KTH Teoretisk Fysik

Omtentamen i Fysikens matematiska metoder
SI11200; SI1140 Del 2; SI1143

Lordagen den 9 juni 2018 k1 9.00 — 14.00

Anteckna pa varje blad: namn, personnummer, och problemnummer.
Tillatna hjalpmedel: bara formelsamlingen som delas ut

Obs! Miniraknare ej tillaten.
Notera garna dina bonuspoang pa omslaget.

Examinator: Edwin Langmann (Epost: langmann@kth.se)
Losningar: Kommer att finnas pa kurshemsidan,
https://kth.instructure.com/courses/4568/
Motivera utforligt! Otillrackliga motiveringar kan medféra poangavdrag.
Inf6ér och forklara konstanter och symboler du behé6ver!
Notation: uz(z,t) = a%u(:n,t); f(z) = %; x € R betyder —oco < z < 0o

1. ! (a) Berdkna elektriska potentialen U(r,6) inom ett homogent metallisk ror med
inre radie R > 0 och yttre radie 2R. Potentialen vid randerna ar fixerade,

U(R,0) = Uysin®0, U(2R,0) = Uycos®0

dar Uy > 0 &r en konstant. Potentialen uppfyller Laplaces ekvation AU = 0. (7,0, z
ar cylinderkoordinater: x = rcosf och y = rsinf, och roret ar sa langt att man
kan anta att potentialen &r oberoende av z.) (4p)

(b) Ange PDE problemet som definierar Greenfunktionen till problemet i 1(a) ovan.
OBS: Du behover inte berdkna Greenfunktionen! (2p)

2. (a) Bestédm l6sningen u(x,t), t > 0 och 0 < x < L, till féljande problem,
pug(z,t) — Stz (x,t) =0 (0<zx < L,t>0)

u(0,t) =0, wu(L,t)= Asin(wt) (t>0)
u(z,0) = u(x,0) =0 (0<z<1L)

dair A>0,p>0,5>0,w>0,L >0 ar constanter. Du behover inte berakna alla
integraler for full podng. (5p) (b) Ange en mojlig fysikalisk tolkning av problemet

i (a). (1p)

3. En sfarisk kula med radie R har fran borjan 6verallt temperaturen Ty, Den avkyls
genom att dess yta fran tiden ¢ = 0 halls vid temperaturen 7y/5. (a) Berdkna
temperaturen inom kulan vid alla tider t > 0. (5p) (b) Berdkna approximativt
tiden da temperaturen i centrum é&r lika med 75/2. (1p) Ledning: Temperaturen
T = T(r,t) oberoende av € och ¢. Alla integraler ska berdknas for full poédng.
Ledning: [ sin(kz)zdz = [sin(kz) — kz cos(kz)]/k?.

'Dina bonuspoéang fran hemtalen under VT2018 adderas till dina podng i uppgiften 1, dock kan du
bara fa 6 poing max.



4. (a) Bestdm losningen u(z,t), € R och t > 0, till problemet

uy(2,1) — auge(z,1) =0,  u(z,0) = uge >/

dér R > 0, up och a > 0 ar konstanter. Anta att u(z,t) — 0 nér |z| — oo for alla
t > 0. (b) Ange Greenfunktionen till problemet i (a)! (c¢) Beskriv (i ord) en méjlig
situation som kan beskrivas med modellen i (a). Det skall vara mojligt att stilla
upp modellen fran beskrivningen. (6p)

5. Da vattnet i en rak cirkular cylinder med radie R roterar med vinkelhastigheten
w > 0 runt cylinderaxeln formar sig ytan sa att den potentiella energien U i det
roterande systemet blir minimal. Bestam vattenytans hojd h(r) som funktion av
avstandet r fran cylinderaxeln! Ledning: Bidraget dU till potentiella energin fran

volymelementet dV ar
2,.2

dU = py <gz— w27“ )dV

dir g = 9.82m/s?, py; éar vattens densitet, och r, ¢, 2z ar cylinderkoordinater. Anta
att totala vattenvolymen Vj &r sa stor att A(r) > 0 for alla 0 < r < R. Ange
eventuella bivillkor. (6p)

