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Motivera utförligt! Otillräckliga motiveringar kan medföra poängavdrag.
Inför och förklara konstanter och symboler du behöver!

Notation: ux(x, t) = ∂
∂xu(x, t); f ′(x) = df(x)

dx ; x ∈ R betyder −∞ < x <∞

1. 1 (a) Beräkna elektriska potentialen U(r, θ) inom ett homogent metallisk rör med
inre radie R > 0 och yttre radie 2R. Potentialen vid ränderna är fixerade,

U(R, θ) = U0 sin2 θ, U(2R, θ) = U0 cos2 θ

där U0 > 0 är en konstant. Potentialen uppfyller Laplaces ekvation ∆U = 0. (r, θ, z
är cylinderkoordinater: x = r cos θ och y = r sin θ, och röret är s̊a l̊angt att man
kan anta att potentialen är oberoende av z.) (4p)

(b) Ange PDE problemet som definierar Greenfunktionen till problemet i 1(a) ovan.
OBS: Du behöver inte beräkna Greenfunktionen! (2p)

2. (a) Bestäm lösningen u(x, t), t > 0 och 0 < x < L, till följande problem,

ρutt(x, t)− Suxx(x, t) = 0 (0 < x < L, t > 0)

u(0, t) = 0, u(L, t) = A sin(ωt) (t > 0)

u(x, 0) = ut(x, 0) = 0 (0 < x < L)

där A > 0, ρ > 0, S > 0, ω > 0, L > 0 är constanter. Du behöver inte beräkna alla
integraler för full poäng. (5p) (b) Ange en möjlig fysikalisk tolkning av problemet
i (a). (1p)

3. En sfärisk kula med radie R har fr̊an början överallt temperaturen T0. Den avkyls
genom att dess yta fr̊an tiden t = 0 h̊alls vid temperaturen T0/5. (a) Beräkna
temperaturen inom kulan vid alla tider t ≥ 0. (5p) (b) Beräkna approximativt
tiden d̊a temperaturen i centrum är lika med T0/2. (1p) Ledning: Temperaturen
T = T (r, t) oberoende av θ och ϕ. Alla integraler ska beräknas för full poäng.
Ledning:

∫
sin(kx)xdx = [sin(kx)− kx cos(kx)]/k2.

1Dina bonuspoäng fr̊an hemtalen under VT2018 adderas till dina poäng i uppgiften 1, dock kan du
bara f̊a 6 poäng max.



4. (a) Bestäm lösningen u(x, t), x ∈ R och t ≥ 0, till problemet

ut(x, t)− auxx(x, t) = 0, u(x, 0) = u0e
−x2/R2

där R > 0, u0 och a > 0 är konstanter. Anta att u(x, t)→ 0 när |x| → ∞ för alla
t > 0. (b) Ange Greenfunktionen till problemet i (a)! (c) Beskriv (i ord) en möjlig
situation som kan beskrivas med modellen i (a). Det skall vara möjligt att ställa
upp modellen fr̊an beskrivningen. (6p)

5. D̊a vattnet i en rak cirkulär cylinder med radie R roterar med vinkelhastigheten
ω > 0 runt cylinderaxeln formar sig ytan s̊a att den potentiella energien U i det
roterande systemet blir minimal. Bestäm vattenytans höjd h(r) som funktion av
avst̊andet r fr̊an cylinderaxeln! Ledning: Bidraget dU till potentiella energin fr̊an
volymelementet dV är

dU = ρM

(
gz − ω2r2

2

)
dV

där g = 9.82m/s2, ρM är vattens densitet, och r, ϕ, z är cylinderkoordinater. Anta
att totala vattenvolymen V0 är s̊a stor att h(r) > 0 för alla 0 ≤ r ≤ R. Ange
eventuella bivillkor. (6p)

6. En elektrisk potential U(r, t) genereras av en laddningsfördelning

ρL(r, t) =

{
ρ0 sin(ωt) om

√
x2 + y2 ≤ a

0 annars

vid tiden t ∈ R, där r = (x, y, z) är positionen i kartesiska koordinater; ρ0 > 0, ω >
0 och a > 0 är konstanter. Beräkna en stationär periodisk lösning U(r, t), r ∈ R3

och t ∈ R, till problemet! Ledning: U(r, t) uppfyller inhomogena v̊agekvationen

Utt − c2∆U = ρL.

