the next sections.

3.1. findpts_setup

This is the first routine to be called for the findpts module. It is responsible
for allocation of all the internal memory structures and initialisation of all mesh
dependent variables (e.g. global and local hash arrays or element bounding box
information). All these variables are independent on specific point positions and
are later used both for xi → ri mapping and the final variable interpolation.
In general findpts_setup could be called more than once for different grids
generating separate setups distinguished by setup handle, which is the only
output of this routine. handle is used as structure identified by the rest of
findpts routines and has to be saved by calling the corresponding FORTRAN

routine.

Example call:

cal l f i ndp t s s e tup (h , comm, np , ndim , xm,ym, zm,

nr , ns , nt , ne l ,mr ,ms ,mt , bbox to l , l o c ha sh s i z e ,

g b l ha sh s i z e , npt max , newt to l)

Argument list (in parenthesis nek5000 default):

• Output:
– h - setup handle

• Input:
– comm - MPI communicator (nekcomm)
– np - process number (np)
– ndim - mesh dimension (ndim)
– xm,ym,zm - xk

ij physical positions of GLL points (xm1,ym1,zm1)
– nr,ns,nt - element dimensions (nx1, ny1, nz1)
– nel - process local element number (nelt)
– mr,ms,mt - finer mesh size for bounding box computation; must

be larger than nr,ns,nt for correctness (2*nx1, 2*ny1, 2*nz1)
– bbox_tol - relative size to expand bounding boxes (0.1)

322 A. Noorani, A. Peplinski, & P. Schlatter

– loc_hash_size, gbl_hash_size - maximum number of integers
locally stored in hash tables (lx1*ly1*lz1*lelt)

– npt_max - number of points to iterate on simultaneously (256).
This parameter allows to limit memory requirements when a large
number of points is considered.

– newt_tol - tolerance for Newton iteration (1E-13)

For more information see findpts.c.

3.2. findpts_free

This routine is optional. It can be used to free memory used by setup structures
marked by handle. Should be called after all interpolation is finished.

Example call:

cal l f i n d p t s f r e e (h)

Argument list:

• Input:
– h - setup handle; returned by findpts_setup

For more information see findpts.c.

3.3. findpts

This routine performs physical→ local coordinates mapping for the given set of
arbitrary points. It can be run after findpts_setup is called and all the mesh
dependent variables are set. This routine performs all the steps with point
→ process, point → element and xi → rk

i mapping using hash arrays and
performing Newton iterations. For every point it returns the owning processor
and element, local coordinates in the reference element, together with an error
code and the measure of mapping quality (distance in physical coordinates
between interpolation position and its mapped counterpart ‖xi − x(ri)‖2; see
equation (2)). This routine has to be executed every time the set of points has
changed.

Example call:

cal l f i ndp t s (h , code , code s t r , proc , p r o c s t r ,

e l , e l s t r , r , r s t r , d i s t2 , d i s t 2 s t r , x , x s t r ,

y , y s t r , z , z s t r , npt)

Argument list (in parenthesis nek5000 default):

• Output:
– code - error code for coordinates mapping:

Program structure of interpolation routines in nek5000 323

∗ 0 - inner point
∗ 1 - border point
∗ 2 - not found

– proc, el - process and element ownership
– r - local coordinates ri
– dist2 - final residual of Newton iterations ‖xi − x(ri)‖2

• Input:
– h - setup handle; returned by findpts_setup

– code_str, proc_str, el_str, r_str, dist2_str, x_str,

y_str, z_str - array stride (ndim for r_str and 1 for the rest)
– x, y, z - physical coordinates for set of points
– npt - number of points

For more information see findpts.c.

3.4. findpts_eval

This routine is used to interpolate a variable stored in the input_field array
on the set of the points defined by code, proc, el and r, which are given by
findpts. It performs equation (1) using matrix-matrix multiplication. This
routine can be executed in parallel.