6. En elektrisk potential U(r,t) genereras av en laddningsférdelning

f = {po sin(wt)  om y/22+y? <a

0 annars

vid tiden ¢t € R, dir r = (z,y, z) &r positionen i kartesiska koordinater; py > 0, w >
0 och @ > 0 ar konstanter. Berdkna en stationér periodisk 16sning U(r,t), r € R?
och t € R, till problemet! Ledning: U(r,t) uppfyller inhomogena vagekvationen

Utt — CZAU = PL-

OBS att U och Us normalderivata skall vara kontinuerliga vid ytan /22 + y? = a,
och U — 0 nér /22 + y%2 — oco. (6p)

LYCKA TILL!



Losningsforeslag till tentamen i Fysikens matematiska metoder 180609
I TYPED THIS QUICKLY: PLEASE LET ME KNOW BY EMAIL IF YOU FIND
ANY MISTAKES/TYPOS. THANKS.

1. (a) Problemet lyder

1 1
(AU)(r,0) = U,.(1,0) + ;Ur(r, ) + T—2U99(7’, 0)=0 (R<r<2R, 0<0<2n)

1 1
U(R,0) = Uysin®(0) = §UO(1 —cos20), U(R,0) = Uycos*(0) = §U0(1 + cos 26).

Allménna l6sningen till PDE i omradet R < r < 2R ar

U(r,0) = (ap+bo ln(r/R))—i-Z (r"[an cos(nd) + by, sin(nb)] + r~"[c, cos(nf) + d,, sin(nf)])

n=1

med godtyckliga konstanter a,,, b,, ¢,, d,, och randvillkoren ger
1
U(r,0) = §U0 + cos(20)[agr? + cor?]

dar

Y
2 )
Svar: |U(r,0) = Up(1/2 + [r* /6 R*> — 2R*/3r°] cos(26))
(b) PDE problemet som Bestdmmer Greenfunctionen G(r,r’), r = (z,y) och r' =
(z',y'), ar

Ui
a2R2 + CQ.R_2 = — CL2(2R>2 + CQ(2R)_2 = 70 = Qg = 1/6R2, Cy = —2R2/3

—(AG)(r,r)=0(r—1") (R<|r|<2R, R<|r|<2R)
G(r,r")|jj=r = G(r,1")|jpj=2r = 0

dér |r| = /2% +y? osv. (Man kan ocksa skriva det i polira koordinater forstas,
men det behovs inte for full poéng.)

2. PDE problemet lyder
U (7, 1) —CPige(2,t) =0, u(0,t) =0, u(L,t) = Asin(wt), u(z,0)=u(z,t) =0
dér ¢ = /5/p. Ansatsen u,(z,t) = f(z)sin(wt) for en partikuldrlosning ger

2 21 — — )= A — Sin(wx/c) ]
PI) = AW =0, f0)=0, f(5)= A=) = AT
Resonansfrekvens: wL/c = nm dar n = 1,2,... = w, = nwc/L. Vi antar att

w # wy, dvs. sin(wL/x) # 0.
Ansatsen u(z,t) = uy(x,t) + U(x,t) ger
Un(w,t) = Uy =0, U(0,t) =U(L,t) =0, Ulx,0)=0, Uy(z,0)=—f(x)w

med f(z) ovan.

w 2

oo L
Uz, t) = Zan sin(kpz) sin(kyct), a, = _ECZ/O sin(kpx) f(x)dx

n=1

dér |k, = nw/L|

Svar: |u(z,t) = f(x)sin(wt) + U(z,t) | med f(x) och U(z,t) ovan.