OBS att U och Us normalderivata skall vara kontinuerliga vid ytan
√
x2 + y2 = a,

och U → 0 när
√
x2 + y2 →∞. (6p)

LYCKA TILL!



Lösningsföreslag till tentamen i Fysikens matematiska metoder 180609
I TYPED THIS QUICKLY: PLEASE LET ME KNOW BY EMAIL IF YOU FIND

ANY MISTAKES/TYPOS. THANKS.

1. (a) Problemet lyder

(∆U)(r, θ) = Urr(r, θ) +
1

r
Ur(r, θ) +

1

r2
Uθθ(r, θ) = 0 (R < r < 2R, 0 ≤ θ ≤ 2π)

U(R, θ) = U0 sin2(θ) =
1

2
U0(1− cos 2θ), U(R, θ) = U0 cos2(θ) =

1

2
U0(1 + cos 2θ).

Allmänna lösningen till PDE i omr̊adet R < r < 2R är

U(r, θ) = (a0+b0 ln(r/R))+
∞∑
n=1

(
rn[an cos(nθ) + bn sin(nθ)] + r−n[cn cos(nθ) + dn sin(nθ)]

)
med godtyckliga konstanter an, bn, cn, dn, och randvillkoren ger

U(r, θ) =
1

2
U0 + cos(2θ)[a2r

2 + c2r
−2]

där

a2R
2 + c2R

−2 = −U0

2
, a2(2R)2 + c2(2R)−2 =

U0

2
⇒ a2 = 1/6R2, c2 = −2R2/3.

Svar: U(r, θ) = U0(1/2 + [r2/6R2 − 2R2/3r2] cos(2θ))

(b) PDE problemet som Bestämmer Greenfunctionen G(r, r′), r = (x, y) och r′ =
(x′, y′), är

−(∆rG)(r, r′) = δ(r− r′) (R < |r| < 2R, R < |r′| < 2R)

G(r, r′)||r|=R = G(r, r′)||r|=2R = 0

där |r| =
√
x2 + y2 osv. (Man kan ocks̊a skriva det i polära koordinater först̊as,

men det behövs inte för full poäng.)

2. PDE problemet lyder

utt(x, t)−c2uxx(x, t) = 0, u(0, t) = 0, u(L, t) = A sin(ωt), u(x, 0) = ut(x, t) = 0

där c =
√
S/ρ. Ansatsen up(x, t) = f(x) sin(ωt) för en partikulärlösning ger

−ω2f(x)− c2f ′′(x) = 0, f(0) = 0, f(L) = A⇒ f(x) = A
sin(ωx/c)

sin(ωL/c)
.

Resonansfrekvens: ωL/c = nπ där n = 1, 2, . . . ⇒ ωn = nπc/L. Vi antar att
ω 6= ωn dvs. sin(ωL/x) 6= 0.

Ansatsen u(x, t) = up(x, t) + U(x, t) ger

Utt(x, t)− c2Uxx = 0, U(0, t) = U(L, t) = 0, U(x, 0) = 0, Ut(x, 0) = −f(x)ω

med f(x) ovan.

U(x, t) =
∞∑
n=1

an sin(knx) sin(knct), an = − ω

knc

2

L

∫ L

0

sin(knx)f(x)dx

där kn = nπ/L .

Svar: u(x, t) = f(x) sin(ωt) + U(x, t) med f(x) och U(x, t) ovan.



3.
Tt(r, t)−∆T (r, t) = 0, T (R, t) = T0/5, T (r, 0) = T0

ger

T (r, t) = T0/5 +
∞∑
n=1

an
1

r
sin(knr), kn = nπ/R⇒ an =

2

R

∫ R

0

4T0
5

sin(knr)rdr.

Svar:

T (r, t) =
1

5
T0 +

8

5
T0

∞∑
n=1

(−1)n−1

kn

1

r
sin(knr), kn = nπ/R

4. (a) Fourier transformen

U(k, t) =

∫
R
u(x, t)e−ikxdx

ger

Ut(k, t) + ak2U(k, t) = 0, U(k, 0) =

∫
R
u0e
−x2/R2

e−ikxdx = u0R
√
πe−k

2R2/4

(integralen ges i formelsamlingen) som har lösningen

U(k, t) = U(k, 0)e−ak
2t = u0R

√
πe−k

2(R2+4at)/4.