Example call:

cal l f i n dp t s e v a l (h , out , ou t s t r , code ,

code s t r , proc , p r o c s t r , e l , e l s t r , r ,

r s t r , npt , i n p u t f i e l d)

Argument list (in parenthesis nek5000 default):

• Output:
– out - interpolated values

• Input:
– h - setup handle; returned by findpts_setup

– code - error code for coordinates mapping; returned by findpts

– proc, el - process and element ownership; returned by findpts

– r - local coordinates ri; returned by findpts

– out_str, code_str, proc_str, el_str, r_str - array stride
(ndim for r_str and 1 for the rest)

– npt - number of points
– input_field - interpolated variable

For more information see findpts.c.

3.5. findpts_eval_local

This is local counterpart of findpts_eval. It assumes all the points are local
for given process. Notice, there are no error code for this routine.

324 A. Noorani, A. Peplinski, & P. Schlatter

Example call:

cal l f i n d p t s e v a l l o c a l (h , out , ou t s t r , e l , e l s t r ,

r , r s t r , npt , i n p u t f i e l d)

Argument list (in parenthesis nek5000 default):

• Output:
– out - interpolated values

• Input:
– h - setup handle; returned by findpts_setup

– el - element ownership; returned by findpts

– r - local coordinates ri; returned by findpts

– out_str, el_str, r_str - array stride (ndim for r_str and 1
for the rest)

– npt - number of points
– input_field - interpolated variable

For more information see findpts.c.

4. Memory structures

In this section we briefly discuss the main memory structures in the findpts

module to give a general overview of the code structure. As some names of
the routines and memory structures are identical at different code levels (e.g.
two v. three-dimensional or local v. global operations) and are adjusted by pre-
processing rules, we give the source file name in parenthesis to avoid confusion.

The top level memory structure is

struct handle {
void ∗data ;
unsigned ndim ; } ;
(findpts.c)

which is allocated as an array and allows to identify different mesh setups with
the integer handle parameter. It keeps information of the grid dimension D
and a pointer to the global and local mesh information contained by

struct f i ndp t s da t a {
struct c r y s t a l c r ;

struct f i n dp t s l o c a l d a t a l o c a l ;

struct hash data hash ; } ;

Program structure of interpolation routines in nek5000 325

(findpts_imp.h)

cr, local and hash are here a global communicator setup (crystal router;
not discussed here), local elements data and global hash array respectively.

The last one contains information about the global hash mesh covering the
whole domain

struct hash data {
ulong hash n ;

struct dbl range bnd [D] ;

double f a c [D] ;

u int ∗ o f f s e t ; } ;
(findpts_imp.h)

where:

• hash_n - number of cells in X , Y , Z directions (lceil((NP ∗
glb hash size)1/D)),

• bnd[D] - global domain ranges (xmin and xmax),
• fac[D] - inverse cell size in X , Y , Z directions (hash n/(xmax

j −xmin
j)),

• offset - process ownership.

offset is build of two parts: first hash_nD/NP + 1 entrances give the offset
information, and the rest is reserved for the process list. The list of processes
owning a given cell with index id is located between offset(offset(id)) and
offset(offset(id+1)-1).

Information about the local set of elements is stored under

struct f i n dp t s l o c a l d a t a {
unsigned ntot ;

const double ∗ e lx [D] ;

struct obbox ∗obb ;

struct hash data hd ;

struct f i n dp t s e l d a t a fed ;

double t o l ; } ;
(findpts_local_imp.h)

Consecutive fields are:

• ntot - number of GLL points in element (ND; nx1 ∗ ny1 ∗ nz1),
• elx[D] - pointer to physical positions of GLL points xk

ij (points xm1,
ym1 and zm1 arrays in nek5000),

326 A. Noorani, A. Peplinski, & P. Schlatter

• obb - element bounding box information,
• hd - local hash array,
• fed - local element setup,
• tol - tolerance of Newton iterations (newt tol).