Ty(r,t) — AT(r,t) =0, T(R,t)=Ty/5, T(r,0)="T,

ger
T(r,t) T/5—|—§:a 1sin(k: T) =nr/R=a / o sin(kyr)rdr
= n_ n' ) =nm n — = :
) 0 pa r R
Svar:

T(r,t) = - —TO Z - sm(k;n'r), k, =nn/R

. (a) Fourier transformen

U(k,t) —/u(x,t)eik"”d:c
R

ger
Uy, t) + ak®U(k,t) = 0, U(k,0) = / wge K gy — o R R
R

(integralen ges i formelsamlingen) som har 16sningen
Uk, t) = U(k,0)e " = ygRy/me ¥ (R +a)/4,

Inversa Fourier transformen ger svaret:

1 : - .
u(@,t) = o / Uk, t)e™dk = —“‘fﬁ / e Al Aike g,
R T R

™

dvs. (integralen ges i formelsamlingen)

u(x,t) _ R —x2/(R%+4at) i

= Up€
VR + dat |

(b) Greensfunktionen G(z,t,2',t') bestdms av problemet

Gi(x,t, 2/ 1) — aGrp(z, t, 2" 1) = 6(t — t)d(x — o), G(x,0,2",t') =0

som har losningen

1 , ,
Gz t, 2 ) = Ot — t') e~ (7= /Malt 1)
dra(t —t')

med Heavisidefunktionen O (fundamentallosningen Go(z,t) sa att G(z,t,2',t") =
O(t —t')Go(z — 2/, t — t’) finns i formelsamlingen).

(c¢) Varmeledning i en isolerad homogen stav som é&r sa lang att randeffekterna kan
ignoreras: u(z,t) ar temperaturen i positionen x och vid tiden ¢ som uppfyller den
en-dimensionalla varmeledningsekvation. Temperaturen vid tiden ¢ = 0 ar lika med

upe " /R* (Det &r en mojlig svar; det finns manga andra.)



5. Vattenvolymen V definieras genom 0 <r < R, 0 < z < h(r), 0 < 6 < 27 i cylinder

koordinater r, 0, z, dvs.
2,.2 R 1 1
" ) = 27TpM/ dr (g—rh(r) — —wr3n(r ))
. 2 2

R h(r)
U:27r/ Td’l"/ dsz(
0 0
R h(r) R
V= 27r/ rdr/ dz = 27r/ drrh(r)
0 0 0

och vi har ett villkor att volymen

ar fixerad och like med Vy. Problemet lyder: bestdm h(r) sa att U &r minimum
med bivillkoret V' = V[). Losningen ar att bestammer extremum till funktionalen
U — AV =2r [ drF(h(r)) med Lagrange multiplikatorn A och

F(h(r)) = pm (g%rh(r}2 — %oﬂr?’h(r)) — Arh(r).

Euler-Lagrange ekvationen ér (p.g.a. 0F/Oh (r) = 0)
OF 1 A — pyw?r?/2
iy = larhr) + 5r) = Ar =0 = h(r) = 2L
dar A bestams genom

R 2
A — 2 2 1 1 1 |
Vo = 27/ drr P’/ i (—)\R2 - —pr2R4> = A= —puw’ R+ Opﬂég
0 pMmY ~ pmg \2 8 4 TR

Svar:

w?(R? — 2r?) N Vo

4q TR? |
[Kolla att dimensionerna stammer: [h(r)] = L, [Vy/R?] = L OK, [w?R?/g] =
T-21%/(L/T?) = L OK|]

h(r) =

6. Problemet lyder
Un(r,t) — EAU(r,t) = p(r,t), U(r,0) = Uy(r,0) = 0.
Ansatsen U,(r,t) = f(r)sin(wt), r = /2% + y?, {or en partikulérlsning till PDE

ger

—wvm—c§06ﬂ» {

po Tr<a
0 r»r>R

som har en 16sning

) =po/w? r<a
fr) = {AJO()\T) 4 BYy(\r) >R

dér |\ = w/c|och dir A och B bestdms sa att f(r) och f'(R) éar kontinuerliga vid
r = R (enl. ledningen) dvs.

AJy(AR) + BYy(AR) = —po/w?,  AML(AR) + BAY(AR) = 0.
Svar: |U(r,t) = f(r)sin(wt) | med f(r) ovan och

A=— Yo (AR) pody(AR)

EORY]OR) - YORAOR) D PORY]AR) — YaORJOR) |