Inversa Fourier transformen ger svaret:

u(x, t) =
1

2π

∫
R
U(k, t)eikxdk =

u0R
√
π

2π

∫
R

e−k
2(R2+at)/4eikxdk

dvs. (integralen ges i formelsamlingen)

u(x, t) =
R√

R2 + 4at
u0e
−x2/(R2+4at) .

(b) Greensfunktionen G(x, t, x′, t′) bestäms av problemet

Gt(x, t, x
′, t′)− aGxx(x, t, x

′, t′) = δ(t− t′)δ(x− x′), G(x, 0, x′, t′) = 0

som har lösningen

G(x, t, x′, t′) = Θ(t− t′) 1√
4πa(t− t′)

e−(x−x
′)2/4a(t−t′)

med Heavisidefunktionen Θ (fundamentallösningen G0(x, t) s̊a att G(x, t, x′, t′) =
Θ(t− t′)G0(x− x′, t− t′) finns i formelsamlingen).

(c) Värmeledning i en isolerad homogen stav som är s̊a l̊ang att randeffekterna kan
ignoreras: u(x, t) är temperaturen i positionen x och vid tiden t som uppfyller den
en-dimensionalla värmeledningsekvation. Temperaturen vid tiden t = 0 är lika med
u0e
−x2/R2

. (Det är en möjlig svar; det finns många andra.)



5. Vattenvolymen V definieras genom 0 ≤ r ≤ R, 0 ≤ z ≤ h(r), 0 ≤ θ ≤ 2π i cylinder
koordinater r, θ, z, dvs.

U = 2π

∫ R

0

rdr

∫ h(r)

0

dzρM

(
gz − ω2r2

2

)
= 2πρM

∫ R

0

dr

(
g

1

2
rh(r)2 − 1

2
ω2r3h(r)

)
,

och vi har ett villkor att volymen

V = 2π

∫ R

0

rdr

∫ h(r)

0

dz = 2π

∫ R

0

drrh(r)

är fixerad och like med V0. Problemet lyder: bestäm h(r) s̊a att U är minimum
med bivillkoret V = V0. Lösningen är att bestämmer extremum till funktionalen
U − λV = 2π

∫
drF (h(r)) med Lagrange multiplikatorn λ och

F (h(r)) = ρM

(
g

1

2
rh(r)2 − 1

2
ω2r3h(r)

)
− λrh(r).

Euler-Lagrange ekvationen är (p.g.a. ∂F/∂h′(r) = 0)

∂F

∂h(r)
= ρM(grh(r) +

1

2
ω2r3)− λr = 0⇒ h(r) =

λ− ρMω2r2/2

ρMg

där λ bestäms genom

V0 = 2π

∫ R

0

drr
λ− ρMω2r2/2

ρMg
=

2π

ρMg

(
1

2
λR2 − 1

8
ρMω

2R4

)
⇒ λ =

1

4
ρMω

2R2+
V0ρMg

πR2
.

Svar:

h(r) =
ω2(R2 − 2r2)

4g
+

V0
πR2

.

[Kolla att dimensionerna stämmer: [h(r)] = L, [V0/R
2] = L OK, [ω2R2/g] =

T−2L2/(L/T 2) = L OK.]

6. Problemet lyder

Utt(r, t)− c2∆U(r, t) = ρ(r, t), U(r, 0) = Ut(r, 0) = 0.

Ansatsen Up(r, t) = f(r) sin(ωt), r =
√
x2 + y2, för en partikulärlösning till PDE

ger

−ω2f(r)− c21

r
∂r(r∂rf(r)) =

{
ρ0 r < a

0 r > R

som har en lösning

f(r) =

{
−ρ0/ω2 r < a

AJ0(λr) +BY0(λr) r > R

där λ = ω/c och där A och B bestäms s̊a att f(r) och f ′(R) är kontinuerliga vid

r = R (enl. ledningen) dvs.

AJ0(λR) +BY0(λR) = −ρ0/ω2, AλJ ′0(λR) +BλY ′0(λR) = 0.

Svar: U(r, t) = f(r) sin(ωt) med f(r) ovan och

A = − ρ0Y
′
0(λR)

ω2(J0(λR)Y ′0(λR)− Y0(λR)J ′0(λR))
, B =

ρ0J
′
0(λR)

ω2(J0(λR)Y ′0(λR)− Y0(λR)J ′0(λR))
.