The element bounding box information is given e.g. by (two-dimensional
version)

struct obbox 2 {
double c0 [2] , A [4] ;

struct dbl range x [2] ; } ;
(obbox.h)

with:

• c0[D] - element centre (xk
c),

• A[D*D] - inverse Jacobian J k
c

−1
of the coordinate mapping (2) taken at

xk
c ,

• x[D] - element range

The local hash array (struct hash_data in findpts_local_imp.h) is sim-

ilar to the global one except hash_n = lceil(loc hash size1/D), and an additional
integer variable giving maximum number of owning elements for given cell.

The last discussed memory structure is two-dimensional version

struct f i n dp t s e l d a t a 2 {
unsigned npt max ;

struct f i n d p t s e l p t 2 ∗p ;

unsigned n [2] ;

double ∗z [2] ;
l a g r ange fun ∗ l a g [2] ;

double ∗ l a g da ta [2] ;

double ∗wtend [2] ;

const double ∗x [2] ;

unsigned s i d e i n i t ;

double ∗ s i d e s ;
struct f i n dp t s e l g e d g e 2 edge [4] ;

struct f i n dp t s e l g p t 2 pt [4] ;

Program structure of interpolation routines in nek5000 327

double ∗work ; } ;
(findpts_el.h)

It contains element-specific data like polynomial order in X , Y , Z directions
(n[D]), the GLL points list ζi (z[D]), the Lagrange coefficients (lag_data[D])
or the function to calculate values and derivatives of the base functions hi at ar-
bitrary points (lag[D]), and keeps temporary arrays for the Newton iterations
and other necessary calculations (e.g. x[D], edge[D*D], pt[D*D]).

There are a number of other memory structures (e.g. findpts_el_pt_D

used for Newton iterations) allocated in findpts and omitted in our introduc-
tion. Detailed information about them can be found in the source code.

5. Code overview

In this section we give a general overview of the workflow of the findptsmodule
focusing on three routines findpts_setup, findpts and findpts_eval. Our
intention is marking the most important steps rather than going into all imple-
mentation details. That is why we do not cover all of the important aspects of
the implementation and for the more specific issues we direct the reader to the
source code. To avoid confusion we give in parenthesis the name of the source
file containing a given routine. Depending on the mesh dimension the capital D
at the end of the routine or memory structure names should be replaced with
ndim value.

5.1. findpts_setup

This routine allocates internal memory structures and initialises mesh depen-
dent variables. The following graph shows the main routines called by find-

pts_setup:

♠ findpts setup (findpts.c)
� setup aux D (findpts_imp.h)

♣ findpts local setup (findpts_local_imp.h)
� obbox calc D (obbox.c)
� hash build (findpts_local_imp.h)
� findpts el setup (findpts_el_D.c)

♣ hash build (findpts_imp.h)

The findpts_setup (findpts.c) allocates handle_array (a top level
memory structure handle) and sets the mesh dimension ndim for a given mesh
setup. Depending on ndim it also allocates the proper findpts_data_D struc-
ture (data pointer in handle) and executes setup_aux_D (findpts_imp.h),
which is responsible for setting all the mesh dependent data. setup_aux_D

328 A. Noorani, A. Peplinski, & P. Schlatter

performs two major steps collecting information of the process-local sub-
domain (executing findpts_local_setup; findpts_local_imp.h) and gen-
erating process ownership using global hash array (executing hash_build;
findpts_imp.h).

Operation on the local subdomain (performed by findpts_local_setup)
starts with the generation of the bounding box information for each element.
It is done with the routine obbox_calc_D (obbox.c), which (after allocation of
the obbox_D structure) generates lower and higher resolution meshes based on
the Gauss–Lobatto–Legendre and Chebyshev–Lobatto nodes, respectively. The
higher resolution mesh is used to calculate linear bounds for the lower resolution
base functions hi(r), which are necessary to get more accurate approximation of
element faces (three-dimensional case) and edges (two-dimensional case). This
information is used to calculate element ranges (xmax

box , xmin
box), the element

centres xk
c and inverse Jacobians J k

c

−1
.

In the next step the element ownership is generated by hash_build

(findpts_local_imp.h) using a local hash array. Notice this routine is dif-
ferent from hash_build (findpts_imp.h) used for construction of the process
ownership. It starts from evaluation of the subdomain extent (based on the
elements bounding boxes) and calculation of the hash cell size depending on
local hash size. Next the bounding box of each element is mapped on the local
hash mesh giving hash cell → element correspondence, which is used to build
the hash offset array.

The last operation on the local subdomain consists of the allocation of the
work arrays and setting up element specific data under the findpts_el_data_D
structure and is performed by findpts_el_setup (findpts_el_D.c) routine.
It provides the polynomial order in X , Y , Z directions (n[D]), the GLL points
list ζi (z[D]), the Lagrange coefficients (lag_data[D]) and the pointer to the
function calculating values and derivatives of the base functions hi at arbitrary
point (lag[D]).

The final step in setup_aux_D is calling hash_build (findpts_imp.h) to
build the process ownership. To some extent it is analogous to the operation
performed on the local hash mesh, although the global mesh is not stored locally
and the global communication step has to be added. At first the global domain
extent is estimated based on the extent of the local hash meshes, and the size
of the global hash cell is calculated depending on global hash size . Next the
bounding box of every single element in the given subdomain (not the local hash
mesh) is mapped on the global hash mesh providing more exact representation
of the local subdomain on the global hash mesh. Constructed this way, the
local mask of each process is later transferred to the cell index → process list
and redistributed between processes to build global database.

Program structure of interpolation routines in nek5000 329

5.2. findpts

This routine performs physical → local coordinates mapping for the given set
of arbitrary points. The following graph shows the main routines called by
findpts:

♠ findpts (findpts.c)
� findpts D (findpts_input.h)

♣ findpts local (findpts_local_imp.h)
� map points to els (findpts_local_imp.h)
� findpts el D (findpts_el_D.c)

♣ global communication

♣ findpts local (findpts_local_imp.h)

♣ global communication

This routine does not allocate any major memory structures, but uses the
work spaces and variables provided by findpts_setup. In addition no point-
related information is permanently stored in the internal memory structures of
the findptsmodule and all such data is transferred through the argument list.
The findpts routine takes as an input a list of points (physical coordinates)
and returns the mapping information for every point (processor and element
ownership with local coordinates and error code). It is important to mention
here that similar to the grid the total set of points is distributed between
processors (with no point duplicates) giving local point subsets that are not
correlated with the local grid subdomains. As a result the point → element
mapping requires global communication.

Similar to findpts_setup the first step in findpts allows to choose
between two- and three-dimensional cases by calling proper findpts_D,
which performs all the mapping operations. To minimise global commu-
nication findpts_D starts with the local search by calling findpts_local

(findpts_local_imp.h), which performs mapping of the given (in this
case local) subset of points to the local subdomain. This process starts
with the element ownership that is performed by map_points_to_els

(findpts_local_imp.h). After marking all points as not found (CODE NOT -
FOUND) map_points_to_els routine calculates for every point its local index
pi and uses local hash array to identify the possible element owners. Next it
uses the element bounding box information (obbox) comparing the point posi-
tion with element ranges (xmax

box , xmin
box) and provides the first linear estimate

for the local point coordinates ri based on the element centre xk
c and inverse

Jacobian J k
c

−1
(see equation (3)). This allows to shorten the list of the possible

element owners.

This list is later refined by performing Newton iterations of equation (3),
which is done by findpts_el_D (findpts_el_D.c). To improve performance

330 A. Noorani, A. Peplinski, & P. Schlatter

points are sorted by elements and all points residing in a single element are
grouped into sets smaller than npt_max. For every considered point iterations
start at a GLL point xk

ij closest to xi. As an exact procedure for Newton itera-
tions depends on the position rp of the point within the reference element, after
every iteration points are sorted and grouped into bins related to the element
interior, faces, edges and vertices. In the next iteration each bin is treated sep-
arately. The result of the Newton iteration is a set of internal flags, the possible
point-local coordinates ri and residuals xi − x(ri). Depending on the internal
flags and residuals points are marked as element internal (CODE INTERNAL),
border (CODE BORDER) or not found (CODE NOT FOUND).

findpts_local is followed by the global communication block, where all
the border and non-found points are transferred to new possible process owners.
The list of possible owners is provided by the global hash array using the global
point hash index. After the new set of points for local mapping is generated each
process executes findpts_local second time. At this stage given point can be
duplicated on a number of processes, which independently perform local point
→ element mapping. To remove duplicates the results of the Newton iteration
are transferred back to the source process in the second global communication
block. Next each process takes care of creating the final ownership list picking
up the mappings with the smallest residual.

5.3. findpts_eval

This routine is used to interpolate given variable on a set of points. The
following graph shows main routines called by findpts_eval:

♠ findpts eval (findpts.c)
� findpts eval D (findpts_input.h)

♣ global communication

♣ findpts local eval (findpts_local_imp.h)
� findpts el eval D (findpts_el_D.c)

♣ global communication

Like findpts this routine does not allocate any memory structures and
gets all required point information through an argument list. It requires also
global communication to redistribute points between processors, as findpts

does not change the initial point distribution.

As in other routines findpts_eval starts from choosing two- and three-
dimensional setup by calling proper findpts_eval_D (findpts_input.h).
findpts_eval_D starts with the global communication block, where internal
and border points are redistributed between processors according to their own-
ership. Next the resulting set of points is sorted on every process according to el-
ement ownership and then the findpts_local_eval (findpts_local_imp.h)
is called. Inside findpts_local_eval all points residing in a single element

Program structure of interpolation routines in nek5000 331

are grouped into sets smaller than npt_max and sent to findpts_el_eval_D

(findpts_el_D.c), where the interpolation takes place. At this stage values of
the base functions hi are calculated at the local position ri of every point in
the set and a tensor product is used to get interpolated value of a given vari-
able. Finally, in the second global communication block interpolated values are
transferred back to the source processes.

6. Scaling test

A Lagrangian particle tracking (LPT) scheme is developed by Noorani (2014)
in which the field data in the position of point particles are evaluated using the
current spectral interpolation. As a test case, therefore, a standard particle-
laden turbulent channel flow in a large box is simulated in order to quantify
the impact of large number of interpolation operations in every time step on
the overall performance of the code in real situations. The box size is set to be
(12π, 2, 6π) in (x, y, z) directions respectively with (100, 10, 100) elements dis-
tributed in each of these directions. Each spectral element is resolved with
83 internal Gauss–Lobatto–Legendre nodes which results in 51 200 000 grid
points. A total of 1 530 000 points particles are distributed uniformly in the
computational domain. The simulation is continued until the particle disper-
sion reached a statistically stationary state in which the distribution is highly
non-homogeneous and large number of particles accumulate in specific regions
of the domain.

A strong parallel scaling is evaluated by enhancing the number of processors
while monitoring the workload measured as the averaged wall-clock time per
time step during the simulation. The values for the entire solver, the flow solver
nek5000 and the LPT module are shown in figure 2 where nek5000 shows an
excellent linear scalability for all considered number of processors. Increasing
the number of processors, however, the LPT solver slowly deviates from the
linear scaling (figure 2 b) and correspondingly the whole solver (figure 2 c). On
the other hand, due to the fact that the total time that is spent in the LPT
module is merely 10% of the total simulation time per time-step, this deficit is
barely visible in figure 2 (c). It is important to note that more than 95% of the
wall-time spent in the LPT module is due to the interpolation. The remaining
5% are spent to advect the particles; a comparably cheap and in particular
completely parallel operation.

A similar test is conducted examining a turbulent channel flow with box
size of 4π× 2× 2π laden with uniformly distributed particles. In that case the
number of processors is fixed and set to 256 and, the number of particles per
processor is increased. As illustrated in figure 2 (d), the workload increases
linearly, which is expected. This, of course, only confirms that the particles
are essentially independent of each other. The current scaling tests are all
performed on a Cray XE-6 machine at PDC (KTH).

In the context of LPT and related to interpolation routine, a few possibili-
ties are mentioned in the following that might help improving the efficiency of

332 A. Noorani, A. Peplinski, & P. Schlatter

processor

tim
e

/t
im

e
st

e
p

 [
se

c]

256 512 1024 4096
0.155

0.56

1.15

2.3
(a)

processor

tim
e

/t
im

e
st

e
p

 [
se

c]

256 512 1024 4096

0.0472

0.0783

0.132
0.2067

(b)

processor

tim
e

/t
im

e
st

e
p

 [
se

c]

256 512 1024 4096

0.2

0.6223

1.2977

2.6253
(c)

Particles Per Processor

tim
e

/t
im

e
st

e
p

 [
se

c]

1000 2000 3000 4000 6000

0.0948

0.1713
0.2586

0.5077

(d)

Figure 2. Averaged wall-time per timestep of the simulation
for different number of processors (�) performed by (a) fluid
solver nek5000, (b) LPT solver, (c) the whole code. The test
is a turbulent channel with a large box (51 200 000 grid points)
laden with 1 530 000 inertial particles that are reached statis-
tically stationary state. (d) Simulation wall-time for different
number of particles per processor at a fixed 256 processors
performed in a small-box turbulent channel. The particles are
distributed uniformly. The solid line illustrates linear scaling.
Taken from Noorani (2014).

the interpolation scheme for particle tracking. The most straight-forward choice
is to decrease the search time for the processor ID that is handling a certain
particle. Assuming the time step of simulations is small, the particles might
spend relatively long time (many time steps) in a specific subdomain that be-
longs to a specific processor before traversing to another processor subdomain.
The search for the processor IDs, then can be postponed to occasional failure
of processors in providing field data at particle position. This, however, might
not be practical if the time steps are large or particles are traversing quickly
from one sub-domain to another. On the other hand, the CFL condition ap-
plicable for the fluid put restrictions on the time steps anyway to reasonable
amounts. Similar assumption can be used to apply a history scheme. In that,

Program structure of interpolation routines in nek5000 333

each particle possesses a unique ID, so it is possible to track down the particle
IDs per processor ID. The fact that particles move into the neighbouring blocks
can be taken into considerations, which makes it possible to search the particle
information only on those processors which handle these neighbouring blocks.
Naturally one could also allow for local particle evaluations. In other words,
the particle computations are performed exactly on the same processor that
handles its position. Problems arise in this scheme if the majority of particles
accumulate in a small region where it needs to be handled by few processors
while the rest of the processors are particle free. In this situation the amount of
local workload might be large and a more sophisticated load balancing might
be required. Defining a threshold after which the workloads are distributed
to the other processors with less particles might be useful in this case. This
re-shuffling could be also costly at times, but does not need to be performed
at every time step. Finally, a simpler possibility to reduce the overall cost of
the particles is to use different time steps for the fluid and particle phase. Usu-
ally the maximum possible time step is lower for the fluid, which means that
particulate phase could be updated less frequently in comparison to the fluid
phase. This update can be performed as a function of particle relaxation time;
i.e. the heaviest particles allowing the largest time step.

7. Conclusion and outlook

In this technical report we documented the algorithm of the interpolation rou-
tines for the spectral element code nek5000. The code was originally developed
by James Lottes at Argonne National Laboratory. Here, we described the var-
ious steps of the operations. These steps are visualised for a typical deformed
2D mesh in Cartesian coordinates. The corresponding routines and their ar-
gument lists for each stage of the operation were also explained. The memory
structure pertaining to the implementation was briefly discussed. At the end,
we presented the overview of the interpolation routines as they appear in the
code.

References

Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 2006 Spectral Meth-
ods: Fundamentals in Single Domains. Springer.

Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 nek5000 Web page.
http://nek5000.mcs.anl.gov.

Noorani, A. 2014 Lagrangian particles in turbulence and complex geometries. Tech.
Rep.. KTH, Mechanics, licenciate Thesis.

Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in
a channel expansion. J. Comput. Phys. 54 (3), 468–488.

